CN110224033B - 一种内嵌硅pn结的氧化铁光阳极体系及制备方法 - Google Patents

一种内嵌硅pn结的氧化铁光阳极体系及制备方法 Download PDF

Info

Publication number
CN110224033B
CN110224033B CN201910521496.XA CN201910521496A CN110224033B CN 110224033 B CN110224033 B CN 110224033B CN 201910521496 A CN201910521496 A CN 201910521496A CN 110224033 B CN110224033 B CN 110224033B
Authority
CN
China
Prior art keywords
layer
silicon
iron oxide
junction
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910521496.XA
Other languages
English (en)
Other versions
CN110224033A (zh
Inventor
吴绍龙
肖臣鸿
周忠源
李刘晶
丁浩
李孝峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201910521496.XA priority Critical patent/CN110224033B/zh
Publication of CN110224033A publication Critical patent/CN110224033A/zh
Application granted granted Critical
Publication of CN110224033B publication Critical patent/CN110224033B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明属光电转换与新能源领域,为解决现有技术中氧化铁光阳极不能实现完全光解水的技术问题,提出一种内嵌硅pn结的氧化铁光阳极体系及制备方法,包括氧化铁吸收层、p型硅掺杂层、n型硅基底、背导电层、背防水绝缘层;所述的p型硅掺杂层与n型硅基底构成硅pn结;硅pn结的形貌为金字塔阵列结构;p型硅掺杂层与氧化铁吸收层之间设置有透明导电隧穿层。内嵌硅pn结使得硅层吸收入射光时产生较大的光电压,此光电压将与氧化铁吸收层形成串联关系,相当于外加了此大小的电压于氧化铁层,将有效降低氧化铁光阳极的开启电压,提高了氧化铁吸收层的导电率及其光生载流子的收集效率,从而实现了完全光解水。

Description

一种内嵌硅pn结的氧化铁光阳极体系及制备方法
技术领域
本发明涉及一种内嵌硅pn结的氧化铁光阳极体系及制备方法,尤其涉及该光阳极用于完全光解水时的能带界面调控技术,属光电转换与新能源领域。
背景技术
以光电极为核心的光电化学电池,是一种有望借助太阳能而低成本地实现光解水制氢的有效途径。它借助半导体材料吸收太阳光而产生的光生载流子参与水的氧化与还原反应(产生氢气),即完成太阳能转换为高能量的绿色燃料。
当前,光电化学电池制氢在应用推广中却受到了诸多技术困难。其中,关键问题是绝大部分的光电极材料无法仅仅依靠太阳能而实现光解水(即需要外加一定的偏压)。虽然少数宽禁带半导体材料(如KTaO3)从理论上能实现完全光解水(即不需要外加偏压),但这些材料只能吸收紫外光,也就是说绝大部分的太阳光是不能被利用。此外,这些宽禁带半导体材料在水溶液中的稳定性差。为了得到较高太阳能转换效率的光电化学电池体系,光电极材料要具有适中的禁带宽度,且在水溶液中具有良好的化学稳定性。
氧化铁(α-Fe2O3)已被证实具有优异的化学稳定性、合适的禁带宽度(1.9~2.3eV,理论上的转换效率可到12.9%~16.8%)、良好的环境兼容性等特征,是理想的光阳极材料。然而,其少子寿命较短,导致当氧化铁较厚时(几百纳米以上)产生的光生载流子不能被有效地抽取与收集。此外,其导带电势位置低于H+/H2电势,导致光生电子不能满足无偏压下的光还原水反应(既氧化铁光阳极体系不能实现完全光解水)。为了解决上述问题,常用的办法是在氧化铁吸收层下方引入另外一层光吸收层,通过结合内外光吸收层材料的能带位置从理论上满足完全光解水的热力学要求。通过双吸收层构筑的光电化学电池体系,虽然从理论上可实现完全光解水,但由于内吸收层与外吸收层异质结所产生的光电压偏小,且由于在内/外吸收层界面上的载流子复合严重导致整个光电极体系的光电流较小,导致实验上很难真正实现完全光解水,或者是无偏压时光电流很小。
发明内容
本发明为解决现有技术中氧化铁光阳极不能实现完全光解水,氧化铁与其他光吸收层构筑的双吸收层光电极能带不匹配的问题而导致载流子复合严重、光生电压偏小的技术问题。采用的技术方案如下:
一种内嵌硅pn结的氧化铁光阳极体系,所述的光阳极为复合层式结构,其特征在于:沿着光入射方向依次包括氧化铁吸收层、p型硅掺杂层、n型硅基底、背导电层、背防水绝缘层;所述的p型硅掺杂层与n型硅基底构成硅pn结;硅pn结的形貌为金字塔阵列结构;p型硅掺杂层与氧化铁吸收层之间设置有透明导电隧穿层,所述的透明导电隧穿层各处厚度相等。
优选地氧化铁层的厚度为50~150nm;
优选地p型硅掺杂层中硼掺杂的浓度范围为5.0×(1018~1019)cm-3,深度为0.1~0.3μm。
优选地n型硅基底中掺磷的浓度范围为5.0×(1014~1015)cm-3,基底厚度为200~600μm。
优选地透明导电隧穿层厚度为10~50nm。
优选地金字塔阵列为密排形貌,尺寸在一定范围内随机分布(即高度为0.5~3μm、底边长度为0.7~4μm)。
上述方案中内嵌硅pn结可以使得硅层吸收入射光时产生较大的光电压(而单独的n或p型硅掺杂层是不能实现此功能的),此光电压将与氧化铁吸收层形成串联关系,相当于外加了此大小的电压于氧化铁层,将有效降低氧化铁光阳极的开启电压。硅pn结为金字塔形貌,此处所述的金字塔阵形貌的几何特征为棱锥,包括三棱锥、四棱锥等任意棱锥;金字塔阵形貌可以(1)使得后续将在其上生长的氧化铁层为微纳结构化,从而极大提高氧化铁薄膜的比表面积和增强其单位体积内的光吸收效率;(2)透过氧化铁层的太阳光的强度虽然已经有了明显衰减,但金字塔形貌化处理可以增强硅层的光吸收能力,使得硅中光生载流子的数量与氧化层中的光生载流子相当(若两者对应的光生载流子数量相差悬殊,数量明显更少的一方将决定整个光阳极的输出性能)。p型硅掺杂层与氧化铁层之间设置的透明导电隧穿层可以避免p型硅与氧化铁直接接触时带来的能带不匹配问题、以及硅/氧化铁界面处载流子复合严重的问题。此外,透明导电隧穿层中的金属元素还可作为氧化铁层的掺杂源,可提高氧化铁层的导电率及其光生载流子的收集效率,从而可实现完全光解水的效果。
在上述技术方案的基础上还提供一种内嵌硅pn结的氧化铁光阳极体系的制备方法,包括以下步骤:
a.以n型(100)硅片为基底,采用碱性湿法腐蚀硅技术制备硅金字塔阵列;
b.在硅金字塔阵列上进行硼掺杂,得到p型硅掺杂层;
c.以硅pn结金字塔为基底,采用原子层沉积(ALD)技术生长透明导电隧穿层;
d.在透明导电隧穿层表面以超声喷雾热解法生长氧化铁吸收层;
e.在n型硅基底的背面制作导电层,并引出外置导线;
f.在导电层上涂覆防水绝缘层。
进一步地,步骤c中,透明导电隧穿层中的金属元素在进行步骤d时可热扩散至氧化铁吸收层中。使得所生长的氧化铁吸收层的电学性能更佳。优选地透明导电隧穿层为掺铌的氧化锡,由于铌或锡相对其他金属元素更容易扩散至氧化铁吸收层中,且能对氧化铁形成n型掺杂。
进一步地,步骤a中,n型硅掺磷的优选浓度范围为5.0×(1014~1015)cm-3。硅金字塔阵列为紧密排布,尺寸在一定范围内随机分布(高度为0.5~3μm、底边长度为0.7~4μm)。此特征一方面可以保证硅pn结金字塔阵列具有良好的限光效应、大的比表面积,同时可以保证后续生长的透明导电隧穿层和氧化铁吸收层保形地完全包覆在硅pn结金字塔上(而底边长度太小和高度太高时是不行的)。
进一步地,步骤b中,硼掺杂的优选浓度范围为5.0×(1018~1019)cm-3,结深为0.1~0.3μm。此范围的掺杂浓度与结深可与n型硅形成电学性能优异的pn结,可产生较大的光电压。
进一步地,步骤c中,透明导电层的厚度为10~50nm。此时透明导电层可有效隔离硅与氧化铁,形成隧穿层,促进氧化铁中光生空穴与硅pn结中光生电子的收集。
进一步地,步骤d中,氧化铁吸收层的厚度为50~150nm。太薄时氧化铁的光吸收太弱,太厚时氧化铁中离表面太远的光生载流子由于其扩散长度有限而不能被抽取出来。
采用上述方案的优点有:
(1)以金字塔形貌的硅pn结为内吸收层,保证了后续生长的氧化铁外吸收层也具有金字塔的形貌,从而使得整个光阳极具有良好的陷光效应和大的比表面积。
(2)将硅层构筑成pn结,可以使得硅吸收透过氧化铁层的入射光时,产生较大的光电压。此光电压与氧化铁吸收层形成串联关系,可有效促进氧化铁层中光生载流子的分离及其表面的水氧化反应。
(3)采用ALD技术在硅与氧化铁之间生长透明导电随穿层,可以保证生长的透明导电随穿层保形地沉积在硅金字塔表面,且厚度可控制至0.1nm,进而确保透明导电随穿层的均匀性、界面钝化效果和载流子随穿效应。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明。
附图说明
图1:内嵌硅pn结的氧化铁光阳极的结构示意图;
其中:1-1为n型硅基底,1-2为p型硅掺杂层;1-3为透明导电隧穿层,1-4为氧化铁吸收层,1-5为背导电层,1-6为防水绝缘层;
图2:金字塔形貌的硅pn结的扫描电子显微镜图;
图3:在硅pn结上先后生长了透明导电隧穿层和氧化铁吸收层后的扫描电子显微镜图;
图4:氧化铁层分别生长在FTO基底和金字塔阵列化的硅pn结基底时所构筑的光阳极体系的电流-电压特性;其中:4-1为氧化铁层生长在金字塔阵列化的硅pn结基底时所构筑的光阳极体系的暗态电流-电压特性;4-2为氧化铁层生长在金字塔阵列化的硅pn结基底时所构筑的光阳极体系在AM1.5G光照下的电流-电压特性;4-3为氧化铁层生长在FTO基底时所构筑的光阳极体系的暗态电流-电压特性;4-4为氧化铁层生长在FTO基底时所构筑的光阳极体系在AM1.5G光照下的电流-电压特性。注意4-1与4-3两种情况下电流-电压曲线几乎重合。
具体实施方式
为了更清楚地说明发明,下面结合附图及实施例作进一步描述:
实施例一
一种内嵌硅pn结的氧化铁光阳极体系,如图1所示:所述光阳极为复合层式结构,沿着光入射方向依次包括氧化铁吸收层1-4、p型硅掺杂层1-2、n型硅基底1-1、背导电层1-5、背防水绝缘层1-6;所述的p型硅掺杂层与n型硅基底构成硅pn结:(1)硅pn结的形貌为金字塔阵列结构;(2)p型硅掺杂层1-2与氧化铁吸收层1-4之间设置有透明导电隧穿层1-3,所述的透明导电隧穿层各处厚度相等。
本发明所提出的内嵌硅pn结的氧化铁光阳极体系可完全光解水的工作原理如下:宽光谱的太阳光入射至光阳极表面时,由于表面金字塔结构的陷光效应,绝大部分入射光进入光阳极内部,短波与长波分别被氧化铁层与硅层吸收,1100nm以上的入射光则被光阳极的背导电层反射回去,从光阳极上表面离开。硅层吸收的入射光产生光生载流子,在pn结内建电场的促进下得到有效分离,同时在开路状态下能观测到一个较大的光电压(电场方向由光阳极底层指向顶层)。氧化铁层中的光生载流子则在固/液界面附近的耗尽层内得到有效分离。氧化铁层中的光生空穴被抽取至固/液界面参与水的氧化反应;硅pn结中产生的光生电子则通过背电极输运至对电极参与水的还原反应;氧化铁中的光生电子与硅pn结中的光生空穴则通过透明导电隧穿层发生湮灭。水的氧化反应与还原反应达到平衡状态时所对应的载流子束流表现为所观测到的光电流密度。
实施例二
一种内嵌硅pn结的氧化铁光阳极体系的制备方法,包括以下步骤:
1)采用电阻率为1~5Ω·cm的n型硅片,进行标准RCA清洗。
2)在氢氧化钾与异丙醇的混合溶液中,在80℃下反应60分钟,清洗硅片后得到n型硅金字塔阵列化结构,如图2所示。
3)采用热扩散方式,对步骤2)所得n型硅金字塔阵列进行硼掺杂,掺杂浓度为2.0×1019cm-3,结深为200nm。热扩散时对n硅背面进行保护,使得硼掺杂只在硅金字塔结构的正面发生。
4)将所制备得到的硅pn结金字塔阵列放入原子层沉积***的腔内,以四(二甲氨基)锡为锡源、叔丁基亚胺基三(二乙氨基)铌为铌源,交替生长不同循环次数(如分别为50与5,重复10次)的氧化锡与氧化铌。
5)将所得样品在空气氛围中进行600℃处理30分钟,得到表面被透明导电层覆盖的硅pn结。
6)将上述样品放入超声喷雾涂布***中,以0.005mol/L硝酸铁为前驱液,在80℃的基板上,以0.5mL/min的注射速率下进行雾化喷涂30分钟。
7)对上述步骤得到的样品放入管式退火炉中,700℃下热处理2小时,气体氛围为空气。得到内嵌硅pn结的氧化铁复合结构,如图3所示。
8)在所制得的复合结构背面涂覆In-Ga导电层,并引出外置导线。
9)涂覆704硅胶,将导电层完全盖住,得到最终的光阳极。
10)将制备好的光阳极浸入1mol/L的NaOH水溶液中,以铂网电极为对电极,Ag/AgCl电极为参比电极,使用电化学工作站将此三电极连接起来,构筑成三电极测试体系。
分别在暗室或AM1.5G(标准太阳光模拟器)照射下测试电流-电压特性。此外,引入比对实验,即氧化铁层以相同的工艺条件生长在FTO基底上(未引入硅pn结和透明导电隧穿层),然后将其加工成完整的光阳极体系。如图4所示,4-1为氧化铁层生长在金字塔阵列化的硅pn结基底时所构筑的光阳极体系的暗态电流-电压特性;4-2为氧化铁层生长在金字塔阵列化的硅pn结基底时所构筑的光阳极体系在AM1.5G光照下的电流-电压特性;4-3为氧化铁层生长在FTO基底时所构筑的光阳极体系的暗态电流-电压特性;4-4为氧化铁层生长在FTO基底时所构筑的光阳极体系在AM1.5G光照下的电流-电压特性。可以看出,两类样品均有明显的光响应。暗态下,两个样品的电流与电压曲线几乎重合,在所给出的电压范围内电流几乎为0。AM1.5G光照下,对比样品在偏压(即光阳极与对电极之间的电势差)大于0.15V时才出现明显光电流。而本发明方案所提出的目标样品则在偏压为-0.3V时已经出现显著光电流密度,且随着偏压的增加光电流明显增加。零偏压时,目标样品的光电流达到0.4mA/cm2,而对比样品的光电流可忽略。这些数据说明采用本发明方案的氧化铁光阳极体系可以实现显著的完全光解水,而直接生长在FTO基底上的氧化铁光阳极体系则不能。

Claims (4)

1.一种内嵌硅pn结的氧化铁光阳极体系,所述的光阳极为复合层式结构,其特征在于:沿着光入射方向依次包括氧化铁吸收层、p型硅掺杂层、n型硅基底、背导电层、背防水绝缘层;所述的p型硅掺杂层与n型硅基底构成硅pn结;硅pn结的形貌为金字塔阵列结构;p型硅掺杂层与氧化铁吸收层之间设置有透明导电隧穿层,所述的透明导电隧穿层各处厚度相等;其中:氧化铁层的厚度为50~150nm;p型硅掺杂层中硼掺杂的浓度范围为5.0×(1018~1019)cm-3,深度为0.1~0.3μm,n型硅基底中掺磷的浓度范围为5.0×(1014~1015)cm-3,基底厚度为200~600μm,透明导电隧穿层厚度为10~50nm。
2.根据权利要求1所述的内嵌硅pn结的氧化铁光阳极体系,其特征在于:所述金字塔阵列为密排形貌、随机分布。
3.根据权利要求2所述的内嵌硅pn结的氧化铁光阳极体系,其特征在于:透明导电隧穿层为掺铌的氧化锡。
4.一种内嵌硅pn结的氧化铁光阳极体系的制备方法,其特征在于:包括以下步骤:
a.采用碱性湿法腐蚀硅技术在n型硅基底上制备硅金字塔阵列;
b.在硅金字塔阵列上进行硼掺杂,得到p型硅掺杂层;p型硅掺杂层与n型硅基底构成硅pn结;
c.以硅金字塔阵列为基底,采用原子层沉积技术生长透明导电隧穿层;
d.在透明导电隧穿层表面以超声喷雾热解法生长氧化铁吸收层;
e.在n型硅基底的背面制作导电层,并引出外置导线;
f.在导电层上涂覆防水绝缘层;
所述步骤a中,n型硅基底掺磷的浓度范围为5.0×(1014~1015)cm-3
所述步骤b中,硼掺杂的浓度范围为5.0×(1018~1019)cm-3,结深为0.1~0.3μm;
所述步骤c中,透明导电隧穿层中的金属元素在进行步骤d时可热扩散至氧化铁吸收层中;透明导电隧穿层的厚度为10~50nm;
所述步骤d中,氧化铁吸收层的厚度为50~150nm。
CN201910521496.XA 2019-06-17 2019-06-17 一种内嵌硅pn结的氧化铁光阳极体系及制备方法 Active CN110224033B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910521496.XA CN110224033B (zh) 2019-06-17 2019-06-17 一种内嵌硅pn结的氧化铁光阳极体系及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910521496.XA CN110224033B (zh) 2019-06-17 2019-06-17 一种内嵌硅pn结的氧化铁光阳极体系及制备方法

Publications (2)

Publication Number Publication Date
CN110224033A CN110224033A (zh) 2019-09-10
CN110224033B true CN110224033B (zh) 2020-12-08

Family

ID=67817346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910521496.XA Active CN110224033B (zh) 2019-06-17 2019-06-17 一种内嵌硅pn结的氧化铁光阳极体系及制备方法

Country Status (1)

Country Link
CN (1) CN110224033B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262911B (zh) * 2021-12-27 2023-03-21 安阳工学院 一种用于光解水的全空间梯度掺杂光电极及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745778A (zh) * 2011-04-20 2012-10-24 同济大学 一种二氧化锡-三氧化二铁纳米管复合电极及其制备方法
CN107142495A (zh) * 2016-03-01 2017-09-08 松下知识产权经营株式会社 光电极及其制造方法、以及光电化学电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505310A (ja) * 2008-10-08 2012-03-01 マサチューセッツ インスティテュート オブ テクノロジー 触媒材料、光アノード、ならびに水電気分解およびたの電気化学技術のための光電気化学セル
JP6034151B2 (ja) * 2012-11-20 2016-11-30 株式会社東芝 光化学反応装置
CN104711627B (zh) * 2013-12-13 2017-02-15 中国科学院大连化学物理研究所 一种光阳极‑光伏电池耦合的双光照完全光驱动分解水制氢方法
CN107641817B (zh) * 2017-09-12 2019-04-05 苏州大学 一种提高光解水性能的光阳极制备方法及所得光阳极结构
CN109252179B (zh) * 2018-09-19 2020-02-21 苏州大学 一种用于光解水的双吸收层光阳极及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745778A (zh) * 2011-04-20 2012-10-24 同济大学 一种二氧化锡-三氧化二铁纳米管复合电极及其制备方法
CN107142495A (zh) * 2016-03-01 2017-09-08 松下知识产权经营株式会社 光电极及其制造方法、以及光电化学电池

Also Published As

Publication number Publication date
CN110224033A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
KR100877817B1 (ko) 고효율 태양전지 및 그것의 제조방법
US20180219115A1 (en) Semiconductor structures for fuel generation
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
US8912035B2 (en) Solar cell and fabricating method thereof
US20200212243A1 (en) Method for manufacturing perovskite silicon tandem solar cell
CN109252179B (zh) 一种用于光解水的双吸收层光阳极及制备方法
CN104993059B (zh) 一种硅基钙钛矿异质结太阳电池及其制备方法
CN101842909A (zh) 半导体的有序阵列结构
JPH04230082A (ja) 黄銅鉱太陽電池
KR20080045598A (ko) 태양전지 및 그의 제조방법
US8664520B2 (en) Electrode of solar cell
CN111063761A (zh) 一种太阳能电池的制备工艺
CN112489848A (zh) 一种半导体辐射电池
KR102547804B1 (ko) 양면 수광형 실리콘 태양전지 및 그 제조 방법
KR101886818B1 (ko) 이종 접합 실리콘 태양 전지의 제조 방법
CN110224033B (zh) 一种内嵌硅pn结的氧化铁光阳极体系及制备方法
WO2012057604A1 (en) Nanostructure-based photovoltaic cell
KR101238988B1 (ko) 후면전극형 태양전지 및 그 제조방법
KR101223021B1 (ko) 태양전지의 제조방법 및 태양전지
CN210620237U (zh) 一种可完全光解水的内嵌硅pn结的氧化铁光阳极体系
CN209052400U (zh) 一种用于光解水的双吸收层光阳极
CN115172478B (zh) 太阳能电池及光伏组件
Hao et al. Photoelectrochemical performance of a sub-micron structured film with poly (3-methylthiophene)(P3MT)-modified CdTe/ZnO shell-core sub-micron tube arrays
CN211455704U (zh) 一种硅基阵列叠层太阳能电池
KR20120063856A (ko) 태양 전지 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant