CN110237802B - 铋-钨酸铋-溴氧化铋三元复合物及其制备方法和应用 - Google Patents

铋-钨酸铋-溴氧化铋三元复合物及其制备方法和应用 Download PDF

Info

Publication number
CN110237802B
CN110237802B CN201910521073.8A CN201910521073A CN110237802B CN 110237802 B CN110237802 B CN 110237802B CN 201910521073 A CN201910521073 A CN 201910521073A CN 110237802 B CN110237802 B CN 110237802B
Authority
CN
China
Prior art keywords
bismuth
tungstate
solution
oxybromide
ternary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910521073.8A
Other languages
English (en)
Other versions
CN110237802A (zh
Inventor
肖姗姗
毕菲
赵丽
王立艳
盖广清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Jianzhu University
Original Assignee
Jilin Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Jianzhu University filed Critical Jilin Jianzhu University
Priority to CN201910521073.8A priority Critical patent/CN110237802B/zh
Publication of CN110237802A publication Critical patent/CN110237802A/zh
Application granted granted Critical
Publication of CN110237802B publication Critical patent/CN110237802B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0288Halides of compounds other than those provided for in B01J20/046
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了铋‑钨酸铋‑溴氧化铋三元复合物及其制备方法和应用。所述方法包括以下步骤:将硝酸铋加入乙二醇中,搅拌均匀后得到溶液A;将钨酸钠和溴化钾加入乙二醇中,搅拌均匀后得到溶液B;将溶液B滴加到溶液A中,搅拌均匀后得到混合溶液;转移所述混合溶液至水热釜,进行溶剂热反应;其中,所述混合溶液中,硝酸铋、钨酸钠和溴化钾的摩尔比为2:1:(0.5~5)。本发明的方法制备的具有纳米结构的Bi/Bi2WO6/BiOBr三元复合物,对水中阳离子染料玫瑰红B具有很强的吸附和可见光降解作用。

Description

铋-钨酸铋-溴氧化铋三元复合物及其制备方法和应用
技术领域
本发明属于半导体纳米材料领域,具体涉及制备包含铋、钨酸铋和溴氧化铋的复合半导体纳米材料,及其制备方法和用于污水处理的应用。
背景技术
随着我国工业的快速发展,水污染问题日益严峻,污水处理受到人们的广泛关注。污水处理方法多种多样,包括吸附法、光催化法、化学沉积法、化学氧化法、生物降解法等。其中,吸附法是一种简单、低成本且高效率的污水处理技术。常用的吸附剂有活性碳、石墨烯、天然高分子材料等,但是这些材料的昂贵价格和复杂的处理过程限制了它们的发展。近年来,形貌和尺寸可控的纳米材料吸附剂备受人们青睐。而以半导体材料为主导的光催化技术在污水治理中具有经济高效、环境友好、应用面广等优点,亦是污水处理领域异常活跃的研究方向。
我国的铋(Bi)资源储量居世界首位,Bi系半导体家族成员众多。溴氧化铋(BiOBr)是一种p型半导体材料,禁带宽度为2.75eV,它具有特殊的层状结构,很高的光催化活性,良好的化学稳定性和环境友好性。研究者发现它对水中的有机染料和重金属离子具有吸附和光催化作用,开发新型高效的BiOBr 基纳米材料是污水处理领域的研究热点。
