CN110224592B - 多相临界导通功率变换器及其控制方法 - Google Patents

多相临界导通功率变换器及其控制方法 Download PDF

Info

Publication number
CN110224592B
CN110224592B CN201910512285.XA CN201910512285A CN110224592B CN 110224592 B CN110224592 B CN 110224592B CN 201910512285 A CN201910512285 A CN 201910512285A CN 110224592 B CN110224592 B CN 110224592B
Authority
CN
China
Prior art keywords
signal
current
circuit
phase
multiphase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910512285.XA
Other languages
English (en)
Other versions
CN110224592A (zh
Inventor
沈志远
姚凯卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Sili Microelectronics Technology Co ltd
Original Assignee
Nanjing Sili Microelectronics Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Sili Microelectronics Technology Co ltd filed Critical Nanjing Sili Microelectronics Technology Co ltd
Priority to CN201910512285.XA priority Critical patent/CN110224592B/zh
Publication of CN110224592A publication Critical patent/CN110224592A/zh
Priority to US16/894,815 priority patent/US11581812B2/en
Application granted granted Critical
Publication of CN110224592B publication Critical patent/CN110224592B/zh
Priority to US18/086,874 priority patent/US11942867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • H02M1/0845Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system digitally controlled (or with digital control)
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种多相临界导通功率变换器及其控制方法,将单相临界导通变换器推广至多相,通过随着所述负载电流的变化,控制多个功率级电路的使能状态,使得在负载电流变化时,开关频率能够维持在预定的范围内。解决了在重载时,单相临界导通模式变换器工作频率低,导通电流大的缺点;同时,也解决了多相临界导通模式变换器在轻载时,工作频率变高,效率变低的缺点。同时,在单相轻载时,通过电流断续模式降低了单相变换器的工作频率,使得多相变换器可以在整个负载范围内均能保持高效运行。

