CN110262478B - 基于改进人工势场法的人机安全避障路径规划方法 - Google Patents

基于改进人工势场法的人机安全避障路径规划方法 Download PDF

Info

Publication number
CN110262478B
CN110262478B CN201910444495.XA CN201910444495A CN110262478B CN 110262478 B CN110262478 B CN 110262478B CN 201910444495 A CN201910444495 A CN 201910444495A CN 110262478 B CN110262478 B CN 110262478B
Authority
CN
China
Prior art keywords
mechanical arm
obstacle
vector function
vector
field vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910444495.XA
Other languages
English (en)
Other versions
CN110262478A (zh
Inventor
欧林林
吴加鑫
禹鑫燚
金燕芳
来磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910444495.XA priority Critical patent/CN110262478B/zh
Publication of CN110262478A publication Critical patent/CN110262478A/zh
Application granted granted Critical
Publication of CN110262478B publication Critical patent/CN110262478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Manipulator (AREA)

Abstract

本发明针对不同的障碍物与机械臂的速度关系,分别建立斥力场向量函数,并利用Pivot算法改进斥力场向量函数。首先,本发明通过Kinetic相机,获取障碍物,目标点以及机械臂的位姿关系。其次,本发明通过在机械臂末端执行器构造边界球,判断障碍物是否进入边界球并执行避障任务,定义引力场向量函数,再根据障碍物与机械臂的速度关系定义斥力场向量函数,主要考虑以下情况:1)障碍物快速接近机械臂,当速度vH>vrobot_endm/s,所规划的新路径不能保证人体的安全,机械臂根据人的运动方向,通过Pivot算法优化斥力场向量函数;2)障碍物缓慢接近机械臂,当速度vH<vrobot_endm/s,使用传统的斥力场向量函数。最后对引力以及斥力进行矢量合成,进行轨迹规划,生成避免碰撞的新路径,当机械臂陷入局部最小值时,引入时间因子,对机械臂产生一定扰动,快速脱离。如果人突然加速,应该对第一种情况做出反应。

Description

基于改进人工势场法的人机安全避障路径规划方法
技术领域
本发明涉及工业环境下机械臂路径规划领域,尤其涉及一种基于改进的人工势场法的人机安全动态避障路径规划方法。
背景技术
在传统的工业领域中,机械臂通常被用在静态环境下完成重复的喷涂、装配、焊接以及运输等任务,这些任务的基本操作是抓取对象。当操作人员进入工作环境参与机械臂任务或者机械臂操作环境成为动态时,机械臂需要实时检测变化,然后调整运动路径,保证人机安全并完成抓取任务。
人工势场法是一种典型的局部路径规划方法,其基本思想是在机器人的工作环境中构造一个人工势场,将不希望进入工作环境的障碍物定义为斥力场,操作目标定义为引力场,使势场中的机器人受到目标和障碍物的相互影响,完成避障和抓取任务。然而,人工势场法通常存在局部极小值问题,并且在多连杆结构的机械臂上应用困难。刘山等人通过直接在笛卡尔空间上构造吸引速度和排斥速度(刘山;谢龙.一种基于改进人工势场法的多自由度机械臂动态避障路径规划方法[P].中国专利:CN108326849A,2018-07-27),避免了笛卡尔空间障碍物到机械臂关节空间的映射,使人工势场法能够适用于多自由度机械臂。李玉齐等人通过最小二叉堆排序提高A*搜索最小估计代价的效率(李玉齐;林森阳;鲍海峰;王玉林;王博;肖洒.基于优化A*的人工势场机械臂三维避障路径规划方法[P].中国专利:CN108274465A,2018-07-13),用A*避免陷入局部极小值的问题并避免机械臂抖动。但以上两种方法,并未考虑机械臂和障碍物的移动速度关系,当障碍物移动速度过快时,机械臂可能无法及时躲避,在人机安全避障中存在一定局限性。
发明内容
本发明克服现有技术的上述缺点,提出一种基于改进人工势场法的人机安全避障路径规划方法,根据障碍物与机械臂的速度关系,控制机械臂执行不同避障方式,保证了人机安全。
本发明针对不同的障碍物与机械臂的速度关系,分别建立斥力场向量函数,并利用Pivot算法改进斥力场向量函数。首先,本发明通过Kinetic相机,获取障碍物,目标点以及机械臂的位姿关系。其次,本发明通过在机械臂末端执行器构造边界球,判断障碍物是否进入边界球并执行避障任务,定义引力场向量函数,再根据障碍物与机械臂的速度关系定义斥力场向量函数,主要考虑以下情况:1)障碍物快速接近机械臂,当速度vH>vrobot_endm/s,***规划的新路径不能保证人体的安全,机械臂根据人的运动方向,通过Pivot算法优化斥力场向量函数;
2)障碍物缓慢接近机械臂,当速度vH<vrobot_endm/s,使用传统的斥力场向量函数。最后对引力以及斥力进行矢量合成,进行轨迹规划,生成避免碰撞的新路径,当机械臂陷入局部最小值时,引入时间因子,对机械臂产生一定扰动,快速脱离。如果人突然加速,应该对第一种情况做出反应。
基于改进人工势场法的人机安全避障路径规划方法,具体步骤如下:
步骤1::基于Kinetic深度相机,将人物点云信息和3D机器人模型放在统一坐标系下,获取人-机械臂末端执行器位置关系D(E,O),其中E表示机械臂末端,O表示障碍物。
步骤2:在末端执行器处定义边界球,构建无碰撞空间Ccollision_free,半径为R。
步骤3:获取目标-机械臂末端执行器位置关系D(E,T)以及速度关系V(E,T),其中E表示机械臂末端,T表示目标点。
步骤3-1:计算基于目标位置的引力场向量函数:
Figure GDA0003512109770000021
Figure GDA0003512109770000022
其中dE-T表示目标与末端的距离误差,K1,D1为控制参数。
步骤3-2:计算基于目标速度的引力场向量函数:
Figure GDA0003512109770000023
Figure GDA0003512109770000024
其中vE-T表示目标与末端的速度误差,K2,D2为控制参数。
步骤3-3:合成引力场向量函数:
Figure GDA0003512109770000031
Vsum=αVtarget+βVvel (6)
其中α,β为两种吸引力速度的合成权系数,Vamax为引力场向量函数产生的机械臂末端执行器最大线速度。
步骤4:定义斥力场向量函数:
Figure GDA0003512109770000032
Figure GDA0003512109770000033
其中Vrmax为斥力场向量函数产生的机械臂末端执行器最大线速度,ρ为障碍物与无碰撞空间中心距离。
步骤5:判断障碍物与机械臂的速度关系,当人缓慢接近机械臂,以速度vH<vH_ dangerm/s进入工作空间时,控制机械臂执行步骤4的斥力场向量函数。当人以速度vH>vrobot_endm/s进入工作空间时,采用Pivot算法对斥力场向量函数进行优化,具体步骤如下:
步骤5-1:定义
Figure GDA0003512109770000034
其中a是
Figure GDA0003512109770000035
的单位向量,r是Vrep的单位向量。
步骤5-2:构建坐标系(a,v,n),n为垂直a-r平面的单位向量,v为垂直n-a的单位向量。
Figure GDA0003512109770000036
步骤5-3:当θ>90°,障碍物远离机械臂,斥力场向量函数保持不变,执行步骤3。
步骤5-4:当0°<θ<90°,障碍物靠近机械臂,通过Pivot算法调整斥力场向量函数,新的斥力场向量函数表示为:
Vrpviot=||Vrep||(cosγa+sinγv) (10)
Figure GDA0003512109770000041
步骤5-5:当θ=0°,无法直接构建步骤5-2坐标系,则假设
Figure GDA0003512109770000042
和Vrep存在一定误差θ,构建新的μ向量,见附图5,r向量表示为(rx,ry,rz),定义:
η=μ+λ (12)
Figure GDA0003512109770000043
Figure GDA0003512109770000044
若r向量不在x-y平面且不在z轴,则新的μ向量为:
Figure GDA0003512109770000045
若r向量在x-y平面,则新的μ向量为:
μ=[cos(λ+θ),sin(λ+θ),0]T (16)
若r向量在z轴上,则新的μ向量为:
μ=[0,sinθ,cosθ]T (17)
步骤6:对引力场向量函数以及斥力场向量函数进行矢量合成,通过机械臂逆运动学计算,控制机械臂避障。
Figure GDA0003512109770000046
Figure GDA0003512109770000047
其中ut为时间因子,η为机械臂停留的时间,t为恢复扰动时间,若机械臂停留η时间,则陷入局部极小值,增大斥力场向量,保证机械臂继续避障。在T时间后,检测机械臂是否远离障碍物并继续向目标点靠近,若远离障碍物,则避障成功,否则返回步骤5,更新斥力场向量函数。
本发明的优点:本发明设计的基于改进人工势场法的人机安全避障路劲规划方法,一方面是通过kinetic深度相机获取人与机械臂点云信息,相比于直接通过单目或双目相机识别人物和机械臂,识别精度以及鲁棒性更高;另一方面,针对不同障碍物与人的速度关系,采取了多种保障安全的方式,构建不同的斥力场向量函数,提高了在工业环境下的人机安全性,此外通过引入时间因子,对斥力场向量函数加权计算,解决了局部最小值问题。
附图说明
图1是本发明的方法流程图
图2是本发明的人机位姿关系图
图3是本发明的机械臂末端执行器边界球图
图4是本发明的引力场说明图
图5是本发明的假设的坐标系图
具体实施方式
以下结合附图对本发明实例做进一步详述:
本发明的一种基于改进人工势场法的人机安全避障路劲规划方法,具体过程如下:
在对机械臂进行避障控制前,需要对Kinetic相机进行内参标定,使得获取点云信息能够达到更好的精度,控制对象为Uuniversal Robot公司生产的UR5六自由度关节机器人。相机与计算机通过USB连接传输数据,机械臂通过局域网与计算机相连接。
步骤1:基于Kinetic深度相机,将人物点云信息和3D机器人模型放在统一坐标系下,如图2所示。定义:
Figure GDA0003512109770000051
其中
Figure GDA0003512109770000052
表示障碍物对于机械臂基坐标的相对位姿,根据机械臂的正运动学,可以求得机械臂末端执行器相对于机械臂基坐标的相对位姿
Figure GDA0003512109770000061
定义障碍物与末端执行器在基坐标系下的位置关系:
Figure GDA0003512109770000062
步骤2:在机械臂末端执行器处人为设定一个边界半球,构建无碰撞空间Ccollision_free,如图3所示,半径为0.5m,当人或障碍物的距离小于0.5m时,***开始计算斥力场向量并控制机械臂避障。
步骤3:定义引力场向量函数,引力场向量函数由2部分合成,如图4,首先同步骤1,获取目标物体与末端执行器在基坐标系下的位置关系D(E,T)以及速度关系V(E,T)。
首先计算基于目标位置的引力场向量函数:
