CN110262773A - 一种计算机数据处理方法及装置 - Google Patents

一种计算机数据处理方法及装置 Download PDF

Info

Publication number
CN110262773A
CN110262773A CN201910349581.2A CN201910349581A CN110262773A CN 110262773 A CN110262773 A CN 110262773A CN 201910349581 A CN201910349581 A CN 201910349581A CN 110262773 A CN110262773 A CN 110262773A
Authority
CN
China
Prior art keywords
data
group
register
multiplication
result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910349581.2A
Other languages
English (en)
Other versions
CN110262773B (zh
Inventor
赵原
殷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced New Technologies Co Ltd
Advantageous New Technologies Co Ltd
Original Assignee
Alibaba Group Holding Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alibaba Group Holding Ltd filed Critical Alibaba Group Holding Ltd
Priority to CN201910349581.2A priority Critical patent/CN110262773B/zh
Publication of CN110262773A publication Critical patent/CN110262773A/zh
Priority to PCT/CN2020/070620 priority patent/WO2020220743A1/zh
Priority to TW109100610A priority patent/TWI731543B/zh
Priority to US16/779,073 priority patent/US10782933B2/en
Application granted granted Critical
Publication of CN110262773B publication Critical patent/CN110262773B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/5443Sum of products

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Executing Machine-Instructions (AREA)
  • Complex Calculations (AREA)

Abstract

本说明书提供一种计算机数据处理方法及装置,实现了256比特乘法运算,将2个256位数据拆分成64位数,再对拆分后的数据按照预设规则进行计算。并且在整个计算过程中,逐个计算各组数据对的乘法结果,按组对各组数据对的乘法结果进行累加,各组数据对的乘法结果累加结束后,即将累加结果的低64为存储在内存中,释放对应的寄存器。即乘即累加,一组累加结束即释放低64位寄存器的运算方式,可以实现占用较少的寄存器,使得整个运算过程可以仅仅访问寄存器,不需要访问缓存和内存,提高了数据处理的效率,实现了256比特乘法的快速运算,为密码学、大整数运算等数据处理过程奠定了数据基础。

Description

一种计算机数据处理方法及装置
技术领域
本说明书属于计算机技术领域,尤其涉及一种计算机数据处理方法及装置。
背景技术
随着科技的进步,计算机技术在不断的发展,数据处理的复杂程度也在不断的增加,越来越多的需要进行大数运算数据处理,如:密码算法中通常需要使用256比特模乘。大数运算是指计算的数值非常大或者对运算的精度要求非常高的运算,由于编程语言提供的基本数值数据类型表示的数值范围有限,不能满足较大规模的高精度数值计算。这种大数运算通常与计算机的硬件相关联,如何实现比较高效、便捷的计算机数据的运算处理,是本领域亟需解决的技术问题。
发明内容
本说明书实施例的目的在于提供一种计算机数据处理方法及装置,实现256比特乘法的快速计算,提高了数据处理效率,为密码学、大整数运算等数据处理过程奠定了数据基础。
一方面本说明书实施例提供了一种计算机数据处理方法,用于实现2个256位数的乘法数据处理,所述方法包括:
将乘数a和被乘数b由高位到低位分别拆分成4个64位数,分别获得拆分后乘数和拆分后被乘数,所述拆分后乘数包括:a[3]、a[2]、a[1]、a[0],所述拆分后被乘数包括:b[3]、b[2]、b[1]、b[0];
将所述拆分后乘数和所述拆分后被乘数读取到寄存器中,并按照预设规则将所述拆分后乘数和所述拆分后被乘数进行相乘处理,获得目标数据的乘法处理结果;
其中,所述预设规则包括:
所述拆分后乘数和所述拆分后被乘数被分为七组数据对,第一组数据对包括:a[0]b[0],第二组数据对包括:a[1]b[0]、a[0]b[1],第三组数据对包括:a[2]b[0]、a[1]b[1]、a[0]b[2],第四组数据对包括:a[3]b[0]、a[2]b[1]、a[1]b[2]、a[0]b[3],第五组数据对包括:a[3]b[1]、a[2]b[2]、a[1]b[3],第六组数据对包括:a[3]b[2]、a[2]b[3],第七组数据对包括:a[3]b[3];
逐个计算所述第一组数据对到所述第七组数据对的乘法结果,对每组内的数据对的乘法结果进行组内累加,所述组内累加包括:在同一组数据对中,每计算一个数据对的乘法结果,将计算出的乘法结果与组内的上一个数据对的乘法结果进行组内累加,将同一组内的数据对的最终累加结果的低64位保存至内存,获得相应组数据对的剩余累加结果,并释放对应的寄存器;
各组数据对的第一个数据对的乘法结果与上一组数据对的剩余累加结果相累加,再与下一个数据对的乘法结果累加,直至获得第七组数据中数据对的乘法结果累加结束,将所述第七组数据中数据对对应的累加结果保存至内存中,获得所述目标数据的乘法处理结果。
进一步地,本说明书一个实施例中,所述方法还包括:
在对各组数据对的乘法结果进行累加时,释放存储各数据对的乘法结果的寄存器,并将累加结果保存在3个寄存器中。
进一步地,本说明书一个实施例中,所述方法应用于64位计算机操作***中。
进一步地,本说明书一个实施例中,所述方法还包括:
从所述64位计算机操作***的寄存器RBX、RBP、R12、R13、R14、R15中任意选取4寄存器,将选取出的寄存器的值保存到内存中;
在计算出所述目标乘法结果后,从内存中获取保存的所述选取出的寄存器的值,恢复所述选取出的寄存器的值。
进一步地,本说明书一个实施例中,所述方法还包括:
从所述64位计算机操作***中选取寄存器RAX、RCX、RDX、RSI、RDI、R8、R9、R10、R11,与所述选取出的寄存器均用于数据处理过程中的数据存储。
另一方面,本说明书提供了一种计算机数据处理装置,用于实现2个256位数的乘法数据处理,所述装置包括:
数据拆分模块,用于将乘数a和被乘数b由高位到低位分别拆分成4个64位数,分别获得拆分后乘数和拆分后被乘数,所述拆分后乘数包括:a[3]、a[2]、a[1]、a[0],所述拆分后被乘数包括:b[3]、b[2]、b[1]、b[0];
数据处理模块,用于将所述拆分后乘数和所述拆分后被乘数读取到寄存器中,并按照预设规则将所述拆分后乘数和所述拆分后被乘数进行相乘处理,获得目标数据的乘法处理结果;
其中,所述预设规则包括:
所述拆分后乘数和所述拆分后被乘数被分为七组数据对,第一组数据对包括:a[0]b[0],第二组数据对包括:a[1]b[0]、a[0]b[1],第三组数据对包括:a[2]b[0]、a[1]b[1]、a[0]b[2],第四组数据对包括:a[3]b[0]、a[2]b[1]、a[1]b[2]、a[0]b[3],第五组数据对包括:a[3]b[1]、a[2]b[2]、a[1]b[3],第六组数据对包括:a[3]b[2]、a[2]b[3],第七组数据对包括:a[3]b[3];
逐个计算所述第一组数据对到所述第七组数据对的乘法结果,对每组内的数据对的乘法结果进行组内累加,所述组内累加包括:在同一组数据对中,每计算一个数据对的乘法结果,将计算出的乘法结果与组内的上一个数据对的乘法结果进行组内累加,将同一组内的数据对的最终累加结果的低64位保存至内存,获得相应组数据对的剩余累加结果,并释放对应的寄存器;
各组数据对的第一个数据对的乘法结果与上一组数据对的剩余累加结果相累加,再与下一个数据对的乘法结果累加,直至获得第七组数据中数据对的乘法结果累加结束,将所述第七组数据中数据对对应的累加结果保存至内存中,获得所述目标数据的乘法处理结果。
进一步地,本说明书一个实施例中,所述数据处理模块具体用于:
在对各组数据对的乘法结果进行累加时,释放存储各数据对的乘法结果的寄存器,并将累加结果保存在3个寄存器中。
进一步地,本说明书一个实施例中,所述装置应用于64位计算机操作***中。
进一步地,本说明书一个实施例中,所述装置还包括寄存器准备模块用于:
从所述64位计算机操作***的寄存器RBX、RBP、R12、R13、R14、R15中任意选取4寄存器,将选取出的寄存器的值保存到内存中;
在计算出所述目标乘法结果后,从内存中获取保存的所述选取出的寄存器的值,恢复所述选取出的寄存器的值。
进一步地,本说明书一个实施例中,所述寄存器准备模块还用于:
从所述64位计算机操作***中选取寄存器RAX、RCX、RDX、RSI、RDI、R8、R9、R10、R11,与所述选取出的寄存器均用于数据处理过程中的数据存储。
再一方面,本说明书提供了一种计算机设备,包括:至少一个64位处理器、用于存储处理器可执行64位指令的存储器以及至少13个64位寄存器,所述处理器执行所述64位指令实现上述计算机数据处理方法。
本说明书提供的计算机数据处理方法、装置、处理设备,实现了256比特乘法运算,将2个256位数据拆分成64位数,再对拆分后的数据按照预设规则进行计算。并且在整个计算过程中,逐个计算各组数据对的乘法结果,按组对各组数据对的乘法结果进行累加,各组数据对的乘法结果累加结束后,即将累加结果的低64为存储在内存中,释放对应的寄存器。即乘即累加,一组累加结束即释放低64位寄存器的运算方式,可以实现占用较少的寄存器,使得整个运算过程可以仅仅访问寄存器,不需要访问缓存和内存,提高了数据处理的效率,实现了256比特乘法的快速运算,计算出的乘法处理结果为密码学、大整数运算等数据处理过程奠定了数据基础。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本说明书一个实施例中计算机数据处理方法的流程示意图;
图2是本说明书实施例中数据对分组示意图;
图3是本说明书一个实施例中256比特乘法运算的流程示意图;
图4是本说明书提供的计算机数据处理装置一个实施例的模块结构示意图;
图5是本说明书又一个实施例中计算机数据处理装置的结构示意图;
图6是本说明书一个实施例中计算机数据处理服务器的硬件结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书保护的范围。
越来越多的应用场景需要使用大整数运算,可以利用计算机的数据处理能力,通过计算机编程等方式实现大整数运算。如:公钥密码算法广泛使用大整数乘法,在密码学算法中的椭圆曲线算法中,如国密SM2(国家密码管理局发布的椭圆曲线公钥密码算法),美国NIST256r1ECDSA(美国NIST公布的椭圆曲线数字签名算法),都使用256比特模乘。由于SM2和NIST 256r1使用特殊的伪梅森素数,对256位数的模可以用快速约简,所以计算256位模乘可以先求256位乘法,再用快速约简求模。这样256比特乘法约占国密SM2和NIST256r1ECDSA一半的计算量。256比特乘法还可作为实现模块用于构造更高比特的乘法和模乘,用于RSA2048、RSA4096等,RSA2048、RSA4096可以理解为两种公钥加密算法。
本说明书实施例中提供了一种计算机数据处理方法,可以实现256比特乘法,通过将用于256比特乘法运算的乘数和被乘数分别拆分为4个64位数后,再将拆分后的数据按照一定的规则进行运算。整个过程可以通过计算机程序代码实现,运算过程中,可以仅仅使用的计算机内部的寄存器,并且不需要限制使用哪些寄存器,也不需要访问缓存空间,提高了数据处理效率。
本说明书中计算机数据处理方法可以应用在客户端或服务器中,客户端可以是智能手机、平板电脑、智能可穿戴设备(智能手表、虚拟现实眼镜、虚拟现实头盔等)、智能车载设备等电子设备。
具体的,图1是本说明书一个实施例中计算机数据处理方法的流程示意图,如图1所示,本说明书一个实施例中提供的计算机数据处理方法可以包括:
步骤102、将乘数a和被乘数b由高位到低位拆分别分成4个64位数,分别获得拆分后乘数和拆分后被乘数,所述拆分后乘数包括:a[3]、a[2]、a[1]、a[0],所述拆分后被乘数包括:b[3]、b[2]、b[1]、b[0]。
在具体的实施过程中,本说明书实施例可以用于实现256比特乘法,即可以实现2个256位数据的大整数乘法运算。在数据处理之前,可以先对256比特乘法运算中的乘数a和被乘数b进行拆分,将乘数a和被乘数b分别拆分为4个64位数,获得拆分后乘数和拆分后被乘数。具体可以按照数据的位数进行划分,每隔64比特划分一次,具体可以参考图3所示。其中,拆分后乘数从高位到低位按64位划分为:a[3]、a[2]、a[1]、a[0],拆分后被乘数从高位到低位按64位划分为:b[3]、b[2]、b[1]、b[0]。
步骤104、将所述拆分后乘数和所述拆分后被乘数读取到寄存器中,并按照预设规则将所述拆分后乘数和所述拆分后被乘数进行相乘处理,获得目标数据的乘法处理结果;
其中,所述预设规则包括:
所述拆分后乘数和所述拆分后被乘数被分为七组数据对,第一组数据对包括:a[0]b[0],第二组数据对包括:a[1]b[0]、a[0]b[1],第三组数据对包括:a[2]b[0]、a[1]b[1]、a[0]b[2],第四组数据对包括:a[3]b[0]、a[2]b[1]、a[1]b[2]、a[0]b[3],第五组数据对包括:a[3]b[1]、a[2]b[2]、a[1]b[3],第六组数据对包括:a[3]b[2]、a[2]b[3],第七组数据对包括:a[3]b[3];
逐个计算所述第一组数据对到所述第七组数据对的乘法结果,对每组内的数据对的乘法结果进行组内累加,所述组内累加包括:在同一组数据对中,每计算一个数据对的乘法结果,将计算出的乘法结果与组内的上一个数据对的乘法结果进行组内累加,将各组数据对的最终累加结果的低64位保存至内存,获得各组数据对的剩余累加结果,并释放对应的寄存器;
各组数据对的第一个数据对的乘法结果与上一组数据对的剩余累加结果相累加,再与下一个数据对的乘法结果累加,直至获得第七组数据中数据对的乘法结果累加结束,将所述第七组数据中数据对对应的累加结果保存至内存中,获得所述目标数据的乘法处理结果。
在具体的实施过程中,乘数和被乘数拆分结束后,可以调用256位乘法函数如:64位乘法指令和64位加法指令,计算256位乘法。可以先从内存中将拆分好的数据读取到寄存器中,拆分后乘数和拆分后被乘数可以占用8个64位寄存器。再按照预设规则将拆分后乘数和拆分后被乘数进行相乘处理,获得最终的目标乘法结果,目标乘法结果可以保存在内存中。其中,具体进行乘法运算的预设规则可以包括:
图2是本说明书实施例中数据对分组示意图,如图2所示,本说明书一个实施例中,可以按照乘法运算规则,即乘数和被乘数逐位相乘,错位排列的规则,将排列好的数据按列进行分组,相乘的两个数据可以作为一个数据对。如图2所示,拆分后乘数和拆分后被乘数被划分为7组数据对,图2中从右到左虚线框分别为第一组数据对到第七组数据对。如图2所示,其中:第一组数据对包括:a[0]b[0],第二组数据对包括:a[1]b[0]、a[0]b[1],第三组数据对包括:a[2]b[0]、a[1]b[1]、a[0]b[2],第四组数据对包括:a[3]b[0]、a[2]b[1]、a[1]b[2]、a[0]b[3],第五组数据对包括:a[3]b[1]、a[2]b[2]、a[1]b[3],第六组数据对包括:a[3]b[2]、a[2]b[3],第七组数据对包括:a[3]b[3]。即第一组数据对包括a[0]和b[0]一个数据对,第二组数据对包括a[1]和b[0]、a[0]和b[1]2个数据对,以此类推,此处不再赘述。
需要说明的是,对被拆分的数据进行分组可以理解为预先设置好各个数据对的相乘以及乘法结果的累加顺序,并不一定指需要先将数据进行分组,仅仅表示将哪些的数据的乘法结果进行累加。本说明书实施例为了方便描述,可以先将数据进行分组,位于同一组的数据对的乘法结果相累加,高位再与下一组数据对的乘法结果相累加。
数据对被划分好之后,可以依次逐个计算第一组数据对到第七组数据对的乘法结果,并按组对每组内的数据对的乘法结果进行累加,若组内只有一个数据对,则将该数据对的乘法结果作为该组的累加结果。如:计算第一组数据对的乘法结果,即先计算a[0]×b[0],获得128位的乘法结果,可以将乘法结果保存在寄存器中,该乘法结果可以占用2个64位寄存器。可以将乘法结果作为第一组数据对的累加结果,可以将累加结果中的低64位作为最终的目标乘法结果的低64位,从寄存器保存在内存中,释放保存该乘法结果低64位的寄存器。再计算第二组数据对的乘法结果,对第二组数据对的乘法结果进行累加,再计算第三组数据对的乘法结果,并对第三组数据对的乘法结果进行累加,以此类推,此处不再赘述。
需要注意的是,本说明书实施例在进行乘法结果的运算和数据累加时,每计算一个数据对的乘法结果,即将计算出的乘法结果与上一个数据对的乘法结果累加,再计算下一个数据对的乘法结果,并进行累加。并且,每一组数据对最终的累加结果的低64位数据可以从对应的寄存器保存到内存中,释放其对应的寄存器,获得该组数据对的剩余累加结果。而每一组数据对中计算的第一个数据对的乘法结果先与上一组数据对的剩余累加结果相累加,再计算下一个数据对的乘法结果,并将下一个数据对的乘法结果与累加后的累加结果相累加,直至计算到第七组数据对。将第七组数据对的累加结果保存至内存中,即可以获得2个256位数的目标乘法结果。
需要说明的是,各组数据对中可能包括多个数据对,在对各组数据对计算数据对的乘法结果时,可以根据实际需要选择各个数据对的计算的先后顺序,本说明书实施例不具体限定各组数据对内的数据对的计算顺序。
例如:先计算第一组数据对中a[0]和b[0]的乘法结果,获得a[0]×b[0]的乘法结果,将计算获得的乘法结果的低64位保存至内存,并释放对应的寄存器。
再计算第二组数据对的乘法结果,如:可以先计算a[1]×b[0]的乘法结果,将计算获得乘法结果与a[0]×b[0]的乘法结果的高64位相加,获得累加结果;再计算a[0]×b[1]的乘法结果,将a[1]×b[0]的乘法结果与a[0]×b[0]的乘法结果的高64位相加的累加结果与a[0]×b[1]的乘法结果相加,获得第二组数据对的累加结果;将第二组数据对的累加结果的低64位保存至内存,获得第二组数据对的剩余累加结果,并释放保存第二组数据对的累加结果的寄存器。
再计算第三组数据对的乘法结果,如:可以先计算a[2]×b[0]的乘法结果,将a[2]×b[0]的乘法结果与第二组数据对的剩余累加结果相加,获得累加结果,再依次计算a[1]b[1]、a[0]b[2],并在计算出乘法结果后即与上一次的累加结果进行累加,具体可以参考第二组数据对的计算规则。按照类似的方法,依次计算第四组数据对到第七组数据对的乘法结果以及累加结果,获得第七组数据对a[3]×b[3]的乘法结果后,将a[3]×b[3]的乘法结果与第六组数据对的剩余累加结果相累加,并将累加结果保存在内存中,释放对应的寄存器。则256位数据a和b最终的目标数据的乘法处理结果均保存在内存中,计算结束。目标数据可以理解为数据a和b。
在本说明书一些实施例中,在对各组数据对进行运算时,各数据对的乘法结果在进行数据累加时,释放原本存储乘法结果的寄存器,并将累加结果保存在3个寄存器内,确保了整个计算过程占用的寄存器最少。
本说明书一些实施例中提供的计算机数据处理方法,可以运行在64位计算机操作***中,如:x86CPU(Central Processing Unit/Processor,中央处理器)的64位运行环境。该64位计算机操作***可以支持64位指令,如64位乘和64位加,与32位乘和加相比有更强的计算能力,同时64位的x86CPU可以提供更多的寄存器。本说明书实施例中的计算机数据处理方法的计算机程序也可以采用64位编译,利用64位操作***进行256比特乘法的运算,可以提供更多的寄存器,使得在数据处理过程中,不需要访问缓存和内存,提高数据处理的效率,快速实现256比特乘法。
x86-64CPU在64位环境下通常情况下可以包括16个64位寄存器,如:RAX、RBX、RCX、RDX、RSI、RDI、RSP、RBP、R8、R9、R10、R11、R12、R13、R14、R15。本说明书一些实施例中,可以从64位计算机操作***的以下6个寄存器中任意选取4寄存器:RBX、RBP、R12、R13、R14、R15,将选取出的寄存器的值保存到内存中。在计算出所述目标乘法结果后,即完成256比特乘法的运算后,从内存中获取保存的选取出的4个寄存器的值,利用保存的选取出的寄存器的值,恢复选取出的寄存器的值,确保了函数的准确运行,提高数据处理的准确性。
本说明书实施例,利用x86-64位特性的256比特乘法实现方法和实现代码作为大数计算基本模块,计算出的256位数据的乘法处理结果,可以用于构建安全计算平台技术部MORSE平台(可以理解为数字货币平台)的椭圆曲线密码库和大数计算库,为密码学和大数运算奠定了理论基础。
在本说明书一些实施例中,可以从64位计算机操作***中选取以下9个寄存器RAX、RCX、RDX、RSI、RDI、R8、R9、R10、R11,与上述实施例中选取出的4个寄存器,用于256比特乘法运算过程中的数据存储。即本说明书实施例中,x86-64CPU在64位环境下的16个64寄存器除了RSP寄存器,其他15个64位寄存器均可以用于256比特乘法的计算,并且,本说明书实施例中,可以优先选择RAX、RCX、RDX、RSI、RDI、R8、R9、R10、R119个寄存器,可以在计算结束后不必恢复该9个寄存器的值,只需要恢复从RBX、RBP、R12、R13、R14、R156个寄存器中选取出的4个寄存器。减少了数据处理步骤,提高数据处理效率。
本说明书实施例提供的计算机数据处理方法,实现了256比特乘法运算,将2个256位数据拆分成64位数,再对拆分后的数据按照预设规则进行计算。并且在整个计算过程中,逐个计算各组数据对的乘法结果,按组对各组数据对的乘法结果进行累加,各组数据对的乘法结果累加结束后,即将累加结果的低64为存储在内存中,释放对应的寄存器。即乘即累加,一组累加结束即释放低64位寄存器的运算方式,可以实现占用较少的寄存器,使得整个运算过程可以仅仅访问寄存器,不需要访问缓存和内存,提高了数据处理的效率,实现了256比特乘法的快速运算。
图3是本说明书一个实施例中256比特乘法运算的流程示意图,下面结合图3,介绍本说明书实施例中数据处理的过程:
1、256位乘法参数准备
如图3所示,将两个256位的乘数按64位划分,分别分为4个64位的数,保存在内存中。如图3所示,bit可以表示数据的位数,256bit可以表示256位数,两个256位乘数a、b,从高位到低位按64位划分为a[3]、a[2]、a[1]、a[0],b[3]、b[2]、b[1]、b[0]。
步骤第2、3、4步可以理解为256位乘法函数执行过程,调用256位乘法函数开始计算256位乘法:
2、寄存器准备
x86-64CPU在64位环境下通常可以有16个64位寄存器:RAX、RBX、RCX、RDX、RSI、RDI、RSP、RBP、R8、R9、R10、R11、R12、R13、R14、R15。
64位***操作***(如:Windows、Unix/Linux等)的调用约定规定了在一个函数中,哪些寄存器的值可以破坏,即可以直接用于计算,其数据不用恢复;哪些寄存器的值在函数返回时要保证必须是原值;哪些寄存器的值在函数中不能破坏。对于函数返回必须保持原值的寄存器,将其值在内存中保存,而后可供函数使用,在函数返回前要恢复这些寄存器的值。本说明书实施例中256比特乘法运算需要准备13个64位寄存器。
如Linux 64位环境下,函数可直接使用以下9个寄存器:RAX、RCX、RDX、RSI、RDI、R8、R9、R10、R11;以下6个寄存器函数返回时要保证原值:RBX、RBP、R12、R13、R14、R15。其中,寄存器RSP的值是栈顶地址,本说明书实施例中,寄存器RSP不能在函数中使用。
本说明书实施例,可以从6个寄存器RBX、RBP、R12、R13、R14、R15中选4个保存到内存,加上RAX、RCX、RDX、RSI、RDI、R8、R9、R10、R11,256位乘法函数可使用13个64位寄存器。
3、乘法计算过程:
可以将a[3]、a[2]、a[1]、a[0],b[3]、b[2]、b[1]、b[0]从内存读取到寄存器,占用8个64位寄存器。图3中“*”即本说明书实施例中的“×”,可以表示两个数相乘。
3.1、计算a[0]×b[0]得到128位乘法结果,从高位到低位分为2个64位数,存在2个64位寄存器中。其中,低64位可以作为最终乘法结果的一部分,从寄存器存到内存,此时,还占用1个寄存器。
3.2、计算a[1]×b[0]得到128位乘法结果,存在2个64位寄存器中,与a[0]×b[0]的高64位相加,累加结果占用3个64位寄存器。计算a[0]×b[1]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。累加结果的低64位可以作为最终乘法结果的一部分,从寄存器存到内存,此时,累加结果还占用2个寄存器。
3.3、计算a[2]×b[0]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。计算a[1]×b[1]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。计算a[0]×b[2]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。累加结果的低64位可以作为最终乘法结果的一部分,从寄存器存到内存,此时,累加结果还占用2个寄存器。
3.4、计算a[3]×b[0]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。计算a[2]×b[1]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。计算a[1]×b[2]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。计算a[0]×b[3]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。累加结果的低64位可以作为最终乘法结果的一部分,从寄存器存到内存,此时,累加结果还占用2个寄存器。
3.5、计算a[3]×b[1]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。计算a[2]×b[2]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。计算a[1]×b[3]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。累加结果低64位可以作为最终乘法结果的一部分,从寄存器存到内存,此时,累加结果还占用2个寄存器。
3.6、计算a[3]×b[2]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。计算a[2]×b[3]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用3个64位寄存器。累加结果的低64位可以作为最终乘法结果的一部分,从寄存器存到内存,此时,累加结果还占用2个寄存器。
需要说明的是,步骤3.2到步骤3.6中计算那两个数据的乘法结果的顺序可以根据实际需要进行调整,本说明书实施例不作具体限定。
3.7、a[3]×b[3]得到128位乘法结果,存在2个64位寄存器中,与已有累加结果相加,得到的加法结果占用2个64位寄存器。得到的128位累加结果都是最终结果,从寄存器存到内存,不再占用寄存器。
步骤3.1到步骤3.7的计算过程,可以参考图3所示,每一步骤可以对应上述实施例中一组数据对的计算,各组数据对的划分可以参考图2以及图3所示。如图3所示,下一组数据的乘积可以与上一组数据累加结果的高位相加。
可以看出,除了乘数a、b占用8个64位寄存器外,乘法计算中占用的其他64位寄存器的数量为:3.1步占用2个;3.2、3.3、3.4、3.5、3.6步占用5个;3.7步占用3个。
综上,整个乘法计算过程中,两个乘数a,b需要8个64位空间,数据的乘和加最多需要5个64位临时空间。因此,整个乘法计算过程可以在13个64位寄存器中完成。
4、寄存器恢复
对于第2步寄存器准备中4个值在内存中保存的寄存器,计算结束后,可以从内存读取值,恢复这4个寄存器的值。
执行完第2、3、4步后256位乘法函数返回。图3中,s[0]-s[7]表示累加结果,其中s[0]可以表示第一组数据对即a[0]×b[0]的乘法结果的低64位数,s[1]可以表示第二组数据对的累加结果的低64位数,以此类推,s[6]和s[7]可以表示第七组数据对的乘法结果与第六组数据对的剩余累加结果累加后的累加结果。
本说明书实施例中的256位乘法的计算过程可以利用x86CPU的64位指令和64位寄存器实现,其中,x86CPU的64位环境支持的64位指令,具体可以使用下述64位指令:
(1)使用64位乘法指令MUL;或使用Intel CPU从2013的Haswell架构开始推出的MULX,还可以指定乘法结果使用的寄存器,如:指定其中5个寄存器作为乘法结果使用的寄存器,以减少mov指令(数据传送指令),提高数据处理效率。
(2)使用64位加法指令ADD,或带进位加法指令ADC。
通常情况下,x86CPU的64位环境有16个64位寄存器:RAX、RBX、RCX、RDX、RSI、RDI、RSP、RBP、R8、R9、R10、R11、R12、R13、R14、R15。
除了寄存器RSP用于栈指针,汇编编写的代码,将相应寄存器存入栈中保护,程序返回前恢复寄存器,则寄存器可用于计算。x86CPU的64位环境中,即除了寄存器RSP,其他15个64位寄存器可用于计算。
本说明书实施例中的256位乘法计算过程需要13个64位空间,即13个64位寄存器,而x86CPU的64位环境可以有15个64位寄存器供数据处理使用。因此,本说明书实施例提供的计算机数据处理方法可以在x86CPU的64位环境中在寄存器中完成计算,其中多余的2个寄存器可以作为备用寄存器。
本说明书实施例提供的计算机数据处理方法,实现了256比特乘法运算,并且可以在x86CPU的64位环境完成,占用较少的寄存器,不限制(规定)使用哪些64位寄存器,使用哪些64位乘法和加法指令,以及具体的代码实现。整个计算过程可以不访问缓存和内存,提高了数据处理效率,实现了256比特的快速乘法运算,为密码学、大整数运算等提供了数据基础。
本说明书中上述方法的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参与即可,每个实施例重点说明的都是与其他实施例的不同之处。相关之处参与方法实施例的部分说明即可。
基于上述所述的计算机数据处理方法,本说明书一个或多个实施例还提供一种计算机数据处理装置。所述的装置可以包括使用了本说明书实施例所述方法的***(包括分布式***)、软件(应用)、模块、组件、服务器、客户端等并结合必要的实施硬件的装置。基于同一创新构思,本说明书实施例提供的一个或多个实施例中的装置如下面的实施例所述。由于装置解决问题的实现方案与方法相似,因此本说明书实施例具体的装置的实施可以参与前述方法的实施,重复之处不再赘述。以下所使用的,术语“单元”或者“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
具体地,图4是本说明书提供的计算机数据处理装置一个实施例的模块结构示意图,如图4所示,本说明书中提供的计算机数据处理装置用于实现2个256位数的乘法数据处理,所述装置可以包括:数据拆分模块41、数据处理模块42,其中:
数据拆分模块41,可以用于将乘数a和被乘数b由高位到低位分别拆分成4个64位数,分别获得拆分后乘数和拆分后被乘数,所述拆分后乘数包括:a[3]、a[2]、a[1]、a[0],所述拆分后被乘数包括:b[3]、b[2]、b[1]、b[0];
数据处理模块42,可以用于将所述拆分后乘数和所述拆分后被乘数读取到寄存器中,并按照预设规则将所述拆分后乘数和所述拆分后被乘数进行相乘处理,获得目标数据的乘法处理结果;
其中,所述预设规则包括:
所述拆分后乘数和所述拆分后被乘数被分为七组数据对,第一组数据对包括:a[0]b[0],第二组数据对包括:a[1]b[0]、a[0]b[1],第三组数据对包括:a[2]b[0]、a[1]b[1]、a[0]b[2],第四组数据对包括:a[3]b[0]、a[2]b[1]、a[1]b[2]、a[0]b[3],第五组数据对包括:a[3]b[1]、a[2]b[2]、a[1]b[3],第六组数据对包括:a[3]b[2]、a[2]b[3],第七组数据对包括:a[3]b[3];
逐个计算所述第一组数据对到所述第七组数据对的乘法结果,对每组内的数据对的乘法结果进行组内累加,所述组内累加包括:在同一组数据对中,每计算一个数据对的乘法结果,将计算出的乘法结果与组内的上一个数据对的乘法结果进行组内累加,将同一组内的数据对的最终累加结果的低64位保存至内存,获得相应组数据对的剩余累加结果,并释放对应的寄存器;
各组数据对的第一个数据对的乘法结果与上一组数据对的剩余累加结果相累加,再与下一个数据对的乘法结果累加,直至获得第七组数据中数据对的乘法结果累加结束,将所述第七组数据中数据对对应的累加结果保存至内存中,获得所述目标数据的乘法处理结果。
本说明书实施例提供的计算机数据处理装置,实现了256比特乘法运算,将2个256位数据拆分成64位数,再对拆分后的数据按照预设规则进行计算。并且在整个计算过程中,逐个计算各组数据对的乘法结果,按组对各组数据对的乘法结果进行累加,各组数据对的乘法结果累加结束后,即将累加结果的低64为存储在内存中,释放对应的寄存器。即乘即累加,一组累加结束即释放低64位寄存器的运算方式,可以实现占用较少的寄存器,使得整个运算过程可以仅仅访问寄存器,不需要访问缓存和内存,提高了数据处理的效率,实现了256比特乘法的快速运算。
在上述实施例的基础上,本说明书一些实施例中,所述数据处理模块具体用于:
在对各组数据对的乘法结果进行累加时,释放存储各数据对的乘法结果的寄存器,并将累加结果保存在3个寄存器中。
本说明书实施例,即乘即累加,一组累加结束即释放低64位寄存器的运算方式,确保了整个计算过程占用的寄存器最少。
在上述实施例的基础上,本说明书一些实施例中,所述装置应用于64位计算机操作***中。
本说明书实施例利用64位操作***进行256比特乘法的运算,可以提供更多的寄存器,使得在数据处理过程中,不需要访问缓存和内存,提高数据处理的效率,快速实现256比特乘法。
图5是本说明书又一个实施例中计算机数据处理装置的结构示意图,如图5所示,在上述实施例的基础上,本说明书一些实施例中,所述装置还包括所述装置还包括寄存器准备模块51用于:
从所述64位计算机操作***的寄存器RBX、RBP、R12、R13、R14、R15中任意选取4寄存器,将选取出的寄存器的值保存到内存中;
在计算出所述目标乘法结果后,从内存中获取保存的所述选取出的寄存器的值,恢复所述选取出的寄存器的值。
本说明书实施例,在计算出所述目标乘法结果后,即完成256比特乘法的运算后,从内存中获取保存的选取出的4个寄存器的值,利用保存的选取出的寄存器的值,恢复选取出的寄存器的值,确保了函数的准确运行,提高数据处理的准确性。
在上述实施例的基础上,本说明书一些实施例中,所述寄存器准备模块还用于:
从所述64位计算机操作***中选取寄存器RAX、RCX、RDX、RSI、RDI、R8、R9、R10、R11,与所述选取出的寄存器均用于数据处理过程中的数据存储。
本说明书实施例可以优先选择RAX、RCX、RDX、RSI、RDI、R8、R9、R10、R119个寄存器,可以在计算结束后不必恢复该9个寄存器的值,只需要恢复从RBX、RBP、R12、R13、R14、R156个寄存器中选取出的4个寄存器。减少了数据处理步骤,提高数据处理效率。
需要说明的,上述所述的装置根据方法实施例的描述还可以包括其他的实施方式。具体的实现方式可以参照上述对应的方法实施例的描述,在此不作一一赘述。
本说明书实施例还提供一种计算机数据处理设备,包括:至少一个64位处理器、用于存储处理器可执行64位指令的存储器以及至少13个64位寄存器,所述处理器执行所述64位指令时实现上述实施例中计算机数据处理方法,如:
将乘数a和被乘数b由高位到低位拆分成4个64位数,分别获得拆分后乘数和拆分后被乘数,所述拆分后乘数包括:a[3]、a[2]、a[1]、a[0],所述拆分后被乘数包括:b[3]、b[2]、b[1]、b[0];
将所述拆分后乘数和所述拆分后被乘数读取到寄存器中,并按照预设规则将所述拆分后乘数和所述拆分后被乘数进行相乘处理,获得目标乘法结果;
其中,所述预设规则包括:
所述拆分后乘数和所述拆分后被乘数被分为七组数据对,第一组数据对包括:a[0]b[0],第二组数据对包括:a[1]b[0]、a[0]b[1],第三组数据对包括:a[2]b[0]、a[1]b[1]、a[0]b[2],第四组数据对包括:a[3]b[0]、a[2]b[1]、a[1]b[2]、a[0]b[3],第五组数据对包括:a[3]b[1]、a[2]b[2]、a[1]b[3],第六组数据对包括:a[3]b[2]、a[2]b[3],第七组数据对包括:a[3]b[3];
计算所述第一组数据对的乘法结果,将获得的所述第一组数据对的乘法结果的低64位保存至内存,并释放对应的寄存器;
逐个计算所述第二组数据对到所述第七组数据对的乘法结果,按组对数据对的乘法结果进行累加,每计算一个数据对的乘法结果,将计算出的乘法结果与上一个数据对的乘法结果进行累加,将各组数据对的最终累加结果的低64位保存至内存,获得各组数据对的剩余累加结果,并释放对应的寄存器;
其中,各组数据对的第一个数据对的乘法结果与上一组数据对的剩余累加结果相累加,再与下一个数据对的乘法结果累加,直至获得第七组数据中数据对的乘法结果累加结束,将所述第七组数据中数据对对应的累加结果保存至内存中,获得所述目标乘法结果。
需要说明的,上述所述的处理设备根据方法实施例的描述还可以包括其他的实施方式。具体的实现方式可以参照相关方法实施例的描述,在此不作一一赘述。
本说明书提供的计算机数据处理装置或处理设备,也可以应用在多种数据分析处理***中。所述***或装置或处理设备可以包括上述实施例中任意一个计算机数据处理装置。所述的***或装置或处理设备可以为单独的服务器,也可以包括使用了本说明书的一个或多个所述方法或一个或多个实施例装置的服务器集群、***(包括分布式***)、软件(应用)、实际操作装置、逻辑门电路装置、量子计算机等并结合必要的实施硬件的终端装置。所述核对差异数据的检测***可以包括至少一个处理器以及存储计算机可执行指令的存储器,所述处理器执行所述指令时实现上述任意一个或者多个实施例中所述方法的步骤。
本说明书实施例所提供的方法实施例可以在移动终端、计算机终端、服务器或者类似的运算装置中执行。以运行在服务器上为例,图6是本说明书一个实施例中计算机数据处理服务器的硬件结构框图,该服务器可以是上述实施例中的计算机数据处理装置或计算机数据处理设备。如图6所示,服务器10可以包括一个或多个(图中仅示出一个)处理器100(处理器100可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器200、以及用于通信功能的传输模块300。本邻域普通技术人员可以理解,图6所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,服务器10还可包括比图6中所示更多或者更少的组件,例如还可以包括其他的处理硬件,如数据库或多级缓存、GPU,或者具有与图6所示不同的配置。
存储器200可用于存储应用软件的软件程序以及模块,如本说明书实施例中的计算机数据处理方法对应的程序指令/模块,处理器100通过运行存储在存储器200内的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器200可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器200可进一步包括相对于处理器100远程设置的存储器,这些远程存储器可以通过网络连接至计算机终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输模块300用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机终端的通信供应商提供的无线网络。在一个实例中,传输模块300包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输模块300可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
本说明书提供的上述实施例所述的方法或装置可以通过计算机程序实现业务逻辑并记录在存储介质上,所述的存储介质可以计算机读取并执行,实现本说明书实施例所描述方案的效果。
所述存储介质可以包括用于存储信息的物理装置,通常是将信息数字化后再以利用电、磁或者光学等方式的媒体加以存储。所述存储介质有可以包括:利用电能方式存储信息的装置如,各式存储器,如RAM、ROM等;利用磁能方式存储信息的装置如,硬盘、软盘、磁带、磁芯存储器、磁泡存储器、U盘;利用光学方式存储信息的装置如,CD或DVD。当然,还有其他方式的可读存储介质,例如量子存储器、石墨烯存储器等等。
本说明书实施例提供的上述计算机数据处理方法或装置可以在计算机中由处理器执行相应的程序指令来实现,如使用windows操作***的c++语言在PC端实现、linux***实现,或其他例如使用android、iOS***程序设计语言在智能终端实现,以及基于量子计算机的处理逻辑实现等。
需要说明的是说明书上述所述的装置、计算机存储介质、***根据相关方法实施例的描述还可以包括其他的实施方式,具体的实现方式可以参照对应方法实施例的描述,在此不作一一赘述。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参与即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于硬件+程序类实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参与方法实施例的部分说明即可。
本说明书实施例并不局限于必须是符合行业通信标准、标准计算机数据处理和数据存储规则或本说明书一个或多个实施例所描述的情况。某些行业标准或者使用自定义方式或实施例描述的实施基础上略加修改后的实施方案也可以实现上述实施例相同、等同或相近、或变形后可预料的实施效果。应用这些修改或变形后的数据获取、存储、判断、处理方式等获取的实施例,仍然可以属于本说明书实施例的可选实施方案范围之内。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable GateArray,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字***“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware DescriptionLanguage)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(RubyHardware Description Language)等,目前最普遍使用的是VHDL(Very-High-SpeedIntegrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的***、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、车载人机交互设备、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
虽然本说明书一个或多个实施例提供了如实施例或流程图所述的方法操作步骤,但基于常规或者无创造性的手段可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的装置或终端产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境,甚至为分布式数据处理环境)。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、产品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、产品或者设备所固有的要素。在没有更多限制的情况下,并不排除在包括所述要素的过程、方法、产品或者设备中还存在另外的相同或等同要素。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
为了描述的方便,描述以上装置时以功能分为各种模块分别描述。当然,在实施本说明书一个或多个时可以把各模块的功能在同一个或多个软件和/或硬件中实现,也可以将实现同一功能的模块由多个子模块或子单元的组合实现等。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本发明是参照根据本发明实施例的方法、装置(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储、石墨烯存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
本领域技术人员应明白,本说明书一个或多个实施例可提供为方法、***或计算机程序产品。因此,本说明书一个或多个实施例可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本说明书一个或多个实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书一个或多个实施例可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本本说明书一个或多个实施例,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参与即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参与方法实施例的部分说明即可。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本说明书的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本说明书一个或多个实施例的实施例而已,并不用于限制本说明书一个或多个实施例。对于本领域技术人员来说,本说明书一个或多个实施例可以有各种更改和变化。凡在本说明书的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在权利要求范围之内。

Claims (11)

1.一种计算机数据处理方法,用于实现2个256位数的乘法数据处理,所述方法包括:
将乘数a和被乘数b由高位到低位分别拆分成4个64位数,分别获得拆分后乘数和拆分后被乘数,所述拆分后乘数包括:a[3]、a[2]、a[1]、a[0],所述拆分后被乘数包括:b[3]、b[2]、b[1]、b[0];
将所述拆分后乘数和所述拆分后被乘数读取到寄存器中,并按照预设规则将所述拆分后乘数和所述拆分后被乘数进行相乘处理,获得目标数据的乘法处理结果;
其中,所述预设规则包括:
所述拆分后乘数和所述拆分后被乘数被分为七组数据对,第一组数据对包括:a[0]b[0],第二组数据对包括:a[1]b[0]、a[0]b[1],第三组数据对包括:a[2]b[0]、a[1]b[1]、a[0]b[2],第四组数据对包括:a[3]b[0]、a[2]b[1]、a[1]b[2]、a[0]b[3],第五组数据对包括:a[3]b[1]、a[2]b[2]、a[1]b[3],第六组数据对包括:a[3]b[2]、a[2]b[3],第七组数据对包括:a[3]b[3];
逐个计算所述第一组数据对到所述第七组数据对的乘法结果,对每组内的数据对的乘法结果进行组内累加,所述组内累加包括:在同一组数据对中,每计算一个数据对的乘法结果,将计算出的乘法结果与组内的上一个数据对的乘法结果进行组内累加,将同一组内的数据对的最终累加结果的低64位保存至内存,获得相应组数据对的剩余累加结果,并释放对应的寄存器;
各组数据对的第一个数据对的乘法结果与上一组数据对的剩余累加结果相累加,再与下一个数据对的乘法结果累加,直至获得第七组数据中数据对的乘法结果累加结束,将所述第七组数据中数据对对应的累加结果保存至内存中,获得所述目标数据的乘法处理结果。
2.如权利要求1所述的方法,所述方法还包括:
在对各组数据对的乘法结果进行累加时,释放存储各数据对的乘法结果的寄存器,并将累加结果保存在3个寄存器中。
3.如权利要求1所述的方法,所述方法应用于64位计算机操作***中。
4.如权利要求3所述的方法,所述方法还包括:
从所述64位计算机操作***的寄存器RBX、RBP、R12、R13、R14、R15中任意选取4寄存器,将选取出的寄存器的值保存到内存中;
在计算出所述目标乘法结果后,从内存中获取保存的所述选取出的寄存器的值,恢复所述选取出的寄存器的值。
5.如权利要求4所述的方法,所述方法还包括:
从所述64位计算机操作***中选取寄存器RAX、RCX、RDX、RSI、RDI、R8、R9、R10、R11,与所述选取出的寄存器均用于数据处理过程中的数据存储。
6.一种计算机数据处理装置,用于实现2个256位数的乘法数据处理,所述装置包括:
数据拆分模块,用于将乘数a和被乘数b由高位到低位分别拆分成4个64位数,分别获得拆分后乘数和拆分后被乘数,所述拆分后乘数包括:a[3]、a[2]、a[1]、a[0],所述拆分后被乘数包括:b[3]、b[2]、b[1]、b[0];
数据处理模块,用于将所述拆分后乘数和所述拆分后被乘数读取到寄存器中,并按照预设规则将所述拆分后乘数和所述拆分后被乘数进行相乘处理,获得目标数据的乘法处理结果;
其中,所述预设规则包括:
所述拆分后乘数和所述拆分后被乘数被分为七组数据对,第一组数据对包括:a[0]b[0],第二组数据对包括:a[1]b[0]、a[0]b[1],第三组数据对包括:a[2]b[0]、a[1]b[1]、a[0]b[2],第四组数据对包括:a[3]b[0]、a[2]b[1]、a[1]b[2]、a[0]b[3],第五组数据对包括:a[3]b[1]、a[2]b[2]、a[1]b[3],第六组数据对包括:a[3]b[2]、a[2]b[3],第七组数据对包括:a[3]b[3];
逐个计算所述第一组数据对到所述第七组数据对的乘法结果,对每组内的数据对的乘法结果进行组内累加,所述组内累加包括:在同一组数据对中,每计算一个数据对的乘法结果,将计算出的乘法结果与组内的上一个数据对的乘法结果进行组内累加,将同一组内的数据对的最终累加结果的低64位保存至内存,获得相应组数据对的剩余累加结果,并释放对应的寄存器;
各组数据对的第一个数据对的乘法结果与上一组数据对的剩余累加结果相累加,再与下一个数据对的乘法结果累加,直至获得第七组数据中数据对的乘法结果累加结束,将所述第七组数据中数据对对应的累加结果保存至内存中,获得所述目标数据的乘法处理结果。
7.如权利要求6所述的装置,所述数据处理模块具体用于:
在对各组数据对的乘法结果进行累加时,释放存储各数据对的乘法结果的寄存器,并将累加结果保存在3个寄存器中。
8.如权利要求6所述的装置,所述装置应用于64位计算机操作***中。
9.如权利要求8所述的装置,所述装置还包括寄存器准备模块用于:
从所述64位计算机操作***的寄存器RBX、RBP、R12、R13、R14、R15中任意选取4寄存器,将选取出的寄存器的值保存到内存中;
在计算出所述目标乘法结果后,从内存中获取保存的所述选取出的寄存器的值,恢复所述选取出的寄存器的值。
10.如权利要求8所述的装置,所述寄存器准备模块还用于:
从所述64位计算机操作***中选取寄存器RAX、RCX、RDX、RSI、RDI、R8、R9、R10、R11,与所述选取出的寄存器均用于数据处理过程中的数据存储。
11.一种计算机设备,包括:至少一个64位处理器、用于存储处理器可执行64位指令的存储器以及至少13个64位寄存器,所述处理器执行所述64位指令时实现权利要求1-5任一项所述的方法。
CN201910349581.2A 2019-04-28 2019-04-28 一种计算机数据处理方法及装置 Active CN110262773B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910349581.2A CN110262773B (zh) 2019-04-28 2019-04-28 一种计算机数据处理方法及装置
PCT/CN2020/070620 WO2020220743A1 (zh) 2019-04-28 2020-01-07 一种计算机数据处理方法及装置
TW109100610A TWI731543B (zh) 2019-04-28 2020-01-08 計算機資料處理方法及裝置
US16/779,073 US10782933B2 (en) 2019-04-28 2020-01-31 Computer data processing method and apparatus for large number operations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910349581.2A CN110262773B (zh) 2019-04-28 2019-04-28 一种计算机数据处理方法及装置

Publications (2)

Publication Number Publication Date
CN110262773A true CN110262773A (zh) 2019-09-20
CN110262773B CN110262773B (zh) 2020-08-04

Family

ID=67913934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910349581.2A Active CN110262773B (zh) 2019-04-28 2019-04-28 一种计算机数据处理方法及装置

Country Status (3)

Country Link
CN (1) CN110262773B (zh)
TW (1) TWI731543B (zh)
WO (1) WO2020220743A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220743A1 (zh) * 2019-04-28 2020-11-05 创新先进技术有限公司 一种计算机数据处理方法及装置
CN112765936A (zh) * 2020-12-31 2021-05-07 出门问问(武汉)信息科技有限公司 一种基于语言模型进行运算的训练方法及装置
CN113805841A (zh) * 2020-06-15 2021-12-17 美光科技公司 多个寄存器中的位串累加
WO2022001438A1 (zh) * 2020-06-29 2022-01-06 中科寒武纪科技股份有限公司 一种计算装置、集成电路芯片、板卡、设备和计算方法
CN114911832A (zh) * 2022-05-19 2022-08-16 芯跳科技(广州)有限公司 一种数据处理方法及装置
CN116126750A (zh) * 2023-02-24 2023-05-16 之江实验室 一种基于硬件特性的数据处理的方法及装置
CN116225366A (zh) * 2023-03-06 2023-06-06 开源网安物联网技术(武汉)有限公司 应用于嵌入式流水cpu内核的乘法指令扩展方法及装置
TWI815312B (zh) * 2021-05-21 2023-09-11 台灣積體電路製造股份有限公司 記憶體裝置、記憶體內計算裝置及方法
CN117896067A (zh) * 2024-03-13 2024-04-16 杭州金智塔科技有限公司 适用于国密sm2算法的并行模约减方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567178A (zh) * 2003-07-04 2005-01-19 中国科学院微电子中心 新型乘法器重构算法及电路
CN101534125A (zh) * 2009-04-24 2009-09-16 北京空间机电研究所 一种超长数据变长编码合成***
US20090248769A1 (en) * 2008-03-26 2009-10-01 Teck-Kuen Chua Multiply and accumulate digital filter operations
CN102750150A (zh) * 2012-06-14 2012-10-24 中国科学院软件研究所 基于x86架构的稠密矩阵乘法汇编代码自动生成方法
CN103631660A (zh) * 2013-09-23 2014-03-12 中国科学院数据与通信保护研究教育中心 在gpu中进行大整数计算时的存储资源分配方法及装置
CN103942028A (zh) * 2014-04-15 2014-07-23 中国科学院数据与通信保护研究教育中心 应用在密码技术中的大整数乘法运算方法及装置
CN104933689A (zh) * 2014-03-19 2015-09-23 炬芯(珠海)科技有限公司 一种图像信号处理方法及装置
CN108733347A (zh) * 2017-04-20 2018-11-02 杭州海康威视数字技术股份有限公司 一种数据处理方法及装置
CN109284083A (zh) * 2018-09-14 2019-01-29 北京探境科技有限公司 一种乘法运算装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW501344B (en) * 2001-03-06 2002-09-01 Nat Science Council Complex-valued multiplier-and-accumulator
US20040252829A1 (en) * 2003-04-25 2004-12-16 Hee-Kwan Son Montgomery modular multiplier and method thereof using carry save addition
TW200605502A (en) * 2004-07-26 2006-02-01 Min-An Song Booth multiplier with fixed width
US8028015B2 (en) * 2007-08-10 2011-09-27 Inside Contactless S.A. Method and system for large number multiplication
US9703531B2 (en) * 2015-11-12 2017-07-11 Arm Limited Multiplication of first and second operands using redundant representation
CN110262773B (zh) * 2019-04-28 2020-08-04 阿里巴巴集团控股有限公司 一种计算机数据处理方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567178A (zh) * 2003-07-04 2005-01-19 中国科学院微电子中心 新型乘法器重构算法及电路
US20090248769A1 (en) * 2008-03-26 2009-10-01 Teck-Kuen Chua Multiply and accumulate digital filter operations
CN101534125A (zh) * 2009-04-24 2009-09-16 北京空间机电研究所 一种超长数据变长编码合成***
CN102750150A (zh) * 2012-06-14 2012-10-24 中国科学院软件研究所 基于x86架构的稠密矩阵乘法汇编代码自动生成方法
CN103631660A (zh) * 2013-09-23 2014-03-12 中国科学院数据与通信保护研究教育中心 在gpu中进行大整数计算时的存储资源分配方法及装置
CN104933689A (zh) * 2014-03-19 2015-09-23 炬芯(珠海)科技有限公司 一种图像信号处理方法及装置
CN103942028A (zh) * 2014-04-15 2014-07-23 中国科学院数据与通信保护研究教育中心 应用在密码技术中的大整数乘法运算方法及装置
CN108733347A (zh) * 2017-04-20 2018-11-02 杭州海康威视数字技术股份有限公司 一种数据处理方法及装置
CN109284083A (zh) * 2018-09-14 2019-01-29 北京探境科技有限公司 一种乘法运算装置及方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220743A1 (zh) * 2019-04-28 2020-11-05 创新先进技术有限公司 一种计算机数据处理方法及装置
CN113805841A (zh) * 2020-06-15 2021-12-17 美光科技公司 多个寄存器中的位串累加
WO2022001438A1 (zh) * 2020-06-29 2022-01-06 中科寒武纪科技股份有限公司 一种计算装置、集成电路芯片、板卡、设备和计算方法
CN112765936A (zh) * 2020-12-31 2021-05-07 出门问问(武汉)信息科技有限公司 一种基于语言模型进行运算的训练方法及装置
CN112765936B (zh) * 2020-12-31 2024-02-23 出门问问(武汉)信息科技有限公司 一种基于语言模型进行运算的训练方法及装置
TWI815312B (zh) * 2021-05-21 2023-09-11 台灣積體電路製造股份有限公司 記憶體裝置、記憶體內計算裝置及方法
CN114911832B (zh) * 2022-05-19 2023-06-23 芯跳科技(广州)有限公司 一种数据处理方法及装置
CN114911832A (zh) * 2022-05-19 2022-08-16 芯跳科技(广州)有限公司 一种数据处理方法及装置
CN116126750B (zh) * 2023-02-24 2023-08-22 之江实验室 一种基于硬件特性的数据处理的方法及装置
CN116126750A (zh) * 2023-02-24 2023-05-16 之江实验室 一种基于硬件特性的数据处理的方法及装置
CN116225366A (zh) * 2023-03-06 2023-06-06 开源网安物联网技术(武汉)有限公司 应用于嵌入式流水cpu内核的乘法指令扩展方法及装置
CN116225366B (zh) * 2023-03-06 2024-04-05 开源网安物联网技术(武汉)有限公司 应用于嵌入式流水cpu内核的乘法指令扩展方法及装置
CN117896067A (zh) * 2024-03-13 2024-04-16 杭州金智塔科技有限公司 适用于国密sm2算法的并行模约减方法及装置

Also Published As

Publication number Publication date
TWI731543B (zh) 2021-06-21
CN110262773B (zh) 2020-08-04
WO2020220743A1 (zh) 2020-11-05
TW202040354A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
CN110262773A (zh) 一种计算机数据处理方法及装置
CN101986264A (zh) 用于simd向量微处理器的多功能浮点乘加运算装置
CN110162551A (zh) 数据处理方法、装置和电子设备
CN108765159A (zh) 一种基于区块链的上链与状态处理方法、装置及互联***
CN103761068A (zh) 优化的蒙哥马利模乘方法、模平方方法和模乘硬件
US11216281B2 (en) Facilitating data processing using SIMD reduction operations across SIMD lanes
CN107577697A (zh) 一种数据处理方法、装置及设备
CN105022961A (zh) 一种计算机数据的保护方法及装置
CN110457936A (zh) 数据交互方法、装置和电子设备
CN100422926C (zh) 多项式算术运算
CN108573402A (zh) 一种兑换码发放方法、服务器及***
Mercer Micro-programming
US20200167128A1 (en) Computer data processing method and apparatus for large number operations
CN110119265A (zh) 乘法运算实现方法、装置、计算机存储介质及电子设备
CN110322139A (zh) 策略推荐方法及装置
AU2017333768B2 (en) Decimal shift and divide instruction
CA3204507A1 (en) Decimal scale and convert and split to hexadecimal floating point instruction
CN107463354A (zh) 一种面向ECC的双域并行度可变的Montgomery模乘电路
US10990390B2 (en) Decimal load immediate instruction
CN104767544B (zh) 一种实现解扰解扩的方法和矢量运算器
CN103677735B (zh) 一种数据处理装置及数字信号处理器
CN106569778B (zh) 一种数据处理的方法及电子设备
CN108900631A (zh) 一种消息分配方法、装置及分布式***
US11663004B2 (en) Vector convert hexadecimal floating point to scaled decimal instruction
CN113472540B (zh) 生成密文的方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200924

Address after: Cayman Enterprise Centre, 27 Georgetown Hospital Road, Grand Cayman Islands

Patentee after: Innovative advanced technology Co.,Ltd.

Address before: Cayman Enterprise Centre, 27 Hospital Road, George Town, Grand Cayman Islands

Patentee before: Advanced innovation technology Co.,Ltd.

Effective date of registration: 20200924

Address after: Cayman Enterprise Centre, 27 Hospital Road, George Town, Grand Cayman Islands

Patentee after: Advanced innovation technology Co.,Ltd.

Address before: Greater Cayman, British Cayman Islands

Patentee before: Alibaba Group Holding Ltd.