Description

多相临界导通功率变换器及其控制方法
技术领域
本发明涉及一种电力电子技术,更具体地说,涉及一种多相临界导通功率变换器。
背景技术
随着CPU、GPU、以及AI芯片的发展,需要低压、大电流、高效率、小体积的核心供电电路。小型化带来的问题是开关频率的上升,开关损耗的上升,效率的下降。
电流临界导通的工作方式使得功率变换器的上管可以实现零电压开通,降低了导通损耗,从而使得功率变换器在相同效率的条件下,可以工作在更高的开关频率。但是由于电流临界导通模式下,开关频率随着负载变化范围较宽,不利于全负载范围内效率的提升。
发明内容
有鉴于此,本发明提供了一种多相临界导通功率变换器,将单相临界导通变换器推广至多相,解决了在高负载时,单相临界导通模式变换器工作频率低,导通电流大的缺点;多相临界导通模式变换器在轻载时,工作频率变高,效率变低的缺点。
第一方面,提供一种多相临界导通功率变换器,所述多相临界导通功率变换器包括多个并联连接的功率级电路以及控制电路,其特征在于,所述控制电路根据负载电流的大小,控制所述多个功率级电路的使能状态,使得在所述负载电流变化时,开关频率能够维持在预定的范围。
优选地,随着所述负载电流的增大,被使能的所述功率级电路的个数也随之增多。
优选地,所述控制电路根据所述负载电流所处的幅值区间,控制所述多个功率级电路的使能状态,使得在所述负载电流变化时,开关频率能够维持在预定的范围。
优选地,当所述负载电流所处的幅值区间增加一级时,被使能的所述功率级电路的个数也随之增加一个或多个。
优选地,所述控制电路包括一电流检测电路,用以检测与所述多个功率级电路相对应的多个相电流,并根据所述多个相电流的和得到所述负载电流。
优选地,所述控制电路包括一多相管理电路,用以根据所述负载电流生成与所述多个功率级电路相对应的多个使能信号以控制所述多个功率级电路的使能状态。
优选地,所述控制电路还包括与所述多个功率级电路相对应的多个单相控制电路,其中,每个所述单相控制电路用以根据与其对应的所述相电流、所述使能信号、以及一反馈信号生成PWM控制信号以控制与其对应的所述功率级电路工作。
优选地,当所述负载电流大于第一阈值时,所述单相控制电路控制与其对应的所述功率级电路工作在临界导通模式,即在检测到所述相电流下降至零电流后,使得所述功率级电路的主功率管导通。
优选地,当所述负载电流低于第一阈值时,所述单相控制电路控制与其对应的所述功率级电路工作在电流断续模式或频率调制模式以提高工作效率。
优选地,每个所述单相控制电路包括:
负电流检测电路,用以检测所述相电流低于设定的负电流阈值,输出置位信号;
锁相电路,用以根据时钟信号,得到时钟调节信号;
导通时间电路,用以根据所述反馈信号、所述时钟调节信号以及一斜坡信号,生成一复位信号;以及
逻辑电路,用以根据所述置位信号、所述复位信号以及所述使能信号,生成所述PWM控制信号。
优选地,每个所述单相控制电路包括:
负电流检测电路,用以检测所述相电流是否低于设定的电流阈值,输出负电流检测信号;
选择电路,根据所述负载电流是否低于第一阈值,选择将时钟信号或者所述负电流检测信号输出作为置位信号;
锁相电路,用以根据时钟信号,得到时钟调节信号;
导通时间电路,用以根据所述反馈信号、所述时钟调节信号、以及一斜坡信号,生成一复位信号,其中,所述时钟调节信号根据所述负载电流是否低于第一阈值,选择性地参与所述复位信号的生成;以及
逻辑电路,用以根据所述置位信号、所述复位信号以及所述使能信号,生成所述PWM控制信号。
优选地,所述斜坡信号用以表征所述相电流的大小。
优选地,所述斜坡信号为所述相电流,或者,所述斜坡信号与所述相电流同步上升变化。
优选地,所述反馈信号为反馈电路根据输出电压与参考电压生成的误差补偿信号。
第二方面,提供一种多相临界导通功率变换器的控制方法,所述多相临界导通功率变换器包括多个并联连接的功率级电路以及控制电路,其特征在于,
根据负载电流的大小,控制所述多个功率级电路的使能状态,使得在所述负载电流变化时,开关频率能够维持在预定的范围。
优选地,随着所述负载电流的增大,被使能的所述功率级电路的个数也随之增多。
优选地,所述控制电路根据所述负载电流所处的幅值区间,控制所述多个功率级电路的使能状态,使得在所述负载电流变化时,开关频率能够维持在预定的范围。
优选地,当所述负载电流所处的幅值区间增加一级时,被使能的所述功率级电路的个数也随之增加一个或多个。本发明实施例的多相临界导通功率变换器,将单相临界导通变换器推广至多相,通过随着所述负载电流的变化,控制多个功率级电路的使能状态,使得在负载电流变化时,开关频率能够维持在预定的范围内。解决了在重载时,单相临界导通模式变换器工作频率低,导通电流大的缺点;同时,也解决了多相临界导通模式变换器在轻载时,工作频率变高,效率变低的缺点。同时,在单相轻载时,通过电流断续模式降低了单相变换器的工作频率,使得多相变换器可以在整个负载范围内均能保持高效运行。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为依据本发明的多相临界导通功率变换器的结构框图;
图2为本发明第一实施例的单相控制电路的示意图;
图3为一个多相临界导通功率变换器的工作波形图;
图4为多相临界导通功率变换器在不同情况下的电流-频率对应图;
图5为本发明第二实施例的单相控制电路的示意图;
图6为另一个多相临界导通功率变换器的工作波形图;
图7为本发明第三实施例的单相控制电路的示意图;
图8为又一个多相临界导通功率变换器的工作波形图。
具体实施方式
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
同时,应当理解,在以下的描述中,“电路”是指由至少一个元件或子电路通过电气连接或电磁连接构成的导电回路。当称元件或电路“连接到”另一元件或称元件/电路“连接在”两个节点之间时,它可以是直接耦接或连接到另一元件或者可以存在中间元件,元件之间的连接可以是物理上的、逻辑上的、或者其结合。相反,当称元件“直接耦接到”或“直接连接到”另一元件时,意味着两者不存在中间元件。
除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1为本发明的多相临界导通功率变换器的结构框图。如图1所示,多相临界导通功率变换器包括多个并联连接的功率级电路1以及控制电路2。其中,控制电路2根据多相临界导通功率变换器的负载电流Iload 的大小,控制多个功率级电路1的使能状态,使得在负载电流Iload变化时,***的开关频率f能够维持在预定的范围内。
进一步地,本发明的多相临界导通功率变换器随着所述负载电流 Iload的增大,控制电路2控制被使能的功率级电路1的个数也随之增多。在一个优选的实施例中,控制电路2也可以根据负载电流Iload所处的幅值区间,控制多个功率级电路1的使能状态,使得在负载电流Iload 变化时,开关频率f能够维持在预定的范围。具体地,当负载电流Iload 所处的幅值区间增加一级时,被使能的功率级电路1的个数也随之增加一个或多个。
具体地,控制电路2包括电流检测电路21、多相管理电路22、与多个功率级电路1相对应的多个单相控制电路23以及反馈电路24。
在本发明实施例中,以具有N路功率级电路1为例来加以说明。电流检测电路21,用以检测与多个功率级电路1相对应的多个相电流I1、 I2…IN,并根据所述多个相电流I1、I2…IN的和得到所述负载电流Iload。
多相管理电路22,用以根据负载电流Iload生成与所述多个功率级电路1相对应的多个使能信号EN1、EN2…ENN,以及多个时钟信号 CLOCK1、CLOCK2…CLOCKN。其中,使能信号ENn(n=1、2、…、 N)用于控制与之相对应的功率级电路1的使能状态,例如,在一个优选实施例中,当使能信号ENn为有效值时,其所对应的第n路功率级电路被使能而正常工作;当使能信号ENn为无效值时,其所对应的第n路功率级电路被禁止使能而停止工作。时钟信号CLOCKn(n=1、2、…、 N)用于通过锁相电路,调节功率级电路1中的上管(即主功率管)的导通时间,以进行调节相位,从而使得多个功率级电路1以预定的相位进行工作,来满足***的其他需求。
多个单相控制电路23,其与多个功率级电路1一一对应,用以生成功率级电路1的控制信号。具体地,每个单相控制电路23用以根据与其对应的所述相电流In(n=1、2、…、N)、所述使能信号ENn、以及一反馈信号VC生成PWM控制信号以控制与其对应的功率级电路1工作。可以理解的是,在有些应用场合下,控制信号的生成也需要时钟信号 CLOCKn的参与,使得多个多个功率级电路1,以预定的相位进行工作。
反馈电路24,用以根据输出电压Vo与参考电压Vref生成误差补偿信号,并将该误差补偿信号作为反馈信号VC。依据反馈信号VC来调节功率级电路1中的上管(即主功率管)的导通时间,以达到调节输出电压的目的。
至此可知,本发明实施例的多相临界导通功率变换器,能够实现随着所述负载电流的变化,控制多个功率级电路的使能状态,使得在负载电流变化时,开关频率能够维持在预定的范围。
图2为本发明第一实施例的多相临界导通功率变换器中的单相控制电路的示意图,图3为本发明第一实施例的多相临界导通功率变换器的工作波形图。下面进一步结合此实施例,来说明开关频率能够维持在预定的范围内的原理。
本发明主要是针对在正常工况下工作在临界导通模式的多相临界导通功率变换器,即在检测到相电流In下降至零电流后,使得功率级电路 1的主功率管导通。因此,优选地,如图2所示,在本发明实施例中,每个单相控制电路23可以包括负电流检测电路231、锁相电路232、导通时间电路233以及逻辑电路234。
具体地,负电流检测电路231,用以检测相电流In是否低于设定的电流阈值Vi,当检测到相电流In下降至低于设定的电流阈值Vi时,输出有效的置位信号VS。在临界导通模式中,由于需要在检测到电流下降至零电流后,使得功率级电路的主功率管导通,在本发明实施例中,设置电流阈值Vi表征相电流In为零电流或者略低于零电流,当相电流In 下降至低于设定的电流阈值Vi时,即表征相电流过零后达到了负电流,此时便可输出有效的置位信号VS以实现控制主功率管导通。优选地,负电流检测电路231可以仅由第一比较器CMP1构成,第一比较器CMP1 的同相输入端接收电流阈值Vi,反相输入端接收相电流In,如此,便可在相电流In下降至低于设定的电流阈值Vi时,第一比较器CMP1输出高电平的比较信号,并将此比较信号作为置位信号VS。相电流In的获取,可以采用图2中直接接一个采样电阻Ri的方式,也可采用其他的公知方式,只要能实现对功率级电路1中电感电流的有效采样即可。
锁相电路232,用以根据时钟信号CLOCKn,得到时钟调节信号VT,从而通过影响反馈信号VC,以调节功率级电路1中的上管(即主功率管)的导通时间,以进行调节相位,从而使得多个功率级电路1与目标时钟保持同频同相。
导通时间电路233,用以根据反馈信号VC、时钟调节信号VT以及一斜坡信号Vslop,生成一复位信号VR;优选地,导通时间电路233包括叠加电路2331、斜坡信号生成电路2332以及第二比较电路CMP2。
具体地,时钟调节信号VT,通过一叠加电路2331与反馈信号VC 进行叠加,以生成第一反馈信号VC1,在本发明实施例中,叠加电路2331 采用一加法器来实现。斜坡信号生成电路2332包括并联连接的第一开关 S1、第一电容C1以及第一电流源I1,其中,第一开关S1受控于逻辑电路234输出的PWM控制信号,其使得第一开关S1在主功率管导通时关断,从而第一电流源I1给第一电容C1充电,第一电容C1上的电压逐渐上升,如图3所示,在此阶段,功率级电路1的电感电流In也由于主功率管导通而线性上升,因此,在参数设置合理的情况下,第一电容C1 上的电压便可以与功率级电路1的电感电流同步上升变化;反之,第一开关S1在主功率管关断时导通,从而第一电容C1充电被短路,第一电容C1上的电压被下拉至零电压,如此反复,即可在第一电容C1上产生斜坡信号Vslop。第二比较电路CMP2的同相输入端接收斜坡信号Vslop,反相输入端接收第一反馈信号VC1,如此,便可在斜坡信号Vslop上升至第一反馈信号VC1时,第二比较器CMP2输出高电平的比较信号,并将此比较信号作为复位信号VR以实现控制主功率管关断。
逻辑电路234,用以根据置位信号VS、复位信号VR以及所述使能信号ENn,生成PWM控制信号,该PWM控制信号用于以实现控制主功率管的通断。优选地,逻辑电路234可以由SR触发器来实现,SR触发器的S端接收置位信号VS,其R端接收复位信号VR,输出端Q输出PWM控制信号。其中,使能信号ENn用以控制逻辑电路234的使能状态,在使能信号ENn为有效值时,逻辑电路234正常工作,输出PWM 控制信号;在使能信号ENn为无效值时,逻辑电路234被禁止工作,不输出PWM控制信号,以此来控制与其对应的功率级电路1的使能状态。
可以理解的是,单相控制电路23还包括一驱动电路235,其用于接收PWM控制信号,将其转换成满足驱动要求的驱动信号以实现对功率级电路1中功率管的控制。当然,在另外一些实施方式中,本领域普通技术人员也可以根据使能信号ENn的作用,将其设置为与驱动电路235 连接,通过控制驱动电路235的使能状态,此来控制与其对应的功率级电路1的使能状态。