Figure GDA0003512109770000063
Figure GDA0003512109770000064
其中dE-T表示目标与末端的距离误差,K1,D1为控制参数,分别取0.7,0.3,该速度能够保证机械臂末端向目标靠近。
再计算基于目标速度的引力场向量函数:
Figure GDA0003512109770000065
Figure GDA0003512109770000066
其中vE-T表示目标与末端的速度误差,K2,D2为控制参数,分别取0.7,0.3,该速度能够保证机械臂末端跟踪上动态目标。
最终合成引力场向量函数:
Figure GDA0003512109770000067
Vsum=αVtarget+βVvel (6)
其中α,β为两种吸引力速度的合成权系数,Vamax为引力场向量函数产生的机械臂末端执行器最大线速度。
步骤4:定义斥力场向量函数:
Figure GDA0003512109770000071
Figure GDA0003512109770000072
其中Vrmax为斥力场向量函数产生的机械臂末端执行器最大线速度,α为正的系数,取5。
步骤5:当人或障碍物进入无碰撞空间后,判断速度vH<vH-danger=0.2m/s时,直接调用步骤4的斥力场向量,控制机械臂避障,判断速度vH>vH-danger=0.2m/s,若直接调用步骤4的斥力场向量,机械臂在排斥力的作用下,障碍物与机械臂将同向运动,两者仍然会有相撞的可能,需要优化斥力场向量函数,主要考虑3种情况。
首先定义斥力场向量Vrep与其随位置变化的向量
Figure GDA0003512109770000073
的夹角θ:
Figure GDA0003512109770000074
构建坐标系(a,v,n),其中n为垂直a-r平面的单位向量,v为垂直n-a的单位向量。当θ>90°时,表示障碍物远离末端执行器,机械臂可以执行步骤3的斥力场向量,沿斥力场向量原方向安全运动并且不发生碰撞。
Vrpviot=Vrep (23)
当θ<90°时,表示障碍物靠近障碍物,为了有效地避开动态障碍物,需要构建新的斥力场向量函数,将新的斥力场向量投射在a-v平面上,新的函数表示为:
Vrpviot=||Vrep||(cosγa+sinγv) (10)
Figure GDA0003512109770000075
其中γ表示Vrpviot相对于边界球球心的角度,
Figure GDA0003512109770000081
表示斥力场向量允许变化的最大角度,c为正的常数,取5。
当θ=0°,斥力场向量平行于变化方向,无法构建a-r平面,则无法改变斥力场向量方向,为此需要假设存在一个很小的θ,如图5所示。定义图中圆锥体底面的中点为(0,0,rz),则r可以表示为(rx,ry,rz),首先计算:
η=μ+λ (12)
Figure GDA0003512109770000082
Figure GDA0003512109770000083
其中α表示向量μ和r在圆锥体地面的投影夹角,λ表示r在锥底的投影角度,若r不在x-y平面上,并且不在z轴上,则μ向量可以表示为:
Figure GDA0003512109770000084
若r在x-y平面上,则μ向量可以表示为:
μ=[cos(λ+θ),sin(λ+θ),0]T (16)
若r在z轴上,则μ向量可以表示为:
μ=[0,sinθ,cosθ]T (17)
步骤6:对引力场向量函数和斥力场向量函数进行矢量合成,通过机械臂逆运动学计算,控制机械臂避障并完成任务。
Figure GDA0003512109770000085
Figure GDA0003512109770000086
若机械臂在空间中某点位置停留一定时间,则陷入局部最小值问题,通过引入时间因子ut对斥力场向量函数进行加权计算,快速脱离局部极小值。之后每0.01S采样位姿信息,检测机械臂末端是否远离障碍物,若远离障碍物并向靠近目标点,则避障成功,否则返回步骤5,更新斥力场向量函数。
步骤5所述的斥力场向量函数构造方法中,在障碍物速度过大,使用传统人工势场法无法避开时,通过引入Pivot算法,更新斥力场向量函数,进而合成新的势力场进行机械臂避障。
步骤5所述的避免机械臂陷入局部最小值问题中,通过引入时间因子,对斥力场向量函数进行加权计算,在机械臂陷入局部最小值时,增大斥力,让机械臂快速脱离。
本说明书实施例所述的内容仅仅是对发明构思实现形式的例举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (3)

1.基于改进人工势场法的人机安全避障路径规划方法,具体步骤如下:
步骤1:基于Kinetic深度相机,将人物点云信息和3D机器人模型放在统一坐标系下,获取人-机械臂末端执行器位置关系D(E,O),其中E表示机械臂末端,O表示障碍物;
步骤2:在末端执行器处定义边界球,构建无碰撞空间Ccollision_free,半径为R;
步骤3:获取目标-机械臂末端执行器位置关系D(E,T)以及速度关系V(E,T),其中E表示机械臂末端,T表示目标点;
步骤3-1:计算基于目标位置的引力场向量函数:
Figure FDA0003512109760000011
Figure FDA0003512109760000012
其中dE-T表示目标与末端的距离误差,K1,D1为控制参数;
步骤3-2:计算基于目标速度的引力场向量函数:
Figure FDA0003512109760000013
Figure FDA0003512109760000014
其中vE-T表示目标与末端的速度误差,K2,D2为控制参数;
步骤3-3:合成引力场向量函数:
Figure FDA0003512109760000015
Vsum=αVtarget+βVvel (6)
其中α,β为两种吸引力速度的合成权系数,Vamax为引力场向量函数产生的机械臂末端执行器最大线速度;
步骤4:定义斥力场向量函数:
Figure FDA0003512109760000016
Figure FDA0003512109760000021
其中Vrmax为斥力场向量函数产生的机械臂末端执行器最大线速度,ρ为障碍物与无碰撞空间中心距离;
步骤5:判断障碍物与机械臂的速度关系,当人缓慢接近机械臂,以速度vH<vrobot_endm/s进入工作空间时,控制机械臂执行步骤4的斥力场向量函数;当人以速度vH>vrobot_endm/s进入工作空间时,采用Pivot算法对斥力场向量函数进行优化,具体步骤如下:
步骤5-1:定义
Figure FDA0003512109760000022
其中a是
Figure FDA0003512109760000023
的单位向量,r是Vrep的单位向量;
步骤5-2:构建坐标系(a,v,n),n为垂直a-r平面的单位向量,v为垂直n-a的单位向量;
Figure FDA0003512109760000024
步骤5-3:当θ>90°,障碍物远离机械臂,斥力场向量函数保持不变,执行步骤3;
步骤5-4:当0°<θ<90°,障碍物靠近机械臂,通过Pivot算法调整斥力场向量函数,新的斥力场向量函数表示为:
Vrpviot=||Vrep||(cosγa+sinγv) (10)
Figure FDA0003512109760000025
步骤5-5:当θ=0°,无法直接构建步骤5-2坐标系,则假设
Figure FDA0003512109760000026
和Vrep存在一定误差θ,构建新的μ向量,r向量表示为(rx,ry,rz),定义:
η=μ+λ (12)
Figure FDA0003512109760000031
Figure FDA0003512109760000032
若r向量不在x-y平面且不在z轴,则新的μ向量为:
Figure FDA0003512109760000033
若r向量在x-y平面,则新的μ向量为:
μ=[cos(λ+θ),sin(λ+θ),0]T (16)
若r向量在z轴上,则新的μ向量为:
μ=[0,sinθ,cosθ]T (17)
步骤6:对引力场向量函数以及斥力场向量函数进行矢量合成,通过机械臂逆运动学计算,控制机械臂避障;
Figure FDA0003512109760000034
Figure FDA0003512109760000035
其中ut为时间因子,η为机械臂停留的时间,t为恢复扰动时间,若机械臂停留η时间,则陷入局部极小值,增大斥力场向量,保证机械臂继续避障;在T时间后,检测机械臂是否远离障碍物并继续向目标点靠近,若远离障碍物,则避障成功,否则返回步骤5,更新斥力场向量函数。
2.根据权利要求1所述的基于改进人工势场法的人机安全避障路径规划方法,其特征在于:步骤5中,在障碍物速度过大,使用传统人工势场法无法避开时,通过引入Pivot算法,更新斥力场向量函数,进而合成新的势力场进行机械臂避障。
3.根据权利要求1所述的基于改进人工势场法的人机安全避障路径规划方法,其特征在于:步骤6中,通过引入时间因子,对斥力场向量函数进行加权计算,在机械臂陷入局部最小值时,增大斥力,让机械臂快速脱离。
CN201910444495.XA 2019-05-27 2019-05-27 基于改进人工势场法的人机安全避障路径规划方法 Active CN110262478B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910444495.XA CN110262478B (zh) 2019-05-27 2019-05-27 基于改进人工势场法的人机安全避障路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910444495.XA CN110262478B (zh) 2019-05-27 2019-05-27 基于改进人工势场法的人机安全避障路径规划方法

Publications (2)

Publication Number Publication Date
CN110262478A CN110262478A (zh) 2019-09-20
CN110262478B true CN110262478B (zh) 2022-04-19

Family

ID=67915429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910444495.XA Active CN110262478B (zh) 2019-05-27 2019-05-27 基于改进人工势场法的人机安全避障路径规划方法

Country Status (1)

Country Link
CN (1) CN110262478B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673633B (zh) * 2019-09-29 2023-04-07 合肥工业大学 一种基于改进apf的电力巡检无人机路径规划方法
CN112749577B (zh) * 2019-10-29 2023-09-22 北京魔门塔科技有限公司 一种停车位的检测方法及装置
CN112975939A (zh) * 2019-12-12 2021-06-18 中国科学院沈阳自动化研究所 一种协作型机械臂的动态轨迹规划方法
CN111168675B (zh) * 2020-01-08 2021-09-03 北京航空航天大学 一种家用服务机器人的机械臂动态避障运动规划方法
CN111515932A (zh) * 2020-04-23 2020-08-11 东华大学 一种基于人工势场与强化学习的人机共融流水线实现方法
WO2021242215A1 (en) * 2020-05-26 2021-12-02 Edda Technology, Inc. A robot path planning method with static and dynamic collision avoidance in an uncertain environment
CN113232016A (zh) * 2021-04-13 2021-08-10 哈尔滨工业大学(威海) 一种强化学习与模糊避障融合的机械臂路径规划方法
CN113534838A (zh) * 2021-07-15 2021-10-22 西北工业大学 一种基于人工势场法的改进无人机航迹规划方法
CN113580130B (zh) * 2021-07-20 2022-08-30 佛山智能装备技术研究院 六轴机械臂避障控制方法、***及计算机可读存储介质
CN114043475B (zh) * 2021-11-03 2023-04-28 中国船舶集团有限公司第七一六研究所 基于b-apf的多焊接机器人路径优化方法及***
CN116352714B (zh) * 2023-04-11 2023-09-26 广东工业大学 一种机械臂避障路径规划方法
CN117237242B (zh) * 2023-11-16 2024-02-27 深圳爱递医药科技有限公司 基于结构光数据的口腔颌面外科术后护理***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105867365A (zh) * 2016-03-11 2016-08-17 中国矿业大学(北京) 基于改进人工势场法的路径规划导航***及方法
CN106990777A (zh) * 2017-03-10 2017-07-28 江苏物联网研究发展中心 机器人局部路径规划方法
CN107885209A (zh) * 2017-11-13 2018-04-06 浙江工业大学 一种基于动态窗口与虚拟目标点的避障方法
CN108287469A (zh) * 2017-11-28 2018-07-17 上海师范大学 基于人工势场引力因子的机械臂最优避障控制方法及装置
CN108326849A (zh) * 2018-01-04 2018-07-27 浙江大学 一种基于改进人工势场法的多自由度机械臂动态避障路径规划方法
WO2018176594A1 (zh) * 2017-03-31 2018-10-04 深圳市靖洲科技有限公司 一种面向无人自行车的人工势场路径规划法
WO2018184916A1 (en) * 2017-04-05 2018-10-11 Sandvik Mining And Construction Oy Apparatus and method for controlling boom of mine vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105867365A (zh) * 2016-03-11 2016-08-17 中国矿业大学(北京) 基于改进人工势场法的路径规划导航***及方法
CN106990777A (zh) * 2017-03-10 2017-07-28 江苏物联网研究发展中心 机器人局部路径规划方法
WO2018176594A1 (zh) * 2017-03-31 2018-10-04 深圳市靖洲科技有限公司 一种面向无人自行车的人工势场路径规划法
WO2018184916A1 (en) * 2017-04-05 2018-10-11 Sandvik Mining And Construction Oy Apparatus and method for controlling boom of mine vehicle
CN107885209A (zh) * 2017-11-13 2018-04-06 浙江工业大学 一种基于动态窗口与虚拟目标点的避障方法
CN108287469A (zh) * 2017-11-28 2018-07-17 上海师范大学 基于人工势场引力因子的机械臂最优避障控制方法及装置
CN108326849A (zh) * 2018-01-04 2018-07-27 浙江大学 一种基于改进人工势场法的多自由度机械臂动态避障路径规划方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于改进势场法的机械臂动态避障规划;谢龙等;《控制理论与应用》;20180930(第09期);第1239-1249页 *
改进人工势场法的机械臂避障路径规划研究;唐彪等;《无线互联科技》;20170215(第03期);第115-124页 *

Also Published As

Publication number Publication date
CN110262478A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN110262478B (zh) 基于改进人工势场法的人机安全避障路径规划方法
CN108908331B (zh) 超冗余柔性机器人的避障方法及***、计算机存储介质
CN109822554B (zh) 面向水下的双臂协同抓取、抱取及避碰一体化方法及***
CN108326849B (zh) 一种基于改进人工势场法的多自由度机械臂动态避障路径规划方法
Wells et al. Vision-based robot positioning using neural networks
CN108818530B (zh) 基于改进rrt算法的机械臂抓取散乱堆放活塞运动规划方法
CN109571466A (zh) 一种基于快速随机搜索树的七自由度冗余机械臂动态避障路径规划方法
CN106054876B (zh) 一种针对空间多任务的避障路径最优逐次操作规划方法
CN108919649B (zh) 一种针对故障卫星外包络抓捕的抓捕最优路径设计方法
CN107957684A (zh) 一种基于虚拟速度向量场的机器人三维无碰轨迹规划方法
CN112975939A (zh) 一种协作型机械臂的动态轨迹规划方法
CN112428274B (zh) 一种多自由度机器人的空间运动规划方法
CN113442140B (zh) 一种基于Bezier寻优的笛卡尔空间避障规划方法
CN109778939A (zh) 一种可自主规划轨迹的挖掘机臂智能控制***及方法
CN114905508A (zh) 基于异构特征融合的机器人抓取方法
CN111421540A (zh) 一种机械臂运动控制方法
CN116673963A (zh) 面向无序断路器零件的双机械臂协作柔性装配***及方法
CN112318508A (zh) 一种水下机器人-机械手***受海流扰动强弱评估方法
CN116476080A (zh) 一种基于几何可行性的空中自动抓取作业规划方法
Konoplin et al. Technology for implementation of manipulation operations with different underwater objects by AUV
CN113778096A (zh) 室内机器人的定位与模型构建方法及***
CN113146637B (zh) 一种机器人笛卡尔空间的运动规划方法
Kawagoshi et al. Visual servoing using virtual space for both learning and task execution
Fryc et al. Efficient pipeline for mobile brick picking
DU et al. ROBOT MANIPULATOR USING A VISION-BASED HUMAN--MANIPULATOR INTERFACE.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant