CN110229367A - A kind of anisotropy insulating heat-conductive sheet material and preparation method thereof - Google Patents

A kind of anisotropy insulating heat-conductive sheet material and preparation method thereof Download PDF

Info

Publication number
CN110229367A
CN110229367A CN201910430426.3A CN201910430426A CN110229367A CN 110229367 A CN110229367 A CN 110229367A CN 201910430426 A CN201910430426 A CN 201910430426A CN 110229367 A CN110229367 A CN 110229367A
Authority
CN
China
Prior art keywords
conductive sheet
parts
carbon fiber
insulating heat
sheet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910430426.3A
Other languages
Chinese (zh)
Inventor
羊尚强
陈印
谢佑南
曹勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN HFC SHIELDING PRODUCTS CO Ltd
Original Assignee
SHENZHEN HFC SHIELDING PRODUCTS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN HFC SHIELDING PRODUCTS CO Ltd filed Critical SHENZHEN HFC SHIELDING PRODUCTS CO Ltd
Priority to CN201910430426.3A priority Critical patent/CN110229367A/en
Publication of CN110229367A publication Critical patent/CN110229367A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/695Flow dividers, e.g. breaker plates
    • B29C48/70Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Abstract

The invention discloses a kind of anisotropy insulating heat-conductive sheet materials, including thermally-conductive sheet, the raw material for preparing the anisotropy insulating heat-conductive sheet material includes at least flexible high molecular material, carbon fiber, ball-shaped micro powder and fire retardant, and the carbon fiber is orientated in the thickness direction of heat conductive sheet.The invention also discloses the preparation methods of the anisotropy insulating heat-conductive sheet material.The invention anisotropy insulating heat-conductive sheet material has included at least flexible high molecular material, carbon fiber, ball-shaped micro powder and fire retardant, so that random heat filling is blended in thermosetting flexible high molecular material, using shearing force fibrous heat filling is orientated in the flowing direction, is the heat conductive sheet of a kind of heating conduction and excellent insulation performance.

Description

A kind of anisotropy insulating heat-conductive sheet material and preparation method thereof
Technical field
The present invention relates to heat-conducting interface material and preparation technical fields, and in particular to a kind of insulating heat-conductive material and its system Preparation Method.
Background technique
With the fast development of data network, electric equipment products integrates electricity to intelligent and high speed, complication development Road densification will approach physics limit, and it is also increasing that this will lead to the heat that product facility generates in the process of running, heat Can not express delivery transfer scatter, affect the stability in use and service life of electronic product, therefore heat problem becomes electronic product Development primarily solves the problems, such as.
For high efficiency heat radiation, heat-conducting interface material is filled between semiconductor chip and radiator, radiator fan, in the market Conventional Heat Conduction Material needs the high filler loading capacity of ceramic powder then to obtain preferable heating conduction, then loses the soft of material Property and stickiness, and high filler loading capacity will lead to stability of material and the service life decline.Using heat filling in each of heating conduction The characteristic of anisotropy can also obtain preferable heat-conducting effect in the case where loading is little.Leading with anisotropic properties Hot filler has graphite, boron nitride, alumina whisker, ZnOw, carbon fiber etc..Thermally conductive system of the carbon fiber in machine direction If number can achieve 1500w/m.K. and fill a small amount of carbon fiber and be orientated carbon fiber along product thickness direction, not only Retain product flexible well, will also obtain excellent heating conduction.
There are some heat conductive sheets that super-high heat-conductive coefficient is obtained using carbon fiber orientation currently on the market, but due to Carbon fiber itself has good electric conductivity, causes product on-insulated, in application process can be with associated circuit board by voltage The risk of breakdown.
Summary of the invention
To solve the above problems, it is an object of the invention to mix and take with high score flexible high molecular material by carbon fiber To obtaining that a kind of flexible, thermal coefficient is high and the anisotropic thermal conductivity sheet material of insulation.
To achieve the above object, the present invention uses following scheme:
Anisotropy insulating heat-conductive sheet material, including thermally-conductive sheet prepare the original of the anisotropy insulating heat-conductive sheet material Material includes at least flexible high molecular material, carbon fiber, ball-shaped micro powder and fire retardant, thickness of the carbon fiber in heat conductive sheet Direction orientation.
As further embodiment, it is flexible high that raw material of the present invention includes at least 150-300 part in parts by weight Molecular material, 500-800 part carbon fiber, 1200-1800 parts of ball-shaped micro powders and 150-200 parts of fire retardants.
As further embodiment, flexible high molecular material of the present invention be liquid acrylic, epoxy resin, The mixing of one or more of polyurethane resin, unsaturated polyester resin, organic siliconresin.
As further embodiment, raw material of the present invention also includes 100-150 parts by weight of ethylene base silicone oil, the ethylene The viscosity of base silicone oil is 500-100000mpa.s.
As further embodiment, raw material of the present invention also includes 80-120 parts by weight dimethicone, 0.05- The delay inhibitor of 0.2 parts by weight, 3-6 parts by weight silicone oil containing H, 1-3 parts by weight platinum water catalyst.
As further embodiment, ball-shaped micro powder of the present invention is the compounding powder comprising aluminium oxide and silicate powder End, the average grain diameter of the ball-shaped micro powder powder are 0.1-5 μm.Preferably, the ball-shaped micro powder also includes a small amount of nitridation Boron, aluminium nitride, one or two kinds of above mixing in silicon carbide.
As further embodiment, carbon fiber of the present invention be surface insulation cladding polyacrylonitrile-based carbon fibre, One of asphalt base carbon fiber, viscose-based carbon fiber, phenolic aldehyde base carbon fibre, gas-phase growth of carbon fibre, the carbon fiber are put down Equal diameter is 2-30 μm, and length is 50-300 μm.
As further embodiment, thermally-conductive sheet surface of the present invention forms macromolecule by coating high-molecular coating Coating, it includes 80-120 parts of vinyl silicone oils, 40-65 parts of dimethicones, 0.05- that the high-molecular coating calculates by weight The delay inhibitor of 0.2 parts by weight, 2-5 parts of silicone oil containing H, 1-3 parts of platinum water catalyst, 150-200 parts of chain alkyl siloxanes. Preferably, thickness≤50 μm of polymeric coating layer of the present invention.In the present invention, the polymeric coating layer tool in thermally-conductive sheet Toughness, convenient for the assembly between heat-conducting pad and other component.
The present invention also provides a kind of preparation methods of anisotropy insulating heat-conductive sheet material to be made using shearing force It obtains fibrous heat filling to be orientated in the flowing direction, obtains a kind of anisotropy insulating heat-conductive sheet material haveing excellent performance.
A kind of preparation method of anisotropy insulating heat-conductive sheet material, including
The step of preparing thermal conductivity pre-feed: carbon fiber, ball-shaped micro powder and fire retardant are evenly mixed in flexible macromolecule In material, thermal conductivity pre-feed is prepared;
Flow velocity shears orientation step: above-mentioned thermal conductivity pre-feed is squeezed out by extruder and takes carbon fiber on flow velocity direction To, and be heating and curing in the slot that moves moulds that can be molded, form formed body;
Ultrasonic cutting step: above-mentioned formed body ultrasonic cutting mode is obtained along the flow velocity direction cutting that intersects vertically Obtain the heat conductive sheet that carbon fiber is orientated along thickness direction.
Further embodiment, preparation method of the present invention further include heat conductive sheet surface treatment step, thermal conductivity Sheet surface processing is by way of in thermally-conductive sheet surface coating high-molecular coating formation polymeric coating layer or by polishing Thermally-conductive sheet surface is polished smooth.
As further embodiment, in preparation method of the present invention after preparing thermal conductivity pre-feed step, flow velocity Before shearing orientation step, further includes the steps that the thermal conductivity pre-feed that will be uniformly mixed is placed and vacuumized in vacuum tank, vacuum tank Vacuum degree be≤- 0.09Mpa, the pumpdown time >=8min.
As further embodiment, the surrounding of die device of the present invention posts release film.Preferably, described release Film can choose but be not limited to one of PET film, PI film, oiliness paper, dripping film, that paper of day, antiadhesion barrier, skidding film.
As further embodiment, extruder of the present invention is screw-type extruder, and the nozzle of extruder is bee Nest nozzle;Sectional area≤81mm of single hole in the honeycomb nozzle2, wall thickness≤0.1mm, honeycomb nozzle length >= 5cm.Further, the honeycomb cross section of fluid channel size of the honeycomb nozzle is at least 30mm × 30mm, the shape of single hole It does not limit, can be circle, ellipse, rectangle, square, other polygons etc., wherein more preferably with equilateral symmetrical more Side shape or circle or ellipse.
As further embodiment, the extrusion channel of extruder of the present invention is tapered runner, the tapered runner One part flow arrangement, honeycomb nozzle end and the mobile mould molded are at least installed with honeycomb nozzle joint Has slot connection, the end of the slot that moves moulds is equipped with the limiter that control mold slots move back distance.Specifically, removable dynamic model Tool slot one end is nested honeycomb nozzle end.In this scenario, using honeycomb nozzle, carbon fiber can be increased in runner It is orientated possibility, removable mold slots one end is connected to honeycomb nozzle end, so that pre-feed extruded velocity and moving back speed Unanimously, reduce interference of the air in die cavity, mold the molding that is heating and curing in removable mold slots.
As further embodiment, in flow velocity shearing orientation step of the present invention, it is heating and curing roasting using blowing-type Case, the temperature setting of oven are 80-120 DEG C, baking time 4-8H.
The beneficial effects of the present invention are:
1. anisotropy insulating heat-conductive sheet material of the present invention has included at least flexible high molecular material, carbon fiber, Ball-shaped micro powder and fire retardant, so that random heat filling is blended in thermosetting flexible high molecular material, threadiness is thermally conductive to be filled out Material is orientated in the flowing direction, is the heat conductive sheet of a kind of heating conduction and excellent insulation performance;
2. preparation method of the present invention utilizes shearing force, so that fibrous heat filling takes in the flowing direction To obtaining good heating conduction in flow velocity direction after so that thermally conductive prepared material is heating and curing, obtain a kind of carbon fiber by slice Tie up the insulating heat-conductive sheet material being orientated in thickness direction.
Specific embodiment
The technical scheme in the embodiments of the invention will be clearly and completely described below, it is clear that described implementation Example is only a part of the embodiment of the present invention, instead of all the embodiments.Based on the embodiments of the present invention, this field is common Technical staff's all other embodiment obtained without creative efforts belongs to the model that the present invention protects It encloses.
Anisotropy insulating heat-conductive sheet material, including thermally-conductive sheet prepare the original of the anisotropy insulating heat-conductive sheet material Material includes at least flexible high molecular material, carbon fiber, ball-shaped micro powder and fire retardant, thickness of the carbon fiber in heat conductive sheet Direction orientation.
As further embodiment, it is flexible high that raw material of the present invention includes at least 150-300 part in parts by weight Molecular material, 500-800 part carbon fiber, 1200-1800 parts of ball-shaped micro powders and 150-200 parts of fire retardants.
As further embodiment, flexible high molecular material of the present invention can choose but be not limited to liquid propene The mixing of one or more of acid resin, epoxy resin, polyurethane resin, unsaturated polyester resin, organic siliconresin.It is excellent Choosing, select organic siliconresin.The fire retardant is aluminium hydroxide, magnesium hydroxide, phosphoric acid flame retardant, a kind of in antimony oxide Or two or more mixing, preferred aluminium hydroxide, the average grain diameter of aluminium hydroxide are 0.1-5 μm in the present invention.
As further embodiment, raw material of the present invention also includes 100-150 parts by weight of ethylene base silicone oil, the ethylene The viscosity of base silicone oil is 500-100000mpa.s.
As further embodiment, raw material of the present invention also includes 80-120 parts by weight dimethicone, 0.05- 0.2 parts by weight postpone inhibitor, 3-6 parts by weight silicone oil containing H, 1-3 parts by weight platinum water catalyst.
As further embodiment, ball-shaped micro powder of the present invention is the compounding powder comprising aluminium oxide and silicate powder End, the average grain diameter of the ball-shaped micro powder powder are 0.1-5 μm.Preferably, the ball-shaped micro powder also includes a small amount of nitridation Boron, aluminium nitride, one or two kinds of above mixing in silicon carbide.
As further preferred scheme, carbon fiber of the present invention is the polyacrylonitrile-radical carbon fiber of surface insulation cladding One of dimension, asphalt base carbon fiber, viscose-based carbon fiber, phenolic aldehyde base carbon fibre, gas-phase growth of carbon fibre, the carbon fiber Average diameter is 2-30 μm, and length is 50-300 μm.
Carbon fiber surface insulating wrapped technique employed in the present invention is as follows:
Carbon fiber surface activation step: being heat-treated carbon fiber base material surface using Muffle furnace, 500-1000 DEG C, place Selection of time 10h is managed, the activity on carbon fiber base material surface, the carbon fiber activated are enhanced;
Formed insulating coating the step of: by after above-mentioned activation carbon fiber and ethyl orthosilicate, ethyl alcohol and catalyst according to 30~100g of carbon fiber, 5~200ml of ethyl orthosilicate, 100~500ml of ethyl alcohol, 10% 10~100ml of Ammonia, It is heated to 50 DEG C on warm table, is uniformly mixed, so that carbon fiber surface gradually forms one layer of uniform and stable SiO2Absolutely Edge coating obtains SiO after suction filtration2The carbon fiber of insulating wrapped;
Baking procedure: the carbon fiber of above-mentioned insulating wrapped is gone in oven and is toasted.
It in above-mentioned baking procedure, is toasted using segmented, 50~120 DEG C of first stage baking temperature, the time is 1~3h, Preferred temperature is 100 DEG C;Second stage baking temperature is 200~300 DEG C, toasts 2~4h, and preferred temperature is 250 DEG C.
As further embodiment, thermally-conductive sheet surface of the present invention forms macromolecule by coating high-molecular coating Coating, the high-molecular coating calculate by weight including 80-120 parts of vinyl silicone oils, 40-65 parts of dimethicones, 0.05-0.2 parts by weight postpone inhibitor, 2-5 parts of silicone oil containing H, 1-3 parts of platinum water catalyst, 150-200 parts of chain alkyl silicon oxygen Alkane.The chain alkyl siloxanes added in high-molecular coating has the effect of heated volatilization, is conducive to increase polymeric coating layer Viscosity.Further, in order to obtain better heat-conducting effect, it is micro- that a small amount of spherical shape can also be added in the high-molecular coating Powder, specific additive amount are that calculating is 200-450 parts by weight, and the average grain diameter of the ball-shaped micro powder is 0.1-5 μm.
As further embodiment, thickness≤50 μm of polymeric coating layer of the present invention.
The present invention also provides a kind of preparation methods of anisotropy insulating heat-conductive sheet material to be made using shearing force It obtains fibrous heat filling to be upwardly oriented in flow velocity side, obtains a kind of anisotropy insulating heat-conductive sheet material haveing excellent performance.
A kind of preparation method of anisotropy insulating heat-conductive sheet material, including
The step of preparing thermal conductivity pre-feed: carbon fiber, ball-shaped micro powder and fire retardant are evenly mixed in flexible macromolecule In material, thermal conductivity pre-feed is prepared;
Flow velocity shears orientation step: above-mentioned thermal conductivity pre-feed is squeezed out by extruder and takes carbon fiber on flow velocity direction To, and be heating and curing in the slot that moves moulds that can be molded, form formed body;
Ultrasonic cutting step: above-mentioned formed body ultrasonic cutting mode is obtained along the flow velocity direction cutting that intersects vertically Obtain the heat conductive sheet that carbon fiber is orientated along thickness direction.
Further embodiment, preparation method of the present invention further include heat conductive sheet surface treatment step, thermal conductivity Sheet surface processing is by way of in thermally-conductive sheet surface coating high-molecular coating formation polymeric coating layer or by polishing Thermally-conductive sheet surface is polished smooth.
As further embodiment, in preparation method of the present invention after preparing thermal conductivity pre-feed step, flow velocity Before shearing orientation step, further includes the steps that the thermal conductivity pre-feed that will be uniformly mixed is placed and vacuumized in vacuum tank, vacuum tank Vacuum degree be≤- 0.09Mpa, the pumpdown time >=8min.
As further embodiment, the surrounding of die device of the present invention posts release film.
As further embodiment, extruder of the present invention is screw-type extruder, and the nozzle of extruder is bee Nest nozzle;Sectional area≤81mm of single hole in the honeycomb nozzle2, wall thickness≤0.1mm, honeycomb nozzle length >= 5cm。
As further embodiment, the extrusion channel of extruder of the present invention is tapered runner, the tapered runner One part flow arrangement, honeycomb nozzle end and the mobile mould molded are at least installed with honeycomb nozzle joint Has slot connection, the end of the slot that moves moulds is equipped with the limiter that control mold slots move back distance.
As further embodiment, in flow velocity shearing orientation step of the present invention, it is heating and curing roasting using blowing-type Case, the temperature setting of oven are 80-120 DEG C, baking time 4-8H.
Further, in ultrasonic cutting step, the vibration frequency > 20KHz of the ultrasonic cutting machine, knife rest is downward Movement speed < 10mm/min.
It is specific embodiment of the present invention below, in the following embodiments, used raw material, equipment etc. come from the present invention Outside particular determination, it can be obtained by buying pattern.
In the following embodiments, carbon fiber of the present invention is prepared by the following:
Carbon fiber surface activation step: being heat-treated carbon fiber base material surface using Muffle furnace, 500 DEG C, when processing Between select 12h, enhance the activity on carbon fiber base material surface, the carbon fiber activated;
The step of forming insulating coating: weighing the above-mentioned carbon fiber of 50g and be placed in beaker, measure 80ml ethyl orthosilicate, 400ml dehydrated alcohol is poured into ethyl orthosilicate and dehydrated alcohol in beaker by the drainage of glass bar, with agitating paddle into Row stirring, whipping process are heated on warm table, and heating platen temperature is set as 50 DEG C, mixing speed 1500rpm, stirring Time is 4h, when carbon fiber is evenly mixed in solution, uses rubber head dropper that ammonium hydroxide is added dropwise as catalyst, the additive amount of ammonium hydroxide For 100ml, time for adding is controlled in 40min, and in whipping process, solution ph maintains 10 or so, when pH value is greater than 10 When, acetic acid is added dropwise and is adjusted, after stirring terminates, carbon fiber mixed solution is filtered with Vacuum filtration device, takes out During filter, the continuous ethanol solution that is added cleans carbon fiber, until the solution after filtering obtains SiO at neutrality2 The carbon fiber of insulating wrapped;
Baking procedure: by above-mentioned SiO2The carbon fiber of insulating wrapped, which is gone in oven, to be toasted, and is toasted using segmented, First stage is in the oven for placing it in temperature setting and being 50 DEG C, and baking time 3h is removed and is attached on carbon fiber Ethyl alcohol and moisture evaporate, second stage is to place it in Muffle furnace to be calcined, temperature setting be 300 DEG C, forge The burning time is 2h, forms one layer of fine and close, stable SiO in carbon fiber surface2Insulating coating.
Embodiment 1
A kind of anisotropy insulating heat-conductive sheet material, including thermally-conductive sheet, the thermally-conductive sheet surface pass through coating high score Sub- coating forms polymeric coating layer, and the raw material for preparing the anisotropy insulating heat-conductive sheet material includes at least flexible macromolecule material Material, carbon fiber, ball-shaped micro powder and fire retardant, the carbon fiber are orientated in the thickness direction of heat conductive sheet;
Preparation method is as follows:
The step of preparing thermal conductivity pre-feed: will be respectively by 15 parts by weight methyl vinyl silicone rubbers, 100 parts by weight viscosity For the vinyl silicone oil of 800mpa.s, 80 parts by weight dimethicones, 3 parts by weight silicone oil containing H, 1 parts by weight platinum water catalyst, 1200 parts by weight ball-shaped micro powders, 150 parts by weight aluminium hydroxides, 500 parts by weight of carbon fibers are uniformly mixed by way of mill, are obtained To thermal conductivity pre-feed;
Flow velocity shears orientation step: it is -0.09Mpa that uniformly mixed thermal conductivity pre-feed, which is placed on vacuum degree, it is true Pumpdown time 10min in empty van is squeezed out by extruder and is upwardly oriented carbon fiber in flow velocity side, and extruded velocity is less than 20rpm/min, and 80 DEG C of solidifications are heated in the slot that moves moulds that can be molded, formed body is formed, wherein the extruder is Screw-type extruder, the nozzle of extruder are honeycomb nozzle;The single aperture of honeycomb nozzle in the honeycomb nozzle Area is 10mm2, length 10cm, wall thickness 0.1mm;
Ultrasonic cutting step: above-mentioned formed body ultrasonic cutting mode is obtained along the flow velocity direction cutting that intersects vertically The heat conductive sheet that be orientated along thickness direction of carbon fiber, wherein the vibration frequency of ultrasonic cutting machine is 25KHz, knife rest to Lower movement speed 8mm/min;
Coat polymeric coating layer step: by 80 parts by weight of ethylene base silicone oil, 40 parts by weight dimethicones, 0.05 parts by weight Postpone inhibitor, 2 parts by weight silicone oil containing H, 1 parts by weight platinum water catalyst, the stirring of 150 parts by weight chain alkyl siloxanes are equal It is even, obtain high-molecular coating, uniformly coated high-molecular coating in thermally-conductive sheet with coating machine, coating layer thickness less than 50 μm, Then it puts into 150 DEG C of oven, heating 10min solidification obtains surface and has sticking heat conductive sheet.
Embodiment 2
A kind of anisotropy insulating heat-conductive sheet material, including thermally-conductive sheet, the thermally-conductive sheet surface pass through coating high score Sub- coating forms polymeric coating layer, and the raw material for preparing the anisotropy insulating heat-conductive sheet material includes at least flexible macromolecule material Material, carbon fiber, ball-shaped micro powder and fire retardant, the carbon fiber are orientated in the thickness direction of heat conductive sheet;
Preparation method is as follows:
The step of preparing thermal conductivity pre-feed: will be respectively by 15 parts by weight methyl vinyl silicone rubbers, 150 parts by weight viscosity Postpone inhibitor, 4.0 parts by weight for the vinyl silicone oil, 120 parts by weight dimethicones, 0.08 parts by weight of 100000mpa.s Silicone oil containing H, 3 parts by weight platinum water catalyst, 1200 parts by weight ball-shaped micro powders, 150 parts by weight aluminium hydroxides, 850 parts by weight carbon Fiber is uniformly mixed by way of mill, obtains thermal conductivity pre-feed;
Flow velocity shears orientation step: it is -0.09Mpa that uniformly mixed thermal conductivity pre-feed, which is placed on vacuum degree, it is true Pumpdown time 10min in empty van is squeezed out by extruder and is upwardly oriented carbon fiber in flow velocity side, and extruded velocity is less than 20rpm/min, and 80 DEG C of solidifications are heated in the slot that moves moulds that can be molded, formed body is formed, wherein the extruder is Screw-type extruder, the nozzle of extruder are honeycomb nozzle;The single aperture of honeycomb nozzle in the honeycomb nozzle Area is 10mm2, length 10cm, wall thickness 0.1mm;
Ultrasonic cutting step: above-mentioned formed body ultrasonic cutting mode is obtained along the flow velocity direction cutting that intersects vertically The heat conductive sheet that be orientated along thickness direction of carbon fiber, wherein the vibration frequency of ultrasonic cutting machine is 25KHz, knife rest to Lower movement speed 8mm/min;
Coat polymeric coating layer step: by 120 parts by weight of ethylene base silicone oil, 65 parts by weight dimethicones, 0.05 weight Part delay inhibitor, 5 parts by weight silicone oil containing H, 3 parts by weight platinum water catalyst, the stirring of 200 parts by weight chain alkyl siloxanes are equal It is even, obtain high-molecular coating, uniformly coated high-molecular coating in thermally-conductive sheet with coating machine, coating layer thickness less than 50 μm, Then it puts into 150 DEG C of oven, heating 10min solidification obtains surface and has sticking heat conductive sheet.
Embodiment 3
On the basis of embodiment 1, coating polymeric coating layer step is changed into and polishing light is carried out to heat conductive sheet surface Sliding, the mode of surface polishing is not limited to sand polishing, sander polishing, brown paper polishing, silicon carbide ceramics porous grinding wheel Deng.
Embodiment 4
On the basis of example 1, using the vinyl silicone oil of viscosity 10000mpa.s, the entirety of thermal conductivity pre-feed is adjusted Viscosity carries out operation by the identical step with example 1 and obtains heat conductive sheet.
Embodiment 5-8
On the basis of example 1, the single aperture area of honeycomb nozzle is adjusted, is walked according to the identical operation of embodiment 1 Rapid to obtain heat conductive sheet, the single aperture area for the honeycomb nozzle that embodiment 5-8 is respectively adopted is 4mm2、8mm2、30mm2、 60mm2
Embodiment 9-12
On the basis of embodiment 1, the thickness for adjusting surface polymeric coating layer, according to the identical operating procedure of embodiment 1 Heat conductive sheet is obtained, the thickness of polymeric coating layer is respectively 20 μm, 30 μm, 80 μm, 110 μm in embodiment 9-12.
The performance of the thermally-conductive sheet of above-described embodiment 1-12 is detected respectively, the project of detection include thermal coefficient, Hardness, breakdown voltage, surface viscosity.Concrete outcome is referring to table 1.
Table 1: the performance comparison of the thermally-conductive sheet of embodiment 1-12
From the result of table 1 it can be concluded that draw a conclusion
1) viscosity of pre-feed is smaller known to finally obtained heat conductive sheet thermal coefficient result, more advantageous carbon fiber It is upwardly oriented in flow velocity side, so that higher thermal coefficient is obtained, and when the vinyl silicone oil of use 10000mpa.s, thermally conductive system Number is influenced by viscosity number and is declined.
2) dosage of carbon fiber will affect the orientation of heat conductive sheet, when the promotion of carbon fiber packing ratio, also result in preparation The overall viscosity of material is also promoted, and hinders orientation effect of the carbon fiber in honeycomb nozzle instead.
3) the single aperture area of honeycomb nozzle will affect the thermal coefficient of heat conductive sheet, specific manifestation are as follows: work as bee The single aperture area < 10mm of nest nozzle2, observed in 2.5 dimension image instruments, the whole sequence of carbon fiber is good, thermally conductive system Number influences little;As the single aperture area > 50mm of honeycomb nozzle2When, it is observed in 2.5 dimension image instruments, it is only adherent Position carbon fiber sorts more chaotic, thermal coefficient is different along flow velocity direction marshalling closer to centre carbon fiber Degree decline.
4) thickness of the polymeric coating layer on heat conductive sheet surface also has an impact to thermal coefficient, specific manifestation are as follows: works as table Finishing coat thickness influences thermal coefficient little less than 50 μm;When 100 μm of coating layer thickness >, the thermally conductive system of heat conductive sheet Number rapid drawdown.
A kind of anisotropy insulating heat-conductive sheet material is provided for the embodiments of the invention above to be described in detail, this Apply that a specific example illustrates the principle and implementation of the invention in text, the explanation of above example is only intended to Help understands core of the invention thought;At the same time, for those skilled in the art, it is according to the thought of the present invention and square Method, there will be changes in the specific implementation manner and application range, in conclusion the content of the present specification should not be construed as pair Limitation of the invention.

Claims (16)

1. anisotropy insulating heat-conductive sheet material, including thermally-conductive sheet, which is characterized in that prepare the anisotropy insulating heat-conductive The raw material of sheet material includes at least flexible high molecular material, carbon fiber, ball-shaped micro powder and fire retardant, and the carbon fiber is in thermal conductivity piece The thickness direction of material is orientated.
2. anisotropy insulating heat-conductive sheet material according to claim 1, which is characterized in that the raw material include at least with 150-300 part flexible high molecular material, 500-800 parts of carbon fibers, 1200-1800 parts of ball-shaped micro powders and the 150- of parts by weight meter 200 parts of fire retardants.
3. anisotropy insulating heat-conductive sheet material according to claim 1, which is characterized in that the flexible high molecular material For one or both of liquid acrylic, epoxy resin, polyurethane resin, unsaturated polyester resin, organic siliconresin The above mixing.
4. anisotropy insulating heat-conductive sheet material according to claim 2, which is characterized in that the raw material also includes 100- 150 parts by weight of ethylene base silicone oil, the viscosity of the vinyl silicone oil are 500-100000mpa.s.
5. anisotropy insulating heat-conductive sheet material according to claim 3, which is characterized in that the raw material also includes 80- The delay inhibitor of 120 parts by weight dimethicones, 0.05-0.2 parts by weight, 3-6 parts by weight silicone oil containing H, 1-3 parts by weight platinum Water catalyst.
6. according to the described in any item anisotropy insulating heat-conductive sheet materials of claim 2-5, which is characterized in that the spherical shape is micro- Powder is the compounding powder comprising aluminium oxide and silicate powder, and the average grain diameter of the ball-shaped micro powder powder is 0.1-5 μm.
7. anisotropy insulating heat-conductive sheet material according to claim 1-5, which is characterized in that the carbon fiber Polyacrylonitrile-based carbon fibre, asphalt base carbon fiber, viscose-based carbon fiber, phenolic aldehyde base carbon fibre, gas phase for surface insulation cladding One of grown carbon fiber, the average diameter of the carbon fiber are 2-30 μm, and length is 50-300 μm.
8. anisotropy insulating heat-conductive sheet material according to claim 1-5, which is characterized in that the thermally conductive sheet Material surface forms polymeric coating layer by coating high-molecular coating, and it includes 80-120 parts that the high-molecular coating calculates by weight The delay inhibitor of vinyl silicone oil, 40-65 part dimethicone, 0.05-0.2 parts by weight, 2-5 parts of silicone oil containing H, 1-3 parts of platinum Jinsui River catalyst, 150-200 parts of chain alkyl siloxanes.
9. anisotropy insulating heat-conductive sheet material according to claim 8, which is characterized in that the thickness of the polymeric coating layer ≤ 50 μm of degree.
10. a kind of preparation method of anisotropy insulating heat-conductive sheet material as described in claim 1, which is characterized in that including
The step of preparing thermal conductivity pre-feed: carbon fiber, ball-shaped micro powder and fire retardant are evenly mixed in flexible high molecular material In, prepare thermal conductivity pre-feed;
Flow velocity shears orientation step: above-mentioned thermal conductivity pre-feed is squeezed out by extruder and is upwardly oriented carbon fiber in flow velocity side, And be heating and curing in the slot that moves moulds that can be molded, form formed body;
Ultrasonic cutting step: by above-mentioned formed body ultrasonic cutting mode, carbon is obtained along the flow velocity direction cutting that intersects vertically The heat conductive sheet that fiber is orientated along thickness direction.
11. preparation method according to claim 10, which is characterized in that after preparing thermal conductivity pre-feed step, flow velocity Before shearing orientation step, further includes the steps that the thermal conductivity pre-feed that will be uniformly mixed is placed and vacuumized in vacuum tank, vacuum tank Vacuum degree be≤- 0.09Mpa, the pumpdown time >=8min.
12. preparation method according to claim 10, which is characterized in that the surrounding of the die device posts release film.
13. preparation method according to claim 10, which is characterized in that the extruder is screw-type extruder, is squeezed out The nozzle of machine is honeycomb nozzle;Sectional area≤81mm of single hole in the honeycomb nozzle2, wall thickness≤0.1mm, bee Nest nozzle length >=5cm.
14. preparation method according to claim 13, which is characterized in that the extrusion channel of the extruder is taper flow A part flow arrangement, honeycomb nozzle end and institute are at least installed in road, the tapered runner and honeycomb nozzle joint The slot connection that moves moulds that can be molded is stated, the end of the slot that moves moulds is equipped with the limit that control mold slots move back distance Device.
15. preparation method according to claim 10, which is characterized in that flow velocity is sheared in orientation step, is heating and curing and is adopted With blowing-type oven, the temperature setting of oven is 80-120 DEG C, baking time 4-8H.
16. the described in any item preparation methods of 0-15 according to claim 1, which is characterized in that further include heat conductive sheet surface Processing step, heat conductive sheet surface treatment by thermally-conductive sheet surface coat high-molecular coating formed polymeric coating layer or It is to be polished smooth thermally-conductive sheet surface by polishing mode.
CN201910430426.3A 2019-05-22 2019-05-22 A kind of anisotropy insulating heat-conductive sheet material and preparation method thereof Pending CN110229367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910430426.3A CN110229367A (en) 2019-05-22 2019-05-22 A kind of anisotropy insulating heat-conductive sheet material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910430426.3A CN110229367A (en) 2019-05-22 2019-05-22 A kind of anisotropy insulating heat-conductive sheet material and preparation method thereof

Publications (1)

Publication Number Publication Date
CN110229367A true CN110229367A (en) 2019-09-13

Family

ID=67861485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910430426.3A Pending CN110229367A (en) 2019-05-22 2019-05-22 A kind of anisotropy insulating heat-conductive sheet material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN110229367A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410939A (en) * 2020-04-09 2020-07-14 清华大学深圳国际研究生院 Heat-conducting phase-change energy storage sheet and preparation method thereof
CN111500070A (en) * 2020-04-14 2020-08-07 南方科技大学 Carbon fiber oriented thermal interface material and preparation method thereof
CN112195016A (en) * 2020-09-21 2021-01-08 深圳市鸿富诚屏蔽材料有限公司 Heat-conducting insulating carbon fiber silica gel gasket and preparation method thereof
CN112712944A (en) * 2020-12-24 2021-04-27 武汉肯达科讯科技有限公司 High-thermal-conductivity insulating gasket and preparation method thereof
CN112873782A (en) * 2021-01-05 2021-06-01 苏州熵流科技有限公司 Method and device for manufacturing carbon type heat conducting fin
CN113088205A (en) * 2021-04-01 2021-07-09 固德威电源科技(广德)有限公司 Manufacturing process of high-thermal-conductivity silica gel insulating sheet
CN114228205A (en) * 2021-12-06 2022-03-25 深圳联腾达科技有限公司 Process for simply preparing oriented ordered carbon fiber heat-conducting composite material in laboratory
CN115073067A (en) * 2021-03-16 2022-09-20 湖南大学 High-heat-conductivity material and preparation method thereof
CN115704184A (en) * 2021-08-12 2023-02-17 湖南碳导新材料科技有限公司 Preparation method of insulating heat-conducting carbon fiber for thermal interface material
CN115716993A (en) * 2022-09-30 2023-02-28 湖南大学 Oriented high-thermal-conductivity wave-absorbing plate and preparation method thereof
CN116023698A (en) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 Method for improving surface heat conductivity of organic polymer material, organic polymer material and application
CN116496764A (en) * 2023-06-28 2023-07-28 有研工程技术研究院有限公司 Thermal interface material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150004365A1 (en) * 2011-12-28 2015-01-01 Toyobo Co., Ltd. Insulating and thermally conductive sheet
CN107396610A (en) * 2017-08-15 2017-11-24 深圳市鸿富诚屏蔽材料有限公司 Anisotropy insulating heat-conductive pad and its manufacture method
CN107851623A (en) * 2015-06-25 2018-03-27 保力马科技(日本)株式会社 Thermally conductive sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150004365A1 (en) * 2011-12-28 2015-01-01 Toyobo Co., Ltd. Insulating and thermally conductive sheet
CN107851623A (en) * 2015-06-25 2018-03-27 保力马科技(日本)株式会社 Thermally conductive sheet
CN107396610A (en) * 2017-08-15 2017-11-24 深圳市鸿富诚屏蔽材料有限公司 Anisotropy insulating heat-conductive pad and its manufacture method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410939B (en) * 2020-04-09 2021-10-22 清华大学深圳国际研究生院 Heat-conducting phase-change energy storage sheet and preparation method thereof
CN111410939A (en) * 2020-04-09 2020-07-14 清华大学深圳国际研究生院 Heat-conducting phase-change energy storage sheet and preparation method thereof
CN111500070A (en) * 2020-04-14 2020-08-07 南方科技大学 Carbon fiber oriented thermal interface material and preparation method thereof
CN112195016A (en) * 2020-09-21 2021-01-08 深圳市鸿富诚屏蔽材料有限公司 Heat-conducting insulating carbon fiber silica gel gasket and preparation method thereof
CN112195016B (en) * 2020-09-21 2021-12-24 深圳市鸿富诚屏蔽材料有限公司 Heat-conducting insulating carbon fiber silica gel gasket and preparation method thereof
CN112712944A (en) * 2020-12-24 2021-04-27 武汉肯达科讯科技有限公司 High-thermal-conductivity insulating gasket and preparation method thereof
CN112712944B (en) * 2020-12-24 2022-04-08 武汉肯达科讯科技有限公司 High-thermal-conductivity insulating gasket and preparation method thereof
CN112873782A (en) * 2021-01-05 2021-06-01 苏州熵流科技有限公司 Method and device for manufacturing carbon type heat conducting fin
CN115073067A (en) * 2021-03-16 2022-09-20 湖南大学 High-heat-conductivity material and preparation method thereof
CN113088205A (en) * 2021-04-01 2021-07-09 固德威电源科技(广德)有限公司 Manufacturing process of high-thermal-conductivity silica gel insulating sheet
CN115704184A (en) * 2021-08-12 2023-02-17 湖南碳导新材料科技有限公司 Preparation method of insulating heat-conducting carbon fiber for thermal interface material
CN116023698A (en) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 Method for improving surface heat conductivity of organic polymer material, organic polymer material and application
CN116023698B (en) * 2021-10-27 2024-03-26 中国石油化工股份有限公司 Method for improving surface heat conductivity of organic polymer material, organic polymer material and application
CN114228205A (en) * 2021-12-06 2022-03-25 深圳联腾达科技有限公司 Process for simply preparing oriented ordered carbon fiber heat-conducting composite material in laboratory
CN115716993B (en) * 2022-09-30 2024-03-01 湖南大学 Oriented high-heat-conductivity wave absorbing plate and preparation method thereof
CN115716993A (en) * 2022-09-30 2023-02-28 湖南大学 Oriented high-thermal-conductivity wave-absorbing plate and preparation method thereof
CN116496764A (en) * 2023-06-28 2023-07-28 有研工程技术研究院有限公司 Thermal interface material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN110229367A (en) A kind of anisotropy insulating heat-conductive sheet material and preparation method thereof
CN103764733B (en) Method for producing thermally conductive sheet
CN109354874A (en) A kind of preparation of new type silicone rubber heat-conducting pad and cutting process
US8247528B2 (en) Composite material and method for making the same
CN106433108B (en) A method of its progress 3D printing of high temperature resistant nylon silk material for 3D printing and its preparation method and application
CN103214848A (en) Phase change heat-conducting thermal silicone grease composition for central processing unit (CPU) radiating and preparation method thereof
CN104788969B (en) Organosilicon heat conductive insulating composition and heat-conducting insulation material
CN111500070A (en) Carbon fiber oriented thermal interface material and preparation method thereof
CN112195016B (en) Heat-conducting insulating carbon fiber silica gel gasket and preparation method thereof
CN107787056A (en) A kind of high IR transmitting Electric radiant Heating Film based on graphene and preparation method thereof
CN109809824A (en) A kind of photocuring ceramic slurry and quick molding method
CN105273680B (en) A kind of two-component heat conductive silica gel sheet material and preparation method thereof and equipment
CN107815114A (en) A kind of flexible compound graphite-based material for possessing high thermal conductivity energy and preparation method thereof
Tang et al. Synergetic enhancement of thermal conductivity in the silica-coated boron nitride (SiO 2@ BN)/polymethyl methacrylate (PMMA) composites
CN110104620A (en) A method of aluminum nitride nanometer powder is prepared using sol-gel method
CN114106564B (en) Oriented heat conduction gel, preparation method and application thereof
JP5749485B2 (en) Alumina fiber pulverized product, method for producing the same, and resin composition using the same
CN104163016A (en) High-heat-conductivity high-compression wet-viscous-state heat-conducting gasket and preparation thereof
CN100526386C (en) preparation process of thermally conductive and electrically insulating silicone rubber composite material
CN113416510B (en) Epoxy resin pouring sealant and preparation method thereof
CN109337291B (en) Surface-modified graphene-carbon nitride-epoxy resin thermal interface material and preparation method thereof
CN105255154A (en) Method for preparing thermosetting-resin-based heat conduction composite
CN107573446A (en) Boron nitride nanosheet and carbopol gel composite heat interfacial material and preparation method
CN106272117B (en) A kind of resinoid bond cutting blade and preparation method thereof
CN109627783A (en) A kind of heat conductive silica gel of Specific gravity and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 518103 floor 1, 2 and 3, building C, No. 7, Fuyong East Avenue, Fenghuang community, Fuyong street, Bao'an District, Shenzhen, Guangdong Province

Applicant after: Shenzhen hongfucheng New Material Co.,Ltd.

Address before: 518103 south, first floor, second and third floor, building C, zone 0a-04, Fenghuang third industrial zone, Fuyong street, Bao'an District, Shenzhen, Guangdong Province

Applicant before: SHENZHEN HFC SHIELDING PRODUCTS Co.,Ltd.

CB02 Change of applicant information