图4为多相临界导通功率变换器在不同情况下的电流-频率对应图,结合图4,来说明本发明的多相临界导通功率变换器具体工作方法。这里,以4相***为例,即具有4个功率级电路1。
由于本发明的多相临界导通功率变换器在正常工作时采用临界电流导通的调制方式,某一相的开关频率与该相负载电流Iphase成反比,即单相的开关频率Fsw=K/Iphase,记总负载电流为Iload,则单相的电流随当前相数N变化,记为Iphase=Iload/N,单相开关频率则为 Fsw=N*K/Iphase,令满载时开关频率为1、满载时电流为1,随完成标幺化,则K=Imax/N。
首先确定根据不同相数工作时,开关频率与总负载电流之间的曲线,如图4所示,单相工作时为S1,两相工作时为S2,三相工作时为S3,所有相同时工作时记为S4。从曲线S1~S4可知,随着负载的减小,开关频率存在增大的趋势,若合理地减小相数,则会适当降低开关频率。
其次,根据负载电流Iload的幅值所述的电流区间,选择合适的相数工作,使得在各个电流区间时,开关频率均处于设定的频率范围内,这里,指的是在最小频率Fmin以及最大频率Fmax之间。最小频率Fmin 以及最大频率Fmax可以根据不同的工作场合以及工况设置。
因此可知,较佳的选相方式为:当负载电流大于优选的工作点I4时,则四相全部工作在电流临界导通模式;当负载电流大于优选的工作点I3、并小于优选的工作点I4时,则三相工作在电流临界导通模式;当负载电流大于优选的工作点I2、并小于优选的工作点I3时,则两相工作在电流临界导通模式;当负载电流大于优选的工作点I1、并小于优选的工作点I2时,单相工作在电流临界导通模式。如此便可将开关频率控制在最小频率Fmin以及最大频率Fmax之间。
至此可知,电流临界导通的工作方式使得上管可以实现零电压开通,降低了导通损耗,使得功率变换器在相同效率的条件下,可以工作在更高的开关频率。但是由于电流临界导通模式下,开关频率随着负载变化范围较宽,不利于全负载范围内效率的提升。本发明提供的多相临界导通功率变换器,将单相临界导通变换器推广至多相,通过随着所述负载电流的变化,控制多个功率级电路的使能状态,使得在负载电流变化时,开关频率能够维持在预定的范围内。解决了在重载时,单相临界导通模式变换器工作频率低,导通电流大的缺点;同时,也解决了多相临界导通模式变换器在轻载时,工作频率变高,效率变低的缺点。
图5为本发明第二实施例的多相临界导通功率变换器的单相控制电路的示意图,图6为与之对应的多相临界导通功率变换器的工作波形图。其与第一实施例的区别,仅在于,直接将表征相电感电流In的采样信号 In*Ri作为所述斜坡信号Vslop,如图5及图6所示,第二比较电路CMP2 的同相输入端接收表征相电感电流In的采样信号In*Ri,反相输入端接收第一反馈信号VC1,在此斜坡信号Vslop上升至第一反馈信号VC1 时,第二比较器CMP2输出高电平的比较信号,并将此比较信号作为复位信号VR以实现控制主功率管关断。
图7为本发明第三实施例的多相临界导通功率变换器的单相控制电路的示意图,图8为与之对应的多相临界导通功率变换器的工作波形图。其与第一实施例的区别在于,其可以实现当负载电流Iload大于第一阈值V1时,所述单相控制电路控制23与其对应的所述功率级电路1工作在临界导通模式;当所述负载电流Iload低于第一阈值V1时,所述单相控制电路23控制与其对应的所述功率级电路1工作在电流断续模式或频率调制模式以提高工作效率。这里,第一阈值V1可以根据需要设置,也可知直接选取为工作点I1。
再次参考图4,当负载电流Iload小于优选的工作点I1时,此时开关频率高于优选的开关频率上限Fmax,此时单相控制电路23应该停止使得多个功率级电路1工作在电流临界导通模式,而工作在电流断续模式或频率调制模式等轻载更加高效的模式。
这里以增加电流断续模式为例说明具体工作方法。具体地,在实现时,可以在负电流检测电路231之后,设置一选择电路236,用以根据所述负载电流Iload是否低于第一阈值V1,选择将时钟信号CLOCKn 或者所述负电流检测信号,也即所述置位信号VS输出作为第一置位信号VS1。其中,选择电路236的两个输入端分别接收时钟信号CLOCKn 以及置位信号VS,输出端根据选择信号Vsel的有效状态或无效状态,选择其中一个输入信号作为输出信号。优选地,可以在负载电流Iload 低于第一阈值V1时,使得选择信号Vsel处于无效状态,即表征此时***应该进入电流断续模式,选择电路236根据选择信号Vsel的无效状态,选择将时钟信号CLOCKn作为输出信号,相应地,在负载电流Iload高于第一阈值V1时,使得选择信号Vsel处于有效状态,即表征此时***应该进入临界导通模式,选择电路236根据选择信号Vsel的有效状态,选择将负电流检测信号,也即所述置位信号VS作为输出信号。选择电路236输出的信号作为第一置位信号VS1,该置位信号用以实现控制主功率管导通。
进一步地,在负载电流Iload低于第一阈值V1时,由于在置位信号 VS的生成过程中,已经有时钟信号CLOCKn的参与,这可以使得多个功率级电路1与目标时钟保持同频同相。因此,在复位信号VR的生成过程中可以不需要时钟信号CLOCKn的参与,基于此,优选地,可以在锁相电路232以及叠加电路2331之间设置以第二开关S2,其受控于选择信号Vsel,由于在负载电流Iload低于第一阈值V1时,选择信号Vsel 处于无效状态,其可以直接用以关断第二开关S2,使得时钟调节信号 VT不影响反馈信号VC。结合图8可以看出,在负载电流Iload低于第一阈值V1时,置位信号VS的跳变时刻与时钟信号CLOCKn保持一致,其并不受电感电流过零的影响,并且,斜坡信号Vslop直接与反馈信号 VC比较,即可得到复位信号VR。
至此可知,本发明实施例的多相临界导通功率变换器,将单相临界导通变换器推广至多相,通过随着所述负载电流的变化,控制多个功率级电路的使能状态,使得在负载电流变化时,开关频率能够维持在预定的范围内。解决了在重载时,单相临界导通模式变换器工作频率低,导通电流大的缺点;同时,也解决了多相临界导通模式变换器在轻载时,工作频率变高,效率变低的缺点。同时,在单相轻载时,通过电流断续模式降低了单相变换器的工作频率,使得多相变换器可以在整个负载范围内均能保持高效运行。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

1.一种多相临界导通功率变换器,所述多相临界导通功率变换器包括多个并联连接的功率级电路以及控制电路,其特征在于,
所述控制电路根据负载电流的大小,控制所述多个功率级电路的使能状态,使得在所述负载电流变化时,开关频率能够维持在预定的范围;
其中,当多个所述功率级电路被使能时,每个所述功率级电路工作在临界导通模式,所述功率级电路的主功率管在表征相应的电感电流的相电流下降至零电流后导通。
2.根据权利要求1所述的多相临界导通功率变换器,其特征在于,随着所述负载电流的增大,被使能的所述功率级电路的个数也随之增多。
3.根据权利要求1所述的多相临界导通功率变换器,其特征在于,所述控制电路根据所述负载电流所处的幅值区间,控制所述多个功率级电路的使能状态,使得在所述负载电流变化时,开关频率能够维持在预定的范围。
4.根据权利要求3所述的多相临界导通功率变换器,其特征在于,当所述负载电流所处的幅值区间增加一级时,被使能的所述功率级电路的个数也随之增加一个或多个。
5.根据权利要求1所述的多相临界导通功率变换器,其特征在于,所述控制电路包括一电流检测电路,用以检测与所述多个功率级电路相对应的多个相电流,并根据所述多个相电流的和得到所述负载电流。
6.根据权利要求5所述的多相临界导通功率变换器,其特征在于,所述控制电路包括一多相管理电路,用以根据所述负载电流生成与所述多个功率级电路相对应的多个使能信号以控制所述多个功率级电路的使能状态。
7.根据权利要求6所述的多相临界导通功率变换器,其特征在于,所述控制电路还包括与所述多个功率级电路相对应的多个单相控制电路,其中,每个所述单相控制电路用以根据与其对应的所述相电流、所述使能信号、以及一反馈信号生成PWM控制信号以控制与其对应的所述功率级电路工作。
8.根据权利要求7所述的多相临界导通功率变换器,其特征在于,当所述负载电流大于第一阈值时,所述单相控制电路控制与其对应的所述功率级电路工作在临界导通模式,即在检测到所述相电流下降至零电流后,使得所述功率级电路的主功率管导通。
9.根据权利要求8所述的多相临界导通功率变换器,其特征在于,当所述负载电流低于第一阈值时,所述单相控制电路控制与其对应的所述功率级电路工作在电流断续模式或频率调制模式以提高工作效率。
10.根据权利要求8所述的多相临界导通功率变换器,其特征在于,每个所述单相控制电路包括:
负电流检测电路,用以检测所述相电流低于设定的负电流阈值,输出置位信号;
锁相电路,用以根据时钟信号,得到时钟调节信号;
导通时间电路,用以根据所述反馈信号、所述时钟调节信号以及一斜坡信号,生成一复位信号;以及
逻辑电路,用以根据所述置位信号、所述复位信号以及所述使能信号,生成所述PWM控制信号。
11.根据权利要求9所述的多相临界导通功率变换器,其特征在于,每个所述单相控制电路包括:
负电流检测电路,用以检测所述相电流是否低于设定的电流阈值,输出负电流检测信号;
选择电路,根据所述负载电流是否低于第一阈值,选择将时钟信号或者所述负电流检测信号输出作为置位信号;
锁相电路,用以根据时钟信号,得到时钟调节信号;
导通时间电路,用以根据所述反馈信号、所述时钟调节信号、以及一斜坡信号,生成一复位信号,其中,所述时钟调节信号根据所述负载电流是否低于第一阈值,选择性地参与所述复位信号的生成;以及
逻辑电路,用以根据所述置位信号、所述复位信号以及所述使能信号,生成所述PWM控制信号。
12.根据权利要求10或11所述的多相临界导通功率变换器,其特征在于,所述斜坡信号用以表征所述相电流的大小。
13.根据权利要求12所述的多相临界导通功率变换器,其特征在于,所述斜坡信号为所述相电流,或者,所述斜坡信号与所述相电流同步上升变化。
14.根据权利要求10或11所述的多相临界导通功率变换器,其特征在于,所述反馈信号为反馈电路根据输出电压与参考电压生成的误差补偿信号。
15.一种多相临界导通功率变换器的控制方法,所述多相临界导通功率变换器包括多个并联连接的功率级电路以及控制电路,其特征在于,
根据负载电流的大小,控制所述多个功率级电路的使能状态,使得在所述负载电流变化时,开关频率能够维持在预定的范围;
其中,当多个所述功率级电路被使能时,每个所述功率级电路工作在临界导通模式,所述功率级电路的主功率管在表征相应的电感电流的相电流下降至零电流后导通。
16.根据权利要求15所述的多相临界导通功率变换器的控制方法,其特征在于,随着所述负载电流的增大,被使能的所述功率级电路的个数也随之增多。
17.根据权利要求15所述的多相临界导通功率变换器的控制方法,其特征在于,所述控制电路根据所述负载电流所处的幅值区间,控制所述多个功率级电路的使能状态,使得在所述负载电流变化时,开关频率能够维持在预定的范围。
18.根据权利要求17所述的多相临界导通功率变换器的控制方法,其特征在于,当所述负载电流所处的幅值区间增加一级时,被使能的所述功率级电路的个数也随之增加一个或多个。
CN201910512285.XA 2019-06-13 2019-06-13 多相临界导通功率变换器及其控制方法 Active CN110224592B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910512285.XA CN110224592B (zh) 2019-06-13 2019-06-13 多相临界导通功率变换器及其控制方法
US16/894,815 US11581812B2 (en) 2019-06-13 2020-06-07 Multi-phase power converter, control circuit and control method thereof
US18/086,874 US11942867B2 (en) 2019-06-13 2022-12-22 Apparatus and method of controlling a multi-phase power converter, having a plurality of power stage circuits coupled in parallel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910512285.XA CN110224592B (zh) 2019-06-13 2019-06-13 多相临界导通功率变换器及其控制方法

Publications (2)

Publication Number Publication Date
CN110224592A CN110224592A (zh) 2019-09-10
CN110224592B true CN110224592B (zh) 2021-08-13

Family

ID=67817084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910512285.XA Active CN110224592B (zh) 2019-06-13 2019-06-13 多相临界导通功率变换器及其控制方法

Country Status (2)

Country Link
US (2) US11581812B2 (zh)
CN (1) CN110224592B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110661430A (zh) * 2019-09-16 2020-01-07 锐捷网络股份有限公司 一种多相电源的供电控制方法、装置及介质
US11711009B2 (en) * 2019-10-24 2023-07-25 The Trustees Of Columbia University In The City Of New York Methods, systems, and devices for soft switching of power converters
US11404961B2 (en) 2020-05-27 2022-08-02 Infineon Technologies Austria Ag On-time compensation in a power converter
US11502602B2 (en) * 2020-10-14 2022-11-15 Infineon Technologies Austria Ag Multi-dimensional pulse width modulation control
CN112865499B (zh) * 2021-01-29 2022-05-17 成都芯源***有限公司 多相开关变换器及其控制器和控制方法
US11507128B1 (en) * 2021-08-31 2022-11-22 Texas Instruments Incorporated Low on-time control for switching power supply
US20230198376A1 (en) * 2021-12-20 2023-06-22 Psemi Corporation Power Converter with Adaptative Stages and Gate Driver
KR20230155260A (ko) * 2022-05-03 2023-11-10 삼성전자주식회사 전원관리집적회로

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814513A (zh) * 2011-09-07 2014-05-21 Nxp股份有限公司 开关模式转换器及控制开关模式转换器的方法
CN106416034A (zh) * 2014-06-03 2017-02-15 株式会社村田制作所 多相型dc/dc转换器以及多相型dc/dc转换器***
CN206259862U (zh) * 2016-11-23 2017-06-16 杰华特微电子(杭州)有限公司 一种开关变换电路
WO2019032495A1 (en) * 2017-08-09 2019-02-14 Microchip Technology Incorporated DIGITAL CONTROL OF INTERLACED POWER CONVERTER WITH CONDUCTION MODE AT LIMITS CUT

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528481A (en) 1994-02-01 1996-06-18 Philips Electronics North America Corporation Low noise multi-output and multi-resonant flyback converter for television power supplies
US6674274B2 (en) * 2001-02-08 2004-01-06 Linear Technology Corporation Multiple phase switching regulators with stage shedding
TW480821B (en) * 2001-05-29 2002-03-21 Realtek Semiconductor Corp Multiphase switching circuit with bidirectional switch and without false signal
US6628106B1 (en) * 2001-07-30 2003-09-30 University Of Central Florida Control method and circuit to provide voltage and current regulation for multiphase DC/DC converters
US7292013B1 (en) * 2004-09-24 2007-11-06 Marvell International Ltd. Circuits, systems, methods, and software for power factor correction and/or control
US7317305B1 (en) * 2005-05-18 2008-01-08 Volterra Semiconductor Corporation Method and apparatus for multi-phase DC-DC converters using coupled inductors in discontinuous conduction mode
US7706151B2 (en) * 2006-05-01 2010-04-27 Texas Instruments Incorporated Method and apparatus for multi-phase power conversion
US8120334B2 (en) * 2006-05-01 2012-02-21 Texas Instruments Incorporated System and method for phase management in a multiphase switching power supply
TWI376876B (en) * 2006-10-23 2012-11-11 Realtek Semiconductor Corp Fraction-n frequency divider and method thereof
US8080987B1 (en) * 2006-12-22 2011-12-20 Intersil Americas Inc. Method and apparatus for efficient transitioning between different operating modes of a regulator
CN101682264B (zh) 2007-05-30 2013-01-02 宝威意大利股份公司 多输出同步反激变换器
TWI396957B (zh) * 2008-05-30 2013-05-21 Asustek Comp Inc 變頻多相位電壓調節器及其控制方法
US8098505B1 (en) * 2009-07-20 2012-01-17 Fairchild Semiconductor Corporation Phase management for interleaved power factor correction
US9106201B1 (en) * 2010-06-23 2015-08-11 Volterra Semiconductor Corporation Systems and methods for DC-to-DC converter control
CN102185466B (zh) 2011-05-24 2013-03-27 矽力杰半导体技术(杭州)有限公司 一种驱动电路、驱动方法以及应用其的反激式变换器
CN102638169B (zh) 2012-05-08 2014-11-05 矽力杰半导体技术(杭州)有限公司 一种反激式变换器的控制电路、控制方法以及应用其的交流-直流功率变换电路
US8879217B2 (en) * 2012-06-29 2014-11-04 Infineon Technologies Austria Ag Switching regulator with negative current limit protection
US9276470B2 (en) * 2012-08-31 2016-03-01 Maxim Integrated Products, Inc. Multiphase switching converters operating over wide load ranges
US20140232368A1 (en) * 2013-02-19 2014-08-21 Nvidia Corporation Electric power conversion with assymetric phase response
JP2014171351A (ja) * 2013-03-05 2014-09-18 Toshiba Corp 電源回路
TWI550444B (zh) * 2013-05-06 2016-09-21 寶德科技股份有限公司 游標控制裝置
TWI497886B (zh) * 2013-05-10 2015-08-21 Univ Nat Taiwan 用於多相交錯直流電源轉換器的控制裝置及其控制方法
CN103475199B (zh) 2013-09-13 2015-11-25 矽力杰半导体技术(杭州)有限公司 用于反激式开关电源的谐波控制方法及控制电路
US9442140B2 (en) * 2014-03-12 2016-09-13 Qualcomm Incorporated Average current mode control of multi-phase switching power converters
US9407148B2 (en) * 2014-03-31 2016-08-02 Monolithic Power Systems, Inc. Multi-phase SMPS with loop phase clocks and control method thereof
US9748839B2 (en) * 2014-03-31 2017-08-29 Infineon Technologies Austria Ag Digital voltage regulator controller with multiple configurations
US9570979B2 (en) * 2014-04-17 2017-02-14 Infineon Technologies Austria Ag Voltage regulator with power stage sleep modes
CN103944374A (zh) 2014-04-25 2014-07-23 矽力杰半导体技术(杭州)有限公司 原边反馈的pfc恒压驱动控制电路及控制方法
US9627969B2 (en) * 2014-05-27 2017-04-18 Infineon Technologies Austria Ag Inductor current measurement compensation for switching voltage regulators
US9484816B2 (en) * 2014-06-09 2016-11-01 Infineon Technologies Austria Ag Controllable on-time reduction for switching voltage regulators operating in pulse frequency modulation mode
US9698683B2 (en) * 2014-07-11 2017-07-04 Infineon Technologies Austria Ag Method and apparatus for controller optimization of a switching voltage regulator
US9614444B2 (en) * 2014-09-11 2017-04-04 Infineon Technologies Austria Ag Dynamic voltage transition control in switched mode power converters
CN105763061B (zh) 2014-12-17 2018-05-29 万国半导体(开曼)股份有限公司 反激转换器输出电流计算电路及计算方法
CN104660019B (zh) * 2015-01-16 2017-12-05 矽力杰半导体技术(杭州)有限公司 一种多相并联变换器及其控制方法
US10069421B2 (en) * 2015-02-05 2018-09-04 Infineon Technologies Austria Ag Multi-phase switching voltage regulator having asymmetric phase inductance
CN104767372B (zh) 2015-04-24 2017-12-19 矽力杰半导体技术(杭州)有限公司 控制电路、控制方法和应用其的反激式变换器
US9742280B2 (en) * 2015-06-10 2017-08-22 Dialog Semiconductor (Uk) Limited Dynamic clock divide for current boosting
US9606559B2 (en) * 2015-08-25 2017-03-28 Dialog Semiconductor (Uk) Limited Multi-phase switching converter with phase shedding
US9966853B2 (en) * 2015-10-05 2018-05-08 Maxim Integrated Products, Inc. Method and apparatus for multi-phase DC-DC converters using coupled inductors in discontinuous conduction mode
US9755517B2 (en) * 2015-12-16 2017-09-05 Dialog Semiconductor (Uk) Limited Multi-threshold panic comparators for multi-phase buck converter phase shedding control
US9857854B2 (en) * 2016-02-29 2018-01-02 Dell Products Lp Voltage regulator and method of controlling a voltage regulator comprising a variable inductor
US9998020B2 (en) * 2016-04-29 2018-06-12 Infineon Technologies Austria Ag Method and apparatus for efficient switching in semi-resonant power converters
DE102016207918B4 (de) * 2016-05-09 2022-02-03 Dialog Semiconductor (Uk) Limited Mehrfachphasenschaltwandler und Verfahren für einen Betrieb eines Mehrfachphasenschaltwandlers
DE102016211163B4 (de) * 2016-06-22 2019-05-23 Dialog Semiconductor (Uk) Limited Mehrphasen-Mehrstufen-Schaltleistungsumsetzersystem, elektronische Vorrichtung und Verfahren zum Betreiben eines Mehrphasen-Mehrstufen-Schaltleistungsumsetzersystems
US10128755B2 (en) * 2016-07-11 2018-11-13 Apple Inc. Slew mode control of transient phase based on output voltage slope of multiphase DC-DC power converter
US10917009B2 (en) * 2016-08-09 2021-02-09 California Institute Of Technology Digital multiphase hysteretic point-of-load DC/DC converter
US10371718B2 (en) * 2016-11-14 2019-08-06 International Business Machines Corporation Method for identification of proper probe placement on printed circuit board
US10270346B2 (en) * 2017-04-07 2019-04-23 Texas Instruments Incorporated Multiphase power regulator with discontinuous conduction mode control
US10396673B1 (en) * 2017-06-05 2019-08-27 Maxim Integrated Products, Inc. DC-to-DC converter controllers, DC-to-DC converters, and associated methods
US10324480B2 (en) * 2017-10-10 2019-06-18 Infineon Technologies Austria Ag Dynamic switching frequency control in multiphase voltage regulators
CN108173414B (zh) * 2017-12-29 2020-04-21 成都芯源***有限公司 多相变换器及其负载电流瞬态上升检测方法
US10523124B1 (en) * 2018-06-21 2019-12-31 Dialog Semiconductor (Uk) Limited Two-stage multi-phase switching power supply with ramp generator DC offset for enhanced transient response
US10778101B1 (en) * 2019-03-13 2020-09-15 Alpha And Omega Semiconductor (Cayman) Ltd. Switching regulator controller configuration parameter optimization
EP3709492B1 (en) * 2019-03-14 2021-08-11 Nxp B.V. Distributed control of a multiphase power converter
US11205962B2 (en) * 2019-05-10 2021-12-21 Intel Corporation Real-time switching period estimation apparatus and method
CN110333767B (zh) * 2019-06-27 2023-04-07 南京矽力微电子技术有限公司 多相功率变换器
US11664731B2 (en) * 2019-08-13 2023-05-30 Chaoyang Semiconductor (Shanghai) Co., Ltd. Configurable-speed multi-phase DC/DC switching converter with hysteresis-less phase shedding and inductor bypass
EP3832871B1 (en) * 2019-12-03 2022-10-26 NXP USA, Inc. Distributed interleaving control of multiphase smpcs
US10833661B1 (en) * 2019-12-04 2020-11-10 Alpha And Omega Semiconductor (Cayman) Ltd. Slope compensation for peak current mode control modulator
CN113157045B (zh) * 2020-01-22 2023-10-24 台湾积体电路制造股份有限公司 电压调节器电路和方法
CN111934552B (zh) * 2020-08-21 2021-11-12 矽力杰半导体技术(杭州)有限公司 多相功率变换器及其控制电路和控制方法
CN113162411A (zh) * 2021-04-20 2021-07-23 矽力杰半导体技术(杭州)有限公司 控制电路,控制方法以及电压调节器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814513A (zh) * 2011-09-07 2014-05-21 Nxp股份有限公司 开关模式转换器及控制开关模式转换器的方法
CN106416034A (zh) * 2014-06-03 2017-02-15 株式会社村田制作所 多相型dc/dc转换器以及多相型dc/dc转换器***
CN206259862U (zh) * 2016-11-23 2017-06-16 杰华特微电子(杭州)有限公司 一种开关变换电路
WO2019032495A1 (en) * 2017-08-09 2019-02-14 Microchip Technology Incorporated DIGITAL CONTROL OF INTERLACED POWER CONVERTER WITH CONDUCTION MODE AT LIMITS CUT

Also Published As

Publication number Publication date
US11942867B2 (en) 2024-03-26
US11581812B2 (en) 2023-02-14
US20230123031A1 (en) 2023-04-20
CN110224592A (zh) 2019-09-10
US20200395854A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
CN110224592B (zh) 多相临界导通功率变换器及其控制方法
US9190909B2 (en) Control device for multiphase interleaved DC-DC converter and control method thereof
US5745351A (en) DC-to-DC bidirectional voltage converters and current sensor
CN1722592B (zh) 用于dc/dc转换器的闭环数字控制***
JP4056780B2 (ja) 不定周波数の切換調整器を位相ロックループと同期させるための回路および方法
TWI395082B (zh) 用於變頻式電壓調節器的頻率控制電路及方法
TWI613883B (zh) 具快速暫態響應的固定導通時間轉換器
US8063617B2 (en) Quick response width modulation for a voltage regulator
US20110169466A1 (en) Methods and control circuits for controlling buck-boost converting circuit to generate regulated output voltage under reduced average inductor current
US10840808B2 (en) Plug-and-play electronic capacitor for voltage regulator modules applications
US20220216794A1 (en) Control circuit and concentration control circuit thereof
CN102195479A (zh) 用于控制开关模式功率转换器的控制器和方法
US20170133919A1 (en) Dual-phase dc-dc converter with phase lock-up and the method thereof
EP4064541B1 (en) Power supply monitoring and switching frequency control
US9231470B2 (en) Control circuit, time calculating unit, and operating method for control circuit
TW201824718A (zh) 具快速暫態響應的電流式電壓轉換器
JP5380772B2 (ja) Dc/dcコンバータを制御する制御回路、電気装置、及び電源回路を有する装置
CN108964439B (zh) 开关变换器及其控制方法和控制器
KR20190011693A (ko) 지능적인 일정한 온-타임 제어를 제공하기 위한 시스템 및 방법
CN112467976B (zh) 开关变换器及其控制电路和控制方法
JP2006280062A (ja) スイッチングレギュレータを用いる半導体装置およびスイッチングレギュレータの制御方法
US20230163679A1 (en) Control circuit for a totem pole power factor correction circuit and the method thereof
JP2011205873A (ja) Dc−dc変換器
JP2005051927A (ja) スイッチング電源装置
CN116581985A (zh) 功率变换器的脉冲分配模块、控制电路以及控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 210042 302, Xuanwu Road, 7, Xuanwu Road, Xuanwu District, Nanjing, Jiangsu, China, 7

Applicant after: Nanjing Sili Microelectronics Technology Co., Ltd

Address before: 210042 302, Xuanwu Road, 7, Xuanwu Road, Xuanwu District, Nanjing, Jiangsu, China, 7

Applicant before: Silergy Semiconductor Technology (Hangzhou) Ltd.

GR01 Patent grant
GR01 Patent grant