钨酸铋(Bi2WO6)是典型的n型半导体,禁带宽度为2.8eV左右,它形貌多样,稳定性好,能响应太阳光谱中大部分可见光,而且它价带位置适宜,具有很强的氧化能力,是最有前景的光催化材料之一。但是,Bi2WO6的量子产率远没有达到预期,将其进行改性可有效提高光催化效率。
发明内容
本发明的目的是通过对溴氧化铋和钨酸铋复合体系进行改性,通过构建铋- 钨酸铋-溴氧化铋(Bi/Bi2WO6/BiOBr)三元异质结构,提供一种具有纳米结构的Bi/Bi2WO6/BiOBr三元复合物,其对水中阳离子染料玫瑰红B具有很强的吸附和可见光降解作用。
根据本发明的一个方面,提供一种制备铋-钨酸铋-溴氧化铋三元复合物的方法,包括以下步骤:
步骤1,将硝酸铋加入乙二醇中,搅拌均匀后得到溶液A;
步骤2,将钨酸钠和溴化钾加入乙二醇中,搅拌均匀后得到溶液B;
步骤3,将溶液B滴加到溶液A中,搅拌均匀后得到混合溶液;
步骤4,转移所述混合溶液至水热釜,进行溶剂热反应;
其中,所述混合溶液中,硝酸铋、钨酸钠和溴化钾的摩尔比为2:1:(0.5~5)。
优选地,步骤4中,所述溶剂热反应的温度为120~220℃,反应时间为1~40 h。
优选地,步骤1中,溶液A中硝酸铋的浓度为0.1~1M。
步骤2中,溶液B中钨酸钠的浓度为0.05~0.5M。
进一步地,步骤(2)中,溶液B中钨酸钠和溴化钾的摩尔比为1:(0.5~5)。
根据本发明的另一方面,提供一种通过上述方法制备的铋-钨酸铋-溴氧化铋三元复合物。
具体地,所述铋-钨酸铋-溴氧化铋三元复合物具有纳米片层结构以及分布在所述纳米片层结构的纳米颗粒。其中,所述纳米片层结构由溴氧化铋片层构成,所述纳米颗粒由钨酸铋颗粒和铋单质颗粒构成。
根据本发明的另一方面,提供上述铋-钨酸铋-溴氧化铋三元复合物用于处理污水的应用。
根据本发明的方法制备的铋-钨酸铋-溴氧化铋三元复合物具有较大的比表面积和复合能带结构,对水中阳离子染料玫瑰红B具有很强的吸附和可见光降解作用。
附图说明
图1示出了根据实施例1的铋-钨酸铋-溴氧化铋三元复合物的XRD图。
图2示出了根据实施例1的铋-钨酸铋-溴氧化铋三元复合物的SEM表征图。
图3示出了根据实施例1的铋-钨酸铋-溴氧化铋三元复合物的EDS表征图。
图4示出了根据实施例1的铋-钨酸铋-溴氧化铋三元复合物的N2吸附脱附曲线。
图5示出了钨酸铋、溴氧化铋、二元铋-钨酸铋复合物、二元铋-溴氧化铋复合物、三元铋-钨酸铋-碘氧化铋复合物、三元铋-钨酸铋-溴氧化铋复合物对玫瑰红B的吸附曲线。
图6示出了钨酸铋、溴氧化铋、二元铋-钨酸铋复合物、二元铋-溴氧化铋复合物、三元铋-钨酸铋-碘氧化铋复合物、三元铋-钨酸铋-溴氧化铋复合物对玫瑰红B的光催化降解曲线。
具体实施方式
本发明提供一种制备铋-钨酸铋-溴氧化铋三元复合物的方法,包括以下步骤:
步骤1,将硝酸铋加入乙二醇中,搅拌均匀后得到溶液A;
步骤2,将钨酸钠和溴化钾加入乙二醇中,搅拌均匀后得到溶液B;
步骤3,将溶液B滴加到溶液A中,搅拌均匀后得到混合溶液;
步骤4,转移所述混合溶液至水热釜,进行溶剂热反应;
其中,所述混合溶液中,硝酸铋、钨酸钠和溴化钾的摩尔比为2:1:(0.5~5)。
优选地,步骤1中,溶液A中硝酸铋的浓度为0.1~1M。
步骤2中,溶液B中,钨酸钠的浓度为0.05~0.5M;硝酸铋和钨酸钠的摩尔比为2:1;钨酸钠和溴化钾的摩尔比为1:(0.5~5)。
步骤4中,所述溶剂热反应的温度为120~220℃,反应时间为1~40h。
优选地,步骤3中,溶液B缓慢滴加至溶液A中,优选滴加时间为10~60 min,搅拌时间为10~60min。
根据一个具体实施方式,上述步骤4中优选将混合溶液转移至带钢套的聚四氟乙烯内胆中,置于烘箱中进行溶剂热反应。
优选地,在步骤4的反应结束后,离心反应物,用去离子水和乙醇反复超声清洗,再进行真空干燥得到粉末状的上述复合物。
在本发明的上述方法中,硝酸铋、钨酸钠和溴化钾在乙二醇溶剂中先离子化,然后一部分铋离子(Bi3+)和钨酸根(WO6 6-)组合成钨酸铋,再成核长大;一部分铋离子变成(BiO)2 2+离子,和溴离子Br-组合成溴氧化铋BiOBr,再成核长大。而单质铋的形成是因为乙二醇在高温下具有还原性,所以还有一部分铋离子被还原为零价的铋单质。
由此,半导体材料BiOBr和Bi2WO6复合构建p-n异质结构复合物,通过形成阶梯型复合能带结构使光生电子和空穴对转移到不同的物质表面,有效地促进光生电子和空穴的转移与分离,从而得到高效的光催化剂。同时,金属Bi 具有类似Au、Ag、Pt等贵金属的等离子体共振效应,它沉积在上述半导体材料表面可以增强可见光的吸收,还能发挥电子阱的作用,促进光生电子和空穴的迁移与分离,进一步改善光催化性能。
根据本发明制得的Bi-Bi2WO6-BiOBr三元复合物具有由纳米片层组装形成的结构,例如纳米花状结构,且纳米片层中还分布有纳米颗粒。其中,纳米片层为溴氧化铋片层,纳米颗粒为钨酸铋颗粒和铋单质颗粒。这种结构能够有效提高Bi-Bi2WO6-BiOBr三元复合物的比表面积至通常为60~100cm2/g。
具体地,纳米片层厚度为2~5nm,纳米颗粒直径为7~12nm。优选地,纳米花状结构的直径约为550~700nm。
根据本发明的一个具体实施方式,将上述铋-钨酸铋-溴氧化铋三元复合物用于处理污水,特别是用于处理水中的阳离子染料玫瑰红B。
具体地,以上述Bi-Bi2WO6-BiOBr三元复合物作为污水处理的吸附剂和光催化剂,对水中污染物进行吸附和光催化测试,具体包括以下步骤:采用玫瑰红B溶液作为典型的污水溶液,加入三元复合物粉末作为吸附剂和光催化剂。磁力搅拌下,测量每个时间点溶液的紫外可见光吸收光谱,记录吸收峰值。根据玫瑰红B溶液的标准曲线,计算每个时间点溶液的玫瑰红B浓度,再通过吸附量的计算公式:
Figure BDA0002096699610000051
(其中,qe是平衡吸附量,C0和Ce分别是玫瑰红B的初始浓度和平衡浓度,V是溶液的体积,W是样品的质量)求得三元复合物对玫瑰红B的吸附量。以时间-吸附量作图,得到三元复合物的吸附曲线,考察三元复合物的吸附性能。将吸附达到饱和的含有三元复合物的玫瑰红B溶液置于金卤灯下,在模拟太阳光照和磁力搅拌双重作用下,记录每个时间点的吸收峰值,利用标准曲线计算溶液浓度,通过浓度值得到降解率
Figure DEST_PATH_IMAGE001
绘制时间-降解率曲线,考察三元复合物的光催化性能。一定时间后,在铋-钨酸铋-溴氧化铋三元复合物的吸附作用和光降解作用下,玫瑰红B溶液被完全降解,溶液变成透明色。
本发明采用一步溶剂热法制备的铋-钨酸铋-溴氧化铋三元复合物使铋、钨酸铋和溴氧化铋复合构建了等离子体异质结构复合物。其中,金属铋具有等离子体共振效应,可以提高可见光的吸收,同时发挥电子阱的作用促进光生电子和空穴的分离;通过形成阶梯状的复合能带结构使光生电子和空穴可以快速地转移到不同的物质表面,并有效地分离,进一步地改善了光催化性能。另外,复合物是由纳米片层组装成的纳米花结构,具有较大的比表面积,这使得复合物具有很好的吸附性能。由于上述特有的微观结构和复合能带结构,本发明制备的铋-钨酸铋-溴氧化铋三元复合物可用作污水处理的吸附剂和光催化剂,尤其对于水中污染物具有很强的吸附作用和光降解作用,由此在污水处理领域具有广阔的应用前景,特别是对水中阳离子染料玫瑰红B具有很强的吸附和可见光降解作用。
以下将给出本发明的具体实施例以更清楚地说明本发明。
实施例1
铋-钨酸铋-溴氧化铋三元复合物的制备
(1)配制浓度为0.1M的硝酸铋乙二醇溶液A;
(2)配制浓度为0.05M的钨酸钠乙二醇溶液,使硝酸铋和钨酸钠的摩尔比为2:1;再加入溴化钾,使钨酸钠和溴化钾的摩尔比为1:0.5,搅拌均匀后得到钨酸钠和溴化钾的乙二醇溶液B;
(3)将钨酸钠和溴化钾的乙二醇溶液B缓慢滴加到硝酸铋的乙二醇溶液A 中,控制滴加时间为10min,再搅拌10min得到均一的混合溶液;
(4)将混合溶液转移至带钢套的聚四氟乙烯内胆中,置于烘箱中进行溶剂热反应,反应温度为120℃,反应时间为5h;
(5)将制得的反应物离心,用去离子水和乙醇反复超声清洗3次,真空干燥过夜得到铋-钨酸铋-溴氧化铋三元复合物粉末。
性能测试
以上述实施例1制备的铋-钨酸铋-溴氧化铋三元复合物作为污水处理的吸附剂和光催化剂,对污水样品进行吸附性能和光催化性能测试。
采用50mg/L的玫瑰红B溶液作为污水样品,在30mL玫瑰红B溶液中,加入15mg铋-钨酸铋-溴氧化铋三元复合物粉末。磁力搅拌下,测量每个时间点溶液的紫外可见光吸收光谱,记录吸收峰值。根据玫瑰红B溶液的标准曲线,计算每个时间点溶液的浓度,再通过吸附量的计算公式求得三元复合物对玫瑰红B的吸附量,以时间-吸附量作图,得到三元复合物的吸附曲线,考察三元复合物的吸附性能,结果示于图5中。将吸附达到饱和的含有三元复合物的玫瑰红B溶液置于450W的金卤灯下,在模拟太阳光照和磁力搅拌双重作用下,记录每个时间点的吸收峰值,利用标准曲线计算溶液浓度,通过浓度值得到降解率,绘制时间-降解率曲线,考察三元复合物的光催化性能,结果示于图6中。
铋-钨酸铋-溴氧化铋三元复合物的结构表征:
采用X射线衍射(XRD)表征铋-钨酸铋-溴氧化铋三元复合物的结构,图谱如图1所示。参见图1,证明该复合物是由铋、钨酸铋和溴氧化铋三种成分组成。
采用扫描电镜(SEM)观察铋-钨酸铋-溴氧化铋三元复合物的结构,结果如图2所示。图2示出了上述三元复合物具有由纳米片层组装成的纳米花状结构,在纳米片层中还分布有一些纳米颗粒。纳米片层厚度为2~5nm,纳米花状结构的直径约为550~700nm,纳米颗粒直径为7~12nm。这一结构有效地提高了三元复合物的比表面积,这有利于发挥三元复合物对污染物的吸附性能和光催化性能。
参见图3,采用能谱(EDS)检测三元复合材料成分,证明三元复合物是由铋、钨、溴、氧四元素组成,没有其它杂质元素。
图4示出了上述三元复合材料的N2吸附脱附曲线,符合H3滞后环的IV 型等温线,测得铋-钨酸铋-溴氧化铋三元复合物的比表面积是67.1cm2/g。
铋-钨酸铋-溴氧化铋三元复合物的吸附性能和光催化性能测试:
以铋-钨酸铋-溴氧化铋三元复合物作为吸附剂,测定其对水中玫瑰红B的吸附性能,如图5所示。对吸附达到饱和的玫瑰红B溶液进行光催化降解实验,考察三元复合物的光催化性能,如图6所示。
实施例2
铋-钨酸铋-溴氧化铋三元复合物的制备
(1)配制浓度为1M的硝酸铋乙二醇溶液A;
(2)配制浓度为0.5M的钨酸钠乙二醇溶液,使硝酸铋和钨酸钠的摩尔比为2:1;再加入溴化钾,使钨酸钠和溴化钾的摩尔比为1:5,搅拌均匀后得到钨酸钠和溴化钾的乙二醇溶液B;
(3)将钨酸钠和溴化钾的乙二醇溶液B缓慢滴加到硝酸铋的乙二醇溶液A 中,控制滴加时间为40min,再搅拌60min得到均一的混合溶液;
(4)将混合溶液转移至带钢套的聚四氟乙烯内胆中,置于烘箱中进行溶剂热反应,反应温度为220℃,反应时间为10h;
(5)将制得的反应物离心,用去离子水和乙醇反复超声清洗3次,真空干燥过夜得到铋-钨酸铋-溴氧化铋三元复合物粉末。
对比例1
根据与实施例1相同的方法制备复合材料,区别在于加入碘化钾代替溴化钾。对制得的Bi/Bi2WO6/BiOI三元复合材料进行与实施例1相同的水中玫瑰红 B的吸附性能测试和光催化性能测试,结果示于图5和图6中。
对比例2
根据与实施例1相同的方法制备复合材料,区别在于溴化钾加入量为零。对制得的二元复合材料Bi/Bi2WO6进行与实施例1相同的水中玫瑰红B的吸附性能测试和光催化性能测试,结果示于图5和图6中。
对比例3
根据与实施例1相同的方法制备复合材料,区别在于钨酸钠加入量为零。对制得的二元复合材料Bi/BiOBr进行与实施例1相同的水中玫瑰红B的吸附性能测试和光催化性能测试,结果示于图5和图6中。
对比例4
根据与实施例1相同的方法制备复合材料,区别在于用去离子水代替乙二醇溶剂,并且溴化钾加入量为零。对制得的Bi2WO6进行与实施例1相同的水中玫瑰红B的吸附性能测试和光催化性能测试,结果示于图5和图6中。
对比例5
根据与实施例1相同的方法制备复合材料,区别在于用去离子水代替乙二醇溶剂,并且钨酸钠加入量为零。对制得的BiOBr进行与实施例1相同的水中玫瑰红B的吸附性能测试和光催化性能测试,结果示于图5和图6中。
参见图5,在初始阶段,三元复合物对玫瑰红B的吸附速率较快,在接***衡时吸附速度变缓。对比钨酸铋Bi2WO6、溴氧化铋BiOBr、二元铋/钨酸铋复合物Bi/Bi2WO6、二元铋/溴氧化铋Bi/BiOBr复合物、三元铋/钨酸铋/碘氧化铋复合物Bi/Bi2WO6/BiOI以及三元铋-钨酸铋-溴氧化铋复合物 Bi/Bi2WO6/BiOBr可看出,铋-钨酸铋-溴氧化铋Bi/Bi2WO6/BiOBr的吸附性能最优异。
以铋-钨酸铋-溴氧化铋三元复合物作为光催化剂,它对水中玫瑰红B的光催化性能,如图6所示。吸附平衡后玫瑰红B还剩余53%,经过140min的光催化反应后,玫瑰红B被完全降解,溶液变为透明色。
进一步参见图6,对比钨酸铋、溴氧化铋、二元铋/钨酸铋复合物、二元铋/ 溴氧化铋复合物、三元铋/钨酸铋/碘氧化铋复合物和三元铋-钨酸铋-溴氧化铋复合物可看出,三元铋/钨酸铋/溴氧化铋复合物最先使玫瑰红B降解完全,具有优异的光催化性能。

Claims (1)

1.一种铋-钨酸铋-溴氧化铋三元复合物用于处理污水的应用,其特征在于,所述铋-钨酸铋-溴氧化铋三元复合物的制备包括以下步骤:
步骤1,将硝酸铋加入乙二醇中,搅拌均匀后得到溶液A;
步骤2,将钨酸钠和溴化钾加入乙二醇中,搅拌均匀后得到溶液B;
步骤3,将溶液B滴加到溶液A中,搅拌均匀后得到混合溶液;
步骤4,转移所述混合溶液至水热釜,进行溶剂热反应;
其中,所述混合溶液中,硝酸铋、钨酸钠和溴化钾的摩尔比为2:1:(0.5~5);
其中,所述铋-钨酸铋-溴氧化铋三元复合物具有纳米片层结构以及分布在所述纳米片层结构的纳米颗粒;
其中,所述铋-钨酸铋-溴氧化铋三元复合物具有60~100cm2/g的比表面积;
其中,所述纳米片层结构由溴氧化铋片层构成,所述纳米颗粒由钨酸铋颗粒和铋单质颗粒构成;
其中,所述铋-钨酸铋-溴氧化铋三元复合物对于玫瑰红B溶液具有良好的吸附和光催化性能;
其中,步骤4中,所述溶剂热反应的温度为120~220℃,反应时间为1~40h;
其中,步骤1中,溶液A中硝酸铋的浓度为0.1~1M;
其中,步骤2中,溶液B中钨酸钠的浓度为0.05~0.5M;
其中,步骤2中,溶液B中钨酸钠和溴化钾的摩尔比为1:(0.5~5)。
CN201910521073.8A 2019-06-17 2019-06-17 铋-钨酸铋-溴氧化铋三元复合物及其制备方法和应用 Active CN110237802B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910521073.8A CN110237802B (zh) 2019-06-17 2019-06-17 铋-钨酸铋-溴氧化铋三元复合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910521073.8A CN110237802B (zh) 2019-06-17 2019-06-17 铋-钨酸铋-溴氧化铋三元复合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110237802A CN110237802A (zh) 2019-09-17
CN110237802B true CN110237802B (zh) 2022-03-29

Family

ID=67887470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910521073.8A Active CN110237802B (zh) 2019-06-17 2019-06-17 铋-钨酸铋-溴氧化铋三元复合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110237802B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110639560B (zh) * 2019-10-09 2022-07-29 广东石油化工学院 一种复合卤氧化铋光催化剂及其制备方法和应用
CN110743536A (zh) * 2019-11-13 2020-02-04 盐城工学院 一种Bi-Bi2WO6可见光催化剂的制备方法及其应用
CN113083287B (zh) * 2021-04-29 2023-09-19 沈阳工业大学 纳米颗粒堆积片层结构铋与钨酸铋复合粉体及制备方法
CN113509942B (zh) * 2021-07-15 2023-10-27 辽宁大学 一种钨酸钴/铋/溴氧铋三元异质结复合材料及其制备方法和应用
CN114247452A (zh) * 2022-01-10 2022-03-29 山东农业大学 一种铋-硫化铋-钨酸铋复合光催化剂及其制备方法和应用
CN114377702B (zh) * 2022-01-15 2023-07-28 长三角(义乌)生态环境研究中心 一种高效污水处理剂及其制备方法和应用
CN114345380B (zh) * 2022-01-18 2023-08-01 西南交通大学 一种氯氧化铋/钨酸铋纳米催化剂及其制备方法和应用
CN115254150A (zh) * 2022-06-28 2022-11-01 天津城建大学 一种用于光电催化的Bi2WO6/BiOBr-Ag2O复合薄膜材料的制备方法
CN115722236A (zh) * 2022-09-22 2023-03-03 长沙理工大学 铁/溴氧化铋/钨酸铋复合光催化剂及其制备方法和应用
CN115634700A (zh) * 2022-10-11 2023-01-24 南昌航空大学 一种富Bi溴氧铋光催化剂及其合成方法及其应用
CN115825195A (zh) * 2022-11-04 2023-03-21 山东理工大学 一种基于钨酸铋/溴氧铋的生物传感器的构建及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2324913A1 (de) * 2009-10-22 2011-05-25 Basf Se Photokatalysator mit erhöhter Tageslichtaktivität
CN105080579B (zh) * 2015-08-05 2017-06-23 河南科技大学 一种具有异质结构的BiOBr/Bi2WO6复合光催化剂及其制备方法
CN109158116A (zh) * 2018-07-24 2019-01-08 南昌航空大学 一锅法原位还原制备Bi/BiOBr/rGO光催化剂的方法及其在降解抗生素中的应用
CN109550509B (zh) * 2018-12-11 2020-06-02 常州大学 一种Bi/BiOBr/RGO复合光催化剂的制备方法及其产品与应用
CN109759132A (zh) * 2019-02-20 2019-05-17 吉林建筑大学 复合光催化凝胶球的制备方法和复合光催化凝胶球

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis, Analysis, and Testing of BiOBr-Bi2WO6 Photocatalytic Heterojunction Semiconductors;Xiangchao Meng等;《International Journal of Photoenergy》;20151231;630476 *

Also Published As

Publication number Publication date
CN110237802A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
CN110237802B (zh) 铋-钨酸铋-溴氧化铋三元复合物及其制备方法和应用
Wu et al. Synthesis of hollow core-shell CdS@ TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB
Yang et al. InVO4/β-AgVO3 nanocomposite as a direct Z-scheme photocatalyst toward efficient and selective visible-light-driven CO2 reduction
Zhang et al. Synthesis of Ag2O/NaNbO3 pn junction photocatalysts with improved visible light photocatalytic activities
Bai et al. Photoanode of LDH catalyst decorated semiconductor heterojunction of BiVO4/CdS to enhance PEC water splitting efficiency
Xu et al. BiOCl decorated NaNbO3 nanocubes: a novel pn heterojunction photocatalyst with improved activity for ofloxacin degradation
Deng et al. Compositional regulation and modification of the host CdS for efficient photocatalytic hydrogen production: case study on MoS2 decorated Co0. 2Cd0. 8S nanorods
Hou et al. Lantern-like bismuth oxyiodide embedded typha-based carbon via in situ self-template and ion exchange–recrystallization for high-performance photocatalysis
CN107824207B (zh) 一种处理水体中孔雀石绿的磷酸银复合光催化剂的制备方法
CN110252353B (zh) 一种三元异质结构的BiOI/Bi/TiO2复合光催化材料及其制备与应用
Yang et al. Efficient H 2 evolution on Co 3 S 4/Zn 0.5 Cd 0.5 S nanocomposites by photocatalytic synergistic reaction
CN110368968B (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
Hu et al. Two-dimensional ZnO ultrathin nanosheets decorated with Au nanoparticles for effective photocatalysis
Li et al. Hollow cadmium sulfide tubes with novel morphologies for enhanced stability of the photocatalytic hydrogen evolution
Feng et al. Design and fabrication of polyaniline/Bi 2 MoO 6 nanocomposites for enhanced visible-light-driven photocatalysis
Mu et al. Bimetallic metal–organic frameworks-derived mesoporous CdxZn1− xS polyhedrons for enhanced photocatalytic hydrogen evolution
Cheng et al. Lollipop-shaped Co9S8/CdS nanocomposite derived from zeolitic imidazolate framework-67 for the photocatalytic hydrogen production
Duan et al. Enhanced photocatalytic degradation of organic pollutants using carbon nanotube mediated CuO and Bi2WO6 sandwich flaky structures
Yu et al. Construction of CoS/CeO2 heterostructure nanocages with enhanced photocatalytic performance under visible light
Huang et al. Fabrication of CuS-modified inverse opal g-C3N4 photocatalyst with enhanced performance of photocatalytic reduction of CO2
Yao et al. Solvothermal-assisted synthesis of biomass carbon quantum dots/bismuth oxyiodide microflower for enhanced photocatalytic activity
Yao et al. Effect of surface and internal Bi0 on the performance of the Bi2WO6 photocatalyst
Wang et al. Advancements in heterojunction, cocatalyst, defect and morphology engineering of semiconductor oxide photocatalysts
Shankar et al. A concise review: MXene-based photo catalytic and photo electrochemical water splitting reactions for the production of hydrogen
Qin et al. Strongly coupled interface facilitating charge separation to the improved visible light-driven hydrogen production on CdS@ polydopamine/NiS photocatalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant