CN110207461A - 一种从天然气中浓缩氦气的方法及装置 - Google Patents

一种从天然气中浓缩氦气的方法及装置 Download PDF

Info

Publication number
CN110207461A
CN110207461A CN201910621452.4A CN201910621452A CN110207461A CN 110207461 A CN110207461 A CN 110207461A CN 201910621452 A CN201910621452 A CN 201910621452A CN 110207461 A CN110207461 A CN 110207461A
Authority
CN
China
Prior art keywords
air
gas
heat exchanger
main heat
subcooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910621452.4A
Other languages
English (en)
Inventor
郝文炳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Union Wind Energy Technology Co Ltd
Original Assignee
Shanghai Union Wind Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Union Wind Energy Technology Co Ltd filed Critical Shanghai Union Wind Energy Technology Co Ltd
Priority to CN201910621452.4A priority Critical patent/CN110207461A/zh
Publication of CN110207461A publication Critical patent/CN110207461A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/029Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/80Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/30Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明公开了一种从天然气中浓缩氦气的方法及装置,该装置包括空气膨胀机、冷却器、冷箱、主换热器、空气再沸器、LNG再沸器、精馏塔、过冷器、冷凝蒸发器、粗氦气过冷器和气液分离器。本发明针对含有氦气的原料气中又富含氢气的特点,采用空气膨胀工艺、气液分离器二次浓缩,提供一种低温精馏环境下从天然气中同时浓缩氦气与氢气的方法和装置;该浓缩氦气的方法及装置,流程设计合理,操作简单,氦气的提取率高,产品粗氦气中的氮气含量低,解决了含氢气原料的浓缩问题。

Description

一种从天然气中浓缩氦气的方法及装置
技术领域
本发明涉及一种氦气浓缩的方法,尤其涉及一种使用空气膨胀制冷、双再沸器加热、气液分离器从天然气中浓缩氦气的方法及装置。
背景技术
氦气是一种战略性物质,在航天、国防、医疗和检漏等领域具有非常重要的作用。氦气是惰性气体,其在空气中的含量仅为5.24×10-6。氦气在空分设备精馏塔内为不凝气,而以气态聚集在主冷凝器顶部和氮回流液中。不易被分离。氦气主要存在于天然气中,从天然气中提取氦气,是氦气生产的主要来源。但中国天然气中的氦含量极少,而液化天然气的闪蒸气(BOG)或其它以天然气为原料的化工尾气中富含氦,从中提取的经济价值更高。但部分BOG气体中会含有少量氢气,使用深冷法分离氦气与氢气的能耗较高,会使氦气的经济价值下降。
现有技术中,已公开专利CN207456020U公开了一种LNG闪蒸气的提氦、脱氮和再液化装置,其流程组织中不涉及氢气,对于有氢气的原料气体,此装置不具备浓缩条件。已公开专利CN208042611U公开了一宗从天然气中提氦并液化的装置,其使用双塔、操作复杂,并且也无法分离氦气中的氢气。因此,本领域的技术人员致力于开发一种可以浓缩原料中含有微量氢气的天然气方法。
发明内容
本发明的目的是针对含有氦气的原料气中又富含氢气的特点,提供一种使用空气膨胀制冷、双再沸器加热、气液分离器从天然气中浓缩氦气的方法及装置。
为实现上述目的,本发明采用以下技术方案:
本发明第一个方面是提供一种从天然气中浓缩氦气的方法,包括如下步骤:
(1)经压缩、预冷纯化去除水和二氧化碳后的空气进入空气膨胀机进行压缩处理,经压缩后的空气进入冷却器进行冷却降温,然后再进入主换热器进行再次降温;
(2)降温后的空气从主换热器中部抽出后,送入空气再沸器加热其中的LNG液体,空气被降温后进入主换热器中部进一步降温;
(3)经主换热器进一步降温的空气,部分空气从主换热器冷端抽出进入过冷器中被进一步过冷降温,自所述过冷器抽出的过冷液空的一部分,经调节压力后送入冷凝蒸发器中被蒸发汽化为空气,从冷凝蒸发器汽化后的空气进入过冷器回收冷量,再次进入主换热器E1进行复热后送出冷箱;
(4)同时,带压力的天然气原料进入主换热器被降温至部分带液后,抽出送入精馏塔底部的LNG再沸器中,以对另一侧的LNG液体加热,本身被进一步液化后出LNG再沸器,经调压后送入精馏塔中部参与精馏;
(5)精馏塔内的重组分在塔底积聚,设置于塔底的空气再沸器和LNG再沸器加热积聚在所述精馏塔塔底的液体,重组分以气体形式从所述精馏塔底部抽出,经所述主换热器复热后送出冷箱;
(6)精馏塔内的轻组分在顶部聚集,送入冷凝蒸发器中液化,部分不凝气从冷凝蒸发器顶部抽出,进入粗氦气过冷器降温被部分液化后送入气液分离器,液体部分从气液分离器底部抽出后作为冷源送入粗氦过冷器;从气液分离器顶部抽出的不凝气通过过冷器后,再送入主换热器回收冷量,被复热至常温后送出冷箱进行下一步提纯。
进一步地,所述步骤(3)中,经主换热器进一步降温的空气,另一部分空气从主换热器中下部抽出,送入膨胀机膨胀端膨胀至较低压力且空气本身温度降低后,被送回主换热器冷端作为冷源,复热出冷箱放空或循环利用。
进一步地,所述步骤(3)中,自过冷器抽出的过冷液空的另一部分,经低压液空节流阀形成低压液空,与从气液分离器排除的液氮一并送入粗氦气过冷器E3回收低温冷量,然后与从冷凝蒸发器汽化的空气汇合进入过冷器回收冷量,之后进入主换热器回收冷量进行复热后出冷箱。
进一步地,所述步骤(3)中,自过冷器抽出的过冷液空的另一部分,经调压后通过管道送出冷箱。
进一步地,所述步骤(6)中,轻组分送入冷凝蒸发器中被液化,被液化的液体流回精馏塔内,为精馏提供液体。
进一步地,所述步骤(6)中,不凝气进入粗氦气过冷器降温被部分液化后送入气液分离器,液体部分从气液分离器底部抽出后,与自所述自过冷器抽出的另一部分过冷液空形成的低压液空一并送入粗氦气过冷器回收低温冷量。
本发明的第二个方面是提供一种如所述方法的从天然气中浓缩氦气的装置,包括空气膨胀机、冷却器、冷箱、主换热器、空气再沸器、LNG再沸器、精馏塔、过冷器、冷凝蒸发器、粗氦气过冷器和气液分离器;其中:
所述空气膨胀机通过管道经所述冷却器、所述主换热器与所述空气再沸器连接,用于将去除水和二氧化碳后的空气压缩后依次送入所述冷却器和主换热器进行二次降温,降温后的空气通过管道从所述主换热器中部抽出送入空气再沸器,以加热其中的LNG液体;
所述空气再沸器通过管道与主换热器连接,用于将降温后的空气送入主换热器中部作进一步降温处理;再次降温后的空气分为两部分,一部分从所述主换热器冷端通过管道经所述过冷器被进一步过冷降温后送入冷凝蒸发器;所述冷凝蒸发器通过管道依次经所述过冷器连接主换热器并出冷箱,用于所述冷凝蒸发器中被蒸发汽化后的空气进入过冷器回收冷量,再次进入主换热器进行复热后送出冷箱;
带压力的天然气原料通过管道经所述主换热器与所述精馏塔底部的LNG再沸器连接,天然气原料经所述主换热器被降温至部分带液后送入LNG再沸器中对另一侧的LNG液体进行加热;所述LNG再沸器通过管道与所述精馏塔连接,用于将液化后的天然气经调压后送入精馏塔中部参与精馏;
所述精馏塔底部通过管道经所述主换热器与冷箱外连通,用于将积聚于塔底的重组分以气体的形式从精馏塔底部抽出,经过主换热器复热回收冷量后送出冷箱;以及
所述精馏塔顶部通过管道与所述冷凝蒸发器底部连接,以将聚集在塔顶的轻组分送入冷凝蒸发器中液化;所述冷凝蒸发器顶部通过管道经所述粗氦过冷器与所述气液分离器连接,以将自所述冷凝蒸发器顶部抽出的不凝气进入粗氦气过冷器降温被部分液化后送入气液分离器;所述气液分离器顶部通过管道依次经所述过冷器、主换热器出所述冷箱,用于将气液分离器顶部抽出的不凝气通过过冷器和主换热器回收冷量后送出冷箱。
进一步地,所述主换热器的中下部通过管道连接所述空气膨胀机的膨胀端,所述空气膨胀机的膨胀端通过管道经所述主换热器底部与所述冷箱外界连通,所述再次降温后的空气分为两部分,其中的另一部分空气从主换热器中下部抽出,送入膨胀机膨胀端膨胀至较低压力且空气本身温度降低后,被送回主换热器冷端作为冷源,复热出冷箱放空或循环利用。
进一步地,所述气液分离器的底部通过管道经所述粗氦过冷器与所述冷凝蒸发器顶部的排空气管道汇合,一并通过管道经所述过冷器、主换热器与冷箱外界连通。
进一步优选地,所述主换热器冷端通过管道经所述过冷器后分为三支:其中,第一支通过管道与所述冷凝蒸发器连接,用于将经所述过冷器降温后的空气送入所述冷凝蒸发器进行蒸发处理;第二支通过管道与所述冷箱外界连通;第三支通过管道与所述气液分离器底部的管道连通,以将所述过冷器抽出的部分过冷液空与所述气液分离器底部排出的液氮一并通过管道送入粗氦气过冷器中回收低温冷量。
本发明采用上述技术方案,与现有技术相比,具有如下技术效果:
本发明针对含有氦气的原料气中又富含氢气的特点,采用空气膨胀工艺、气液分离器二次浓缩,提供一种低温精馏环境下从天然气中同时浓缩氦气与氢气的方法和装置;该浓缩氦气的方法及装置,流程设计合理,操作简单,氦气的提取率高,产品粗氦气中的氮气含量低,解决了含氢气原料的浓缩问题。
附图说明
图1为本发明一种从天然气中浓缩氦气的装置的结构示意图。
其中,各附图标记为:
1-空气膨胀机、2-冷却器、3-冷箱、4-气液分离器,E1-主换热器、K1-空气再沸器、K2-LNG再沸器、C1-精馏塔、E2-过冷器、E3-粗氦气过冷器、K3-冷凝蒸发器。
具体实施方式
下面通过具体实施例对本发明进行详细和具体的介绍,以使更好的理解本发明,但是下述实施例并不限制本发明范围。
实施例1
请参阅图1所示,本实施例针对含有氦气的原料气中又富含氢气的特点,采用空气膨胀工艺、气液分离器二次浓缩,提供一种低温精馏环境下从天然气中同时浓缩氦气与氢气的方法,具体包括如下步骤:
(1)经压缩、预冷纯化去除水和二氧化碳后的空气进入空气膨胀机1进行压缩处理,经压缩后的空气进入冷却器2进行冷却降温,然后再进入主换热器E1进行再次降温;空气的压缩、预冷纯化为现在空分中常规技术,本方法中不再叙述;
(2)降温后的空气从主换热器E1中部抽出后,送入空气再沸器K1加热其中的LNG液体,空气被降温后进入主换热器E1中部进一步降温;
(3)经主换热器E1进一步降温的空气,部分空气从主换热器E1冷端抽出进入过冷器E2中被进一步过冷降温,自所述过冷器E2抽出的过冷液空的一部分,经调节压力后送入冷凝蒸发器K3中被蒸发汽化为空气,从冷凝蒸发器K3汽化后的空气进入过冷器E2回收冷量,再次进入主换热器E1进行复热后送出冷箱3;
(4)同时,带压力的天然气原料天然气、BOG气体或化工原料进入主换热器E1被降温至部分带液后,抽出送入精馏塔C1底部的LNG再沸器K2中,以对另一侧的LNG液体加热,本身被进一步液化后出LNG再沸器,经调压后送入精馏塔C1中部参与精馏;
(5)精馏塔C1内的重组分在塔底积聚,设置于塔底的空气再沸器K1和LNG再沸器K2加热积聚在所述精馏塔C1塔底的液体,重组分以气体形式从所述精馏塔C1底部抽出,经所述主换热器E1复热后送出冷箱3;
(6)精馏塔C1内的轻组分在顶部聚集,送入冷凝蒸发器K3中液化,部分不凝气从冷凝蒸发器K3顶部抽出,进入粗氦气过冷器E3降温被部分液化后送入气液分离器4,液体部分从气液分离器4底部抽出后作为冷源送入粗氦过冷器E3;从气液分离器4顶部抽出的不凝气通过过冷器E2后,再送入主换热器E1回收冷量,被复热至常温后送出冷箱3进行下一步提纯。
在本实施例中,如图1所示,所述步骤(3)中,经主换热器E1进一步降温的空气,另一部分空气从主换热器E1中下部抽出,送入膨胀机1膨胀端膨胀至较低压力且空气本身温度降低后,被送回主换热器E1冷端作为冷源,复热出冷箱3放空或循环利用。
在本实施例中,如图1所示,所述步骤(3)中,自过冷器E2抽出的过冷液空的另一部分,经低压液空节流阀形成低压液空,与从气液分离器4排除的液氮一并送入粗氦气过冷器E3回收低温冷量,然后与从冷凝蒸发器K3汽化的空气汇合进入过冷器E2回收冷量,之后进入主换热器E1回收冷量进行复热后出冷箱3。此外,自过冷器E2抽出的过冷液空的另一部分,经调压后通过管道送出冷箱3。
在本实施例中,如图1所示,所述步骤(6)中,轻组分送入冷凝蒸发器K3中被液化,被液化的液体流回精馏塔C1内,为精馏提供液体。且不凝气进入粗氦气过冷器E3降温被部分液化后送入气液分离器4,液体部分从气液分离器4底部抽出后,与自所述自过冷器E2抽出的另一部分过冷液空形成的低压液空一并送入粗氦气过冷器E3回收低温冷量。
实施例2
请参阅图1所示,本实施例提供了一种如所述方法的从天然气中浓缩氦气的装置,包括空气膨胀机1、冷却器2、冷箱3、主换热器E1、空气再沸器K1、LNG再沸器K2、精馏塔C1、过冷器E2、冷凝蒸发器K3、粗氦气过冷器E3和气液分离器4。该浓缩氦气的装置,流程设计合理,操作简单,氦气的提取率高,产品粗氦气中的氮气含量低,解决了含氢气原料的浓缩问题。
如图1所示,所述空气膨胀机1通过管道经所述冷却器2、所述主换热器E1与所述空气再沸器K1连接,用于将去除水和二氧化碳后的空气压缩后依次送入所述冷却器2和主换热器E1进行二次降温,降温后的空气通过管道从所述主换热器E1中部抽出送入空气再沸器K1,以加热其中的LNG液体,空气被降温后,进入主换热器E1中部进一步降温。
如图1所示,所述空气再沸器K1通过管道与主换热器E1连接,用于将降温后的空气送入主换热器E1中部作进一步降温处理;再次降温后的空气分为两部分,一部分从所述主换热器E1冷端通过管道经所述过冷器E2被进一步过冷降温后送入冷凝蒸发器K3;所述冷凝蒸发器K3通过管道依次经所述过冷器E2连接主换热器E1并出冷箱3,用于所述冷凝蒸发器K3中被蒸发汽化后的空气进入过冷器E2回收冷量,再次进入主换热器E1进行复热后送出冷箱3,放空或循环使用。
如图1所示,带压力的天然气原料天然气、BOG气体或化工原料通过管道经所述主换热器E1与所述精馏塔C1底部的LNG再沸器K2连接,天然气原料经所述主换热器E1被降温至部分带液后送入LNG再沸器K2中对另一侧的LNG液体进行加热,本身被进一步液化后出LNG再沸器;所述LNG再沸器K2通过管道与所述精馏塔C1连接,用于将液化后的天然气经调压后送入精馏塔C1中部参与精馏。
如图1所示,在精馏塔C1内,有多块塔板或者填料,以供各组分在上面精馏,重组分在塔底积聚,主要为甲烷。所述精馏塔C1底部通过管道经所述主换热器E1与冷箱3外连通,用于将积聚于塔底的重组分以气体的形式从精馏塔C1底部抽出,经过主换热器E1复热回收冷量后送出冷箱3,送给用户。
如图1所示,所述精馏塔C1顶部通过管道与所述冷凝蒸发器K3底部连接,以将聚集在塔顶的轻组分主要为氮气、氦气、氢气送入冷凝蒸发器K3中液化;所述冷凝蒸发器K3顶部通过管道经所述粗氦过冷器E3与所述气液分离器4连接,以将自所述冷凝蒸发器K3顶部抽出的不凝气进入粗氦气过冷器E3降温被部分液化后送入气液分离器4,不凝气中主要为浓缩的氢气和氦气以及氮气,进入粗氦气过冷器降温被部分液化,送入气液分离器分离气体主要为氦气、氢气和液体主要成为为氮气。所述气液分离器4顶部通过管道依次经所述过冷器E2、主换热器E1出所述冷箱3,用于将气液分离器4顶部抽出的不凝气通过过冷器E2和主换热器E1回收冷量后送出冷箱3。
如图1所示,所述主换热器E1的中下部通过管道连接所述空气膨胀机1的膨胀端,所述空气膨胀机1的膨胀端通过管道经所述主换热器E1底部与所述冷箱3外界连通,所述再次降温后的空气分为两部分,其中的另一部分空气从主换热器E1中下部抽出,送入膨胀机1膨胀端膨胀至较低压力且空气本身温度降低后,被送回主换热器E1冷端作为冷源,复热出冷箱3放空或循环利用。
如图1所示,所述气液分离器4的底部通过管道经所述粗氦过冷器E3与所述冷凝蒸发器K3顶部的排空气管道汇合,一并通过管道经所述过冷器E2、主换热器E1与冷箱3外界连通。即液体从气液分离器4底部抽出后,与低压液空汇合后,作为冷源送入粗氦过冷器E3。
如图1所示,所述主换热器E1冷端通过管道经所述过冷器E2后分为三支:其中,第一支通过管道与所述冷凝蒸发器K3连接,用于将经所述过冷器E2降温后的空气送入所述冷凝蒸发器K3进行蒸发处理;第二支通过管道与所述冷箱3外界连通;第三支通过管道与所述气液分离器4底部的管道连通,以将所述过冷器E2抽出的部分过冷液空与所述气液分离器4底部排出的液氮一并通过管道送入粗氦气过冷器E3中回收低温冷量。
实施例3
基于上述实施例1所述的浓缩方法和实施例2所述的浓缩装置,本实施例提供一种采用该浓缩方法和浓缩装置的具体应用方式。为了实现氦气浓缩的方法,如图1所示,该包括浓缩装置:空气膨胀机1、冷却器2、冷箱3、气液分离器4、主换热器E1、空气再沸器K1、LNG再沸器K2、精馏塔C1、过冷器E2、粗氦气过冷器E3、冷凝蒸发器K3以及液空节流阀V1、LNG节流阀V2、空气出冷凝蒸发器调节阀V3、低压液空节流阀V4、液氮出气液分离器阀V5、液空抽出阀V6等控制阀门。
空气经过压缩、预冷纯化(空气的压缩、预冷纯化为现在空分中常规技术,本方法中不再叙述),去除水和二氧化塔后,压力为~0.7MPaA(为绝压,下同),流量为5500Nm3/h,温度为10~20℃,经由GA-101进入1空气膨胀机1的增压端进口,被增压至0.9~1MPaA后,进入冷却器2冷却降温至40℃,经GA-103进入冷箱。空气首先进入主换热器E1降温,至-107~-109℃从主换热器E1中部抽出后,送入空气再沸器K1,利用空气的热量为加热空气再沸器K1中的LNG液体,空气被降温至-133~-135℃后,进入主换热器E1中部进一步降温。
从主换热器E1中下部,抽出一部分流量为~4800Nm3/h、温度为-140℃~-145℃的空气,送入空气膨胀机1的膨胀端膨胀至压力0.13MPaA,空气本身温度降低至-189℃,被送回主换热器E1的冷端,作为冷源复热至~17℃出冷箱3放空或循环利用。
同时,从主换热器E1底部,抽出另一部分流量为~700Nm3/h的空气,在经主换热器E1冷端被液化后,由LA-106进入过冷器E2,进一步过冷降温至-173~-178℃,抽出的过冷液空的一部分在LA107经过液空节流阀V1调节压力至0.2~0.3MpaA后由LA107送入冷凝蒸发器K3,送入冷凝蒸发器K3的液空在冷凝蒸发器K3中被蒸发汽化为空气,吸收热量;另一部分过冷液空通过LA-111低压液空节流阀V4减压成为低压液空,压力为0.12~0.15MpaA进一步降低温度至-190~-191℃,与从气液分离器4底部排除的液氮(LN-403)一并送入粗氦气过冷器E3回收低温冷量,从冷凝蒸发器K3被汽化的空气通过GA-108出冷凝蒸发器调节阀V3调节压力后,与GA-112汇合,进入过冷器E2回收冷量,再送入主换热器E1复热出冷箱3,最后通过GA-110放空或循环使用。
带压力的天然气原料(组分:He:1.7%,H2:0.26%,N2:10.3%,CH4:其余)进入冷箱,流量为2500Nm3/h,压力为1.2MPa首先进入主换热器E1被降温-122~-124℃,部分带液后,由GNG-301抽出送入精馏塔C1底部的LNG再沸器K2中对另一侧的LNG液体加热,本身被进一步液化后由LNG-302出LNG再沸器K2,温度降至-134~-135℃,由LNG-302通过节流阀V2调节压力至比塔压略高0.6MpaA后送入精馏塔C1中部参与精馏。在精馏塔C1内,有多块塔板或者填料,以供各组分在上面精馏,重组分(主要为CH4)在塔底积聚,塔底甲烷浓度可达>97%),设置于塔底的空气再沸器K1和LNG再沸器K2加热塔底液体,重组分以气体形式从塔底部通过GNG-303抽出,压力为0.56MpaA,经过主换热器E1复热回收冷量后,送出冷箱3,送给用户。本实施例中精馏塔底部压力为0.56MPaA,塔底温度为:-135.6℃,与两个再沸器保持温差。塔顶压力为0.55MpaA,塔顶温度为~-181.6℃。
轻组分(主要为氮气、氦气、氢气)在精馏塔C1顶部聚集,由GN-401送入冷凝蒸发器K3中液化,部分不凝气从冷凝蒸发器K3顶部抽出;本实施例中,不凝气的组分为:He:19.4%,H2:2.9%,N2:其余;流量为:218Nm3/h。被液化的液体流回精馏塔C1内,为精馏提供液体。不凝气由GN-402进入粗氦气过冷器E3降温至-189~-190℃被部分液化,送入气液分离器4分离气体(He:51.5%,H2:7.6%,N2:其余)和液体(N2:99.8%)。液体从气液分离器4底部抽出LN-403,与低压液空LA-111汇合后,作为冷源送入粗氦过冷器E3。从气液分离器4顶部出来的气体由GHe-501通过过冷器E2后,再送入主换热器E1回收冷量,被复热的常温后送出冷箱3。氦气被进一步的浓缩,氮气含量被进一步降低,降低了进一步提纯的负荷。
本实施例提供的浓缩氦气和氢气的方法,其流程设计合理,操作简单,氦气的提取率高,产品粗氦气中的氮气含量低,解决了含氢气原料的浓缩问题。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (10)

1.一种从天然气中浓缩氦气的方法,其特征在于,包括如下步骤:
(1)经压缩、预冷纯化去除水和二氧化碳后的空气进入空气膨胀机(1)进行压缩处理,经压缩后的空气进入冷却器(2)进行冷却降温,然后再进入主换热器(E1)进行再次降温;
(2)降温后的空气从主换热器(E1)中部抽出后,送入空气再沸器(K1)加热其中的LNG液体,空气被降温后进入主换热器(E1)中部进一步降温;
(3)经主换热器(E1)进一步降温的空气,部分空气从主换热器(E1)冷端抽出进入过冷器(E2)中被进一步过冷降温,自所述过冷器(E2)抽出的过冷液空的一部分,经调节压力后送入冷凝蒸发器(K3)中被蒸发汽化为空气,从冷凝蒸发器(K3)汽化后的空气进入过冷器(E2)回收冷量,再次进入主换热器(E1)进行复热后送出冷箱(3);
(4)同时,带压力的天然气原料进入主换热器(E1)被降温至部分带液后,抽出送入精馏塔(C1)底部的LNG再沸器(K2)中,以对另一侧的LNG液体加热,本身被进一步液化后出LNG再沸器,经调压后送入精馏塔(C1)中部参与精馏;
(5)精馏塔(C1)内的重组分在塔底积聚,设置于塔底的空气再沸器(K1)和LNG再沸器(K2)加热积聚在所述精馏塔(C1)塔底的液体,重组分以气体形式从所述精馏塔(C1)底部抽出,经所述主换热器(E1)复热后送出冷箱(3);
(6)精馏塔(C1)内的轻组分在顶部聚集,送入冷凝蒸发器(K3)中液化,部分不凝气从冷凝蒸发器(K3)顶部抽出,进入粗氦气过冷器(E3)降温被部分液化后送入气液分离器(4),液体部分从气液分离器(4)底部抽出后作为冷源送入粗氦过冷器(E3);从气液分离器(4)顶部抽出的不凝气通过过冷器(E2)后,再送入主换热器(E1)回收冷量,被复热至常温后送出冷箱(3)。
2.根据权利要求1所述的从天然气中浓缩氦气的方法,其特征在于,所述步骤(3)中,经主换热器(E1)进一步降温的空气,另一部分空气从主换热器(E1)中下部抽出,送入膨胀机(1)膨胀端膨胀至较低压力且空气本身温度降低后,被送回主换热器(E1)冷端作为冷源,复热出冷箱(3)放空或循环利用。
3.根据权利要求1所述的从天然气中浓缩氦气的方法,其特征在于,所述步骤(3)中,自过冷器(E2)抽出的过冷液空的另一部分,经低压液空节流阀形成低压液空,与从气液分离器(4)排除的液氮一并送入粗氦气过冷器(E3)回收低温冷量,然后与从冷凝蒸发器(K3)汽化的空气汇合进入过冷器(E2)回收冷量,之后进入主换热器(E1)回收冷量进行复热后出冷箱(3)。
4.根据权利要求1所述的从天然气中浓缩氦气的方法,其特征在于,所述步骤(3)中,自过冷器(E2)抽出的过冷液空的另一部分,经调压后通过管道送出冷箱(3)。
5.根据权利要求1所述的从天然气中浓缩氦气的方法,其特征在于,所述步骤(6)中,轻组分送入冷凝蒸发器(K3)中被液化,被液化的液体流回精馏塔(C1)内,为精馏提供液体。
6.根据权利要求1所述的从天然气中浓缩氦气的方法,其特征在于,所述步骤(6)中,不凝气进入粗氦气过冷器(E3)降温被部分液化后送入气液分离器(4),液体部分从气液分离器(4)底部抽出后,与自所述自过冷器(E2)抽出的另一部分过冷液空形成的低压液空一并送入粗氦气过冷器(E3)回收低温冷量。
7.一种如权利要求1-6任一项所述方法的从天然气中浓缩氦气的装置,其特征在于,包括空气膨胀机(1)、冷却器(2)、冷箱(3)、主换热器(E1)、空气再沸器(K1)、LNG再沸器(K2)、精馏塔(C1)、过冷器(E2)、冷凝蒸发器(K3)、粗氦气过冷器(E3)和气液分离器(4);其中:
所述空气膨胀机(1)通过管道经所述冷却器(2)、所述主换热器(E1)与所述空气再沸器(K1)连接,用于将去除水和二氧化碳后的空气压缩后依次送入所述冷却器(2)和主换热器(E1)进行二次降温,降温后的空气通过管道从所述主换热器(E1)中部抽出送入空气再沸器(K1),以加热其中的LNG液体;
所述空气再沸器(K1)通过管道与主换热器(E1)连接,用于将降温后的空气送入主换热器(E1)中部作进一步降温处理;再次降温后的空气分为两部分,一部分从所述主换热器(E1)冷端通过管道经所述过冷器(E2)被进一步过冷降温后送入冷凝蒸发器(K3);所述冷凝蒸发器(K3)通过管道依次经所述过冷器(E2)连接主换热器(E1)并出冷箱(3),用于所述冷凝蒸发器(K3)中被蒸发汽化后的空气进入过冷器(E2)回收冷量,再次进入主换热器(E1)进行复热后送出冷箱(3);
带压力的天然气原料通过管道经所述主换热器(E1)与所述精馏塔(C1)底部的LNG再沸器(K2)连接,天然气原料经所述主换热器(E1)被降温至部分带液后送入LNG再沸器(K2)中对另一侧的LNG液体进行加热;所述LNG再沸器(K2)通过管道与所述精馏塔(C1)连接,用于将液化后的天然气经调压后送入精馏塔(C1)中部参与精馏;
所述精馏塔(C1)底部通过管道经所述主换热器(E1)与冷箱(3)外连通,用于将积聚于塔底的重组分以气体的形式从精馏塔(C1)底部抽出,经过主换热器(E1)复热回收冷量后送出冷箱(3);以及
所述精馏塔(C1)顶部通过管道与所述冷凝蒸发器(K3)底部连接,以将聚集在塔顶的轻组分送入冷凝蒸发器(K3)中液化;所述冷凝蒸发器(K3)顶部通过管道经所述粗氦过冷器(E3)与所述气液分离器(4)连接,以将自所述冷凝蒸发器(K3)顶部抽出的不凝气进入粗氦气过冷器(E3)降温被部分液化后送入气液分离器(4);所述气液分离器(4)顶部通过管道依次经所述过冷器(E2)、主换热器(E1)出所述冷箱(3),用于将气液分离器(4)顶部抽出的不凝气通过过冷器(E2)和主换热器(E1)回收冷量后送出冷箱(3)。
8.根据权利要求7所述的从天然气中浓缩氦气的装置,其特征在于,所述主换热器(E1)的中下部通过管道连接所述空气膨胀机(1)的膨胀端,所述空气膨胀机(1)的膨胀端通过管道经所述主换热器(E1)底部与所述冷箱(3)外界连通,所述再次降温后的空气分为两部分,其中的另一部分空气从主换热器(E1)中下部抽出,送入膨胀机(1)膨胀端膨胀至较低压力且空气本身温度降低后,被送回主换热器(E1)冷端作为冷源,复热出冷箱(3)放空或循环利用。
9.根据权利要求1所述的从天然气中浓缩氦气的装置,其特征在于,所述气液分离器(4)的底部通过管道经所述粗氦过冷器(E3)与所述冷凝蒸发器(K3)顶部的排空气管道汇合,一并通过管道经所述过冷器(E2)、主换热器(E1)与冷箱(3)外界连通。
10.根据权利要求9所述的从天然气中浓缩氦气的装置,其特征在于,所述主换热器(E1)冷端通过管道经所述过冷器(E2)后分为三支:其中,第一支通过管道与所述冷凝蒸发器(K3)连接,用于将经所述过冷器(E2)降温后的空气送入所述冷凝蒸发器(K3)进行蒸发处理;第二支通过管道与所述冷箱(3)外界连通;第三支通过管道与所述气液分离器(4)底部的管道连通,以将所述过冷器(E2)抽出的部分过冷液空与所述气液分离器(4)底部排出的液氮一并通过管道送入粗氦气过冷器(E3)中回收低温冷量。
CN201910621452.4A 2019-07-10 2019-07-10 一种从天然气中浓缩氦气的方法及装置 Withdrawn CN110207461A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910621452.4A CN110207461A (zh) 2019-07-10 2019-07-10 一种从天然气中浓缩氦气的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910621452.4A CN110207461A (zh) 2019-07-10 2019-07-10 一种从天然气中浓缩氦气的方法及装置

Publications (1)

Publication Number Publication Date
CN110207461A true CN110207461A (zh) 2019-09-06

Family

ID=67797122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910621452.4A Withdrawn CN110207461A (zh) 2019-07-10 2019-07-10 一种从天然气中浓缩氦气的方法及装置

Country Status (1)

Country Link
CN (1) CN110207461A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670001A (zh) * 2021-08-18 2021-11-19 广州市粤佳气体有限公司 一种天然气bog中提取氦气低温精馏方法
CN114046628A (zh) * 2022-01-11 2022-02-15 浙江浙能天然气运行有限公司 一种天然气脱氮装置
CN114593559A (zh) * 2020-12-04 2022-06-07 惠生(南通)重工有限公司 一种应用于flng的bog精馏脱氮装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593559A (zh) * 2020-12-04 2022-06-07 惠生(南通)重工有限公司 一种应用于flng的bog精馏脱氮装置
CN114593559B (zh) * 2020-12-04 2024-03-26 惠生清洁能源科技集团股份有限公司 一种应用于flng的bog精馏脱氮装置
CN113670001A (zh) * 2021-08-18 2021-11-19 广州市粤佳气体有限公司 一种天然气bog中提取氦气低温精馏方法
CN114046628A (zh) * 2022-01-11 2022-02-15 浙江浙能天然气运行有限公司 一种天然气脱氮装置

Similar Documents

Publication Publication Date Title
CN105004139B (zh) 在生产液化天然气时使用制冷热泵一体地移除氮
RU2702074C2 (ru) Способ (варианты) и устройство (варианты) для получения обедненного азотом продукта спг
CN105043011B (zh) 在生产液化天然气时用中间进料气体分离来一体地移除氮
US20170038137A1 (en) Method for the production of liquefied natural gas and nitrogen
US10113127B2 (en) Process for separating nitrogen from a natural gas stream with nitrogen stripping in the production of liquefied natural gas
CN100592013C (zh) 利用从液化天然气中提取的冷量生产液氧的空气分离方法
US3721099A (en) Fractional condensation of natural gas
CN110207461A (zh) 一种从天然气中浓缩氦气的方法及装置
CN105783424B (zh) 利用液化天然气冷能生产高压富氧气体的空气分离方法
CN109838975A (zh) 一种低能耗液氮制取装置及工艺
CN204115392U (zh) 带补气压缩机的全液体空分设备
CN108731381B (zh) 一种液化天然气联产液氦的工艺装置及方法
CN101846436A (zh) 利用lng冷能的全液体空气分离装置
CN211400511U (zh) 用于制备贫氮气液化天然气产物的设备
CN109631494B (zh) 一种氦气生产***和生产方法
CN108700373A (zh) 用于稀有气体回收的***和方法
CN106595221A (zh) 制氧***和制氧方法
CN111854324A (zh) 一种从天然气中提取氦气的***及其方法
CN105135820B (zh) 利用含空气瓦斯制取lng的方法以及***
KR20210116269A (ko) 질소 제거에 의한 lng 생산
CN102735020B (zh) 一种天然气提氦的方法
RU2580453C1 (ru) Способ переработки природного углеводородного газа
WO2022106801A3 (en) Process for producing liquefied hydrogen
US20040255618A1 (en) Method and installation for helium production
CN101915495A (zh) 利用液化天然气冷能的全液体空气分离装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190906