CN110186251B - 一种适用于超大规模的三循环天然气液化装置及方法 - Google Patents

一种适用于超大规模的三循环天然气液化装置及方法 Download PDF

Info

Publication number
CN110186251B
CN110186251B CN201910500987.6A CN201910500987A CN110186251B CN 110186251 B CN110186251 B CN 110186251B CN 201910500987 A CN201910500987 A CN 201910500987A CN 110186251 B CN110186251 B CN 110186251B
Authority
CN
China
Prior art keywords
propane
heat exchanger
cmr
wmr
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910500987.6A
Other languages
English (en)
Other versions
CN110186251A (zh
Inventor
蒲黎明
蒋志明
郭成华
郑春来
刘家洪
王科
陈运强
李莹珂
王毅
汤晓勇
黄勇
田静
汪贵
周璇
王刚
李龙
谢顶衫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Petroleum Corp
China Petroleum Engineering and Construction Corp
China Petroleum Engineering Co Ltd
Original Assignee
China National Petroleum Corp
China Petroleum Engineering and Construction Corp
China Petroleum Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Petroleum Corp, China Petroleum Engineering and Construction Corp, China Petroleum Engineering Co Ltd filed Critical China National Petroleum Corp
Priority to CN201910500987.6A priority Critical patent/CN110186251B/zh
Priority to PCT/CN2019/096445 priority patent/WO2020248328A1/zh
Publication of CN110186251A publication Critical patent/CN110186251A/zh
Application granted granted Critical
Publication of CN110186251B publication Critical patent/CN110186251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • F25J1/0218Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle with one or more SCR cycles, e.g. with a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0263Details of the cold heat exchange system using different types of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明公开了一种适用于超大规模的三循环天然气液化装置及方法,装置包括天然气液化管路、丙烷预冷循环***、WMR制冷循环***和CMR制冷循环***。与现有技术相比,本发明的积极效果是:本发明以三循环为基础,分担每级制冷负荷,天然气依次通过1个板翅式换热器和2个绕管式换热器进行冷却,直至液化过冷,工艺设备数量少,天然气液化装置规模能够达到单列600~800万吨/年;液化过程所需的冷量由丙烷、WMR混合冷剂、CMR混合冷剂三个***提供,***调节手段丰富,能够为天然气液化过程提供匹配的冷量,操作灵活和对原料适应性好。

Description

一种适用于超大规模的三循环天然气液化装置及方法
技术领域
本发明涉及天然气液化深冷技术领域,具体为一种适用于超大规模的三循环天然气液化装置及方法,通过采用三级制冷循环,分配预冷段、液化段和过冷段的负荷,采用高效设备,简化流程,满足单列产能600~800万吨/年超大规模天然气液化装置建设需求。
背景技术
随着LNG技术装备的不断发展,国际上LNG工厂建设总体趋势是向着大型化发展,单列生产能力多在300~550万吨/年规模,最大规模已达780万吨/年。国际上大规模LNG装置建设采用的液化工艺技术主要有APCI公司的C3MR、DMR和AP-X工艺,康菲公司的Optimized Cascade工艺,Linde公司的MFC工艺和Shell公司的DMR工艺。大规模的LNG装置能够降低单位LNG生产成本,实现规模效益。
国内LNG装置单列最大规模为120万吨/年,采用多级单组分制冷液化工艺(MSC工艺)。基于MSC工艺实现了单列350万吨/年天然气液化工艺包开发,但该工艺无法满足单列600~800万吨/年超大规模的LNG装置建设。
因此,开发一种能适用于600~800万吨/年超大规模天然气液化装置的天然气液化工艺非常必要。
发明内容
为了克服现有技术的缺点,本发明提供了一种适用于超大规模的三循环天然气液化装置及方法,具有流程简洁、能耗低的优点。
本发明所采用的技术方案是:一种适用于超大规模的三循环天然气液化装置,包括天然气液化管路、丙烷预冷循环***、WMR制冷循环***和CMR制冷循环***,其中:
所述天然气液化管路由丙烷换热器、WMR换热器、CMR换热器、LNG膨胀机、LNG闪蒸罐和LNG增压泵依次连接组成;
所述丙烷预冷循环***包括丙烷换热器、丙烷压缩机、丙烷压缩机出口冷却器、高压丙烷气液分离罐、中压丙烷气液分液罐和低压丙烷气液分离罐,用于对天然气、WMR冷剂和CMR冷剂进行预冷;
所述WMR制冷循环***包括WMR换热器、WMR压缩机入口缓冲罐、WMR压缩机、WMR压缩机出口冷却器和WMR膨胀机,用于对天然气、CMR冷剂进一步冷却和部分液化;
所述CMR制冷循环***包括CMR换热器、CMR压缩机入口缓冲罐、CMR压缩机、CMR压缩机出口冷却器和CMR膨胀机,用于为天然气和CMR冷剂全部液化和过冷提供冷量。
本发明还公开了一种适用于超大规模的三循环天然气液化方法,包括如下步骤:
1)丙烷循环***为天然气、WMR冷剂和CMR冷剂预冷提供冷量:
从丙烷压缩机增压的丙烷经丙烷冷却器冷却后分成两股,其中一股液相丙烷通过第一高压丙烷节流阀节流降压力后进入丙烷换热器,为天然气、WMR冷剂和CMR冷剂冷却提供冷量,从丙烷换热器出来的气相丙烷回到丙烷压缩机高压吸入口;另一股液相丙烷通过第二高压丙烷节流阀节流降压力后进入高压丙烷气液分离罐进行气液分离,其中:罐顶气相丙烷回到丙烷压缩机高压吸入口,罐底液相分成两股,其中一股液相丙烷通过第一中压丙烷节流阀节流降压力后进入丙烷换热器,为天然气、WMR冷剂和CMR冷剂继续冷却提供冷量,从丙烷换热器出来的气相丙烷回到丙烷压缩机中压吸入口;另一股液相丙烷通过第二中压丙烷节流阀节流降压力后进入中压丙烷气液分离罐进行气液分离,罐顶气相丙烷回到丙烷压缩机中压吸入口,罐底的液相丙烷通过低压丙烷节流阀节流降压力后进入丙烷换热器,为天然气、WMR冷剂和CMR冷剂继续冷却提供冷量,从丙烷换热器出来的气相丙烷经过低压丙烷气液分离罐后回到丙烷压缩机低压吸入口;低压丙烷、中压丙烷、高压丙烷经丙烷压缩机增压后进行循环;
2)WMR制冷***为天然气、CMR冷剂进一步冷却及部分液化提供冷量:
从WMR换热器底部出来的WMR冷剂进入WMR压缩机入口缓冲罐,经WMR压缩机增压并经WMR冷却器冷却后,进入丙烷换热器中冷却液化;液态WMR进入WMR换热器进一步冷却后从顶部出来,经WMR膨胀机膨胀至低压后再进入WMR换热器,为天然气、WMR冷剂和CMR冷剂进一步冷却并部分液化提供冷量;从WMR换热器底部出来的低压WMR冷剂回到WMR压缩机入口缓冲罐后进行循环;
3)CMR制冷***为天然气和CMR冷剂全部液化和过冷提供冷量:
CMR冷剂经CMR压缩机增压后依次经CMR冷却器、丙烷换热器、WMR换热器、CMR换热器冷却后从CMR换热器顶部出来,再经CMR膨胀机膨胀至低压后再进入CMR换热器,为天然气和自身液化过冷提供冷量;从CMR换热器底部出来的低压CMR回到CMR压缩机入口缓冲罐后进行循环。
与现有技术相比,本发明的积极效果是:
本发明以三循环为基础,分担每级制冷负荷,天然气依次经过1个板翅式换热器和2个绕管式换热器进行冷却,直至液化过冷,工艺设备数量少,天然气液化装置规模能够达到单列600~800万吨/年;液化过程所需的冷量由丙烷、WMR混合冷剂、CMR混合冷剂三个***提供,***调节手段丰富,能够为天然气液化过程提供匹配的冷量,操作灵活和对原料适应性好。与现有技术相比,具有如下特点:
1、本发明是在多级单组分液化工艺(MSC工艺)工程应用实践基础上进行的创新和改进,工艺技术具有延续性,与MSC工艺相比,具有如下优点:
1)MSC工艺中采用丙烯预冷+乙烯冷却+混合冷剂液化过冷(混合冷剂以甲烷、氮气为主)。本发明中预冷循环采用丙烷,冷却循环采用混合冷剂,以乙烷为主,包括甲烷和丙烷;液化过冷循环冷剂采用混合冷剂,包括氮气、甲烷、乙烷。
2)冷却段、液化过冷段均采用混合冷剂,可结合驱动设备可选机型调节各制冷循环负荷,灵活地调节天然气冷却、液化和过冷温度,操作适应性更好。
3)MSC工艺中丙烯和乙烯制冷***采用管壳式换热器或CIK换热器进行换热,甲烷制冷循环采用板翅式换热器;本发明中丙烷预冷段换热设备采用高效的板翅式换热器,换热***集成度高,具有工艺流程简化、占地少等优势;本发明中WMR和CMR主低温换热器采用绕管式换热器,绕管式换热器具有单台换热面积大的特点,有利于实现天然气液化装置大型化。
2、双混合冷剂液化工艺(DMR工艺)采用2级混合冷剂制冷循环实现天然气预冷、液化和过冷,与DMR工艺相比,本发明采用三循环制冷分担各级液化负荷,实现单列600~800万吨/年超大规模天然气液化装置建设。
3、MFC工艺是一种三循环制冷循环工艺,其预冷段、液化段、过冷段均采用混合冷剂制冷;与MFC相比本发明预冷段为纯丙烷冷剂。
4、AP-X也是一种三循环制冷循环工艺,其预冷段采用丙烷制冷、液化段采用混合冷剂制冷、过冷段采用氮膨胀制冷;与AP-X工艺比较,本发明过冷段采用混合冷剂制冷。
5、本发明WMR节流、CMR节流和高压LNG节流均采用液体透平膨胀机,液体透平膨胀机为等熵膨胀,与常规节流阀等焓膨胀相比,膨胀效率高,LNG产品产量可提高1~3%,单位LNG产品能耗降低1~3%。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是本发明的工艺流程图。
具体实施方式
一种适用于超大规模的三循环天然气液化装置,如图1所示,包括:丙烷预冷板翅式换热器1、WMR绕管式换热器2、CMR绕管式换热器3、LNG液力透平膨胀机4、LNG闪蒸罐5、LNG增压泵6、丙烷压缩机7、丙烷压缩机出口冷却器8、第一高压丙烷节流阀9、第二高压丙烷节流阀10、高压丙烷气液分离罐11、第一中压丙烷节流阀12、第二中压丙烷节流阀13、中压丙烷气液分液罐14、低压丙烷节流阀15、低压丙烷气液分液罐16、WMR压缩机入口缓冲罐17、WMR压缩机18、WMR压缩机出口冷却器19、WMR液力透平膨胀机20、CMR压缩机入口缓冲罐21、CMR压缩机22、CMR压缩机出口冷却器23、CMR液力透平膨胀机24,其中:
丙烷预冷板翅式换热器1、WMR绕管式换热器2、CMR绕管式换热器3、LNG液力透平膨胀机4、LNG闪蒸罐5、LNG增压泵6依次相连。
丙烷压缩机7、丙烷压缩机出口冷却器8、第一高压丙烷节流阀9、丙烷预冷板翅式换热器1、丙烷压缩机7高压吸入口依次相连;
丙烷压缩机出口冷却器8、第二高压丙烷节流阀10、高压丙烷气液分离罐11、第一中压丙烷节流阀12、丙烷预冷板翅式换热器1、丙烷压缩机7中压吸入口依次相连;
高压丙烷气液分离罐11、第二中压丙烷节流阀13、中压丙烷气液分离罐14、低压丙烷节流阀15、丙烷预冷板翅式换热器1、低压丙烷气液分离罐16、丙烷压缩机7低压吸入口依次相连;
高压丙烷气液分离罐11出口气相与丙烷压缩机7高压吸入管线相连;中压丙烷气液分离罐14气相出口与丙烷压缩机7中压吸入管线相连。
WMR压缩机入口缓冲罐17、WMR压缩机18、WMR压缩机出口冷却器19、丙烷预冷板翅式换热器1、WMR绕管式换热器2、WMR液力透平膨胀机20依次相连。
CMR压缩机入口缓冲罐21、CMR压缩机22、CMR压缩机出口冷却器23、丙烷预冷板翅式换热器1、WMR绕管式换热器2、CMR绕管式换热器3、CMR液力透平膨胀机24依次相连。
本发明还提供了一种适用于超大规模的三循环天然气液化方法,包括如下步骤:
1)丙烷预冷***对天然气、WMR和CMR进行预冷至-30℃~-39℃:
从丙烷压缩机7增压至1.5MPa.a~2.5MPa.a的丙烷经丙烷冷却器8冷却至20℃~50℃,分成2股,其中一股液相丙烷(约15%~25%)通过第一高压丙烷节流阀9节流,压力降至0.3MPa.a~0.6MPa.a后进入丙烷预冷板翅式换热器1,对天然气、WMR冷剂和CMR冷剂进行冷却(20℃~0℃),从板翅式换热器1出来的气相丙烷回到丙烷压缩机7高压吸入口;另一股液相丙烷(75%~85%)通过第二高压丙烷节流阀10节流,压力降至0.3MPa.a~0.6MPa.a后进入高压丙烷气液分离罐11进行气液分离,罐顶气相丙烷回到丙烷压缩机7高压吸入口;
高压丙烷气液分离罐11的液相分成2股,其中一股液相丙烷(45%~55%)通过第一中压丙烷节流阀12节流,压力降至0.2MPa.a~0.35MPa.a后进入丙烷预冷板翅式换热器1,对天然气、WMR冷剂和CMR冷剂进行冷却(-10℃~-20℃),从板翅式换热器出来的气相丙烷回到丙烷压缩机7中压吸入口;另一股液相丙烷(45%~55%)通过第二中压丙烷节流阀13节流,压力降至0.2MPa.a~0.35MPa.a后进入中压丙烷气液分离罐14进行气液分离,罐顶气相丙烷回到丙烷压缩机7中压吸入口;
中压丙烷气液分离罐14的液相通过节流阀15节流,压力降至0.1MPa.a~0.2MPa.a后进入丙烷预冷板翅式换热器1,对天然气、WMR冷剂和CMR冷剂进行冷却(-30℃~-39℃),从丙烷预冷板翅式换热器1出来的气相丙烷经过低压丙烷气液分离罐16后回到丙烷压缩机7低压吸入口;
低压丙烷、中压丙烷、高压丙烷经丙烷压缩机7增压后进行循环。
2)WMR制冷***将天然气、CMR冷剂冷却至-65℃~-95℃:
从WMR绕管式换热器2底部出来的WMR冷剂进入WMR压缩机入口缓冲罐17,经WMR压缩机18增压至3MPa.a~5MPa.a后经WMR冷却器19冷却至20℃~50℃,进入丙烷预冷板翅式换热器1冷却到-30℃~-39℃并液化;液态WMR进入WMR绕管式换热器2进一步冷却至-65℃~-95℃从顶部出来,经WMR液力膨胀机20膨胀至0.2MPa.a~0.5MPa.a后(-70℃~-100℃)再进入WMR绕管式换热器2,对天然气、WMR冷剂和CMR冷剂进行冷却(-65℃~-95℃);从WMR绕管式换热器2底部出来的低压WMR(0.2MPa.a~0.5MPa.a,-35℃~-45℃)回到WMR压缩机入口缓冲罐17后进行循环。
3)CMR制冷***为天然气和CMR冷剂全部液化和过冷提供冷量:
作为CMR制冷***制冷剂的CMR冷剂经CMR压缩机22增压至5MPa.a~8MPa.a后经CMR压缩机出口冷却器23冷却至20℃~50℃,经丙烷预冷板翅式换热器1冷却到-30℃~-39℃,经WMR绕管式换热器2冷却至-65℃~-95℃,在CMR绕管式换热器3中冷却到-155℃~-160℃后从顶部出来,再经CMR液力膨胀机24膨胀至0.2MPa.a~0.5MPa.a后再进入CMR绕管式换热器3,为天然气和自身液化过冷提供冷量;从CMR绕管式换热器3底部出来的低压CMR(0.2MPa.a~0.5MPa.a,-75℃~-95℃)回到CMR压缩机入口缓冲罐21后进行循环。
4)高压LNG膨胀闪蒸
从CMR绕管式换热器3顶部出来的天然气已液化并过冷至-155℃~-160℃,过冷后的天然气经LNG液力透平膨胀机4膨胀至(120kPa.a,-160℃~-163℃)后进入LNG闪蒸罐5中闪蒸,闪蒸出的BOG送至下游BOG增压装置,LNG闪蒸罐5罐底LNG经LNG增压泵输6增压后送至LNG存储单元。
所述混合冷剂WMR以乙烷为主,并配一定量的甲烷和丙烷,其中甲烷体积含量为5%~15%、乙烷为70%~85%,丙烷为10%~20%;混合冷剂CMR组成为氮气、甲烷、乙烷,其中氮气体积含量为10%~25%、乙烷为40%~65%,丙烷为30%~45%。
本发明的工作原理是:
本发明提供的基于高效设备的三循环液化***可适用于单列年产能达600~800万吨/年超大规模天然气液化装置,其采用三级制冷循环,预冷段采用丙烷冷剂、液化和过冷段采用混合冷剂;预冷循环、液化和过冷循环分别采用一套压缩、冷却、冷凝、透平膨胀和换热过程。
本发明中WMR、CMR和LNG节流膨胀选用液力透平膨胀机,其原理为等熵膨胀,制冷效率更高;采用液力透平膨胀机来回收能量,用于发电,从而降低综合能耗。
本发明具有如下效果:1)可根据项目建设地环境和原料气条件的变化,合理配置混合冷剂的组成和配比,从而优化冷却和液化温度,使得整个工艺***的能耗最低,地区适应性广;2)三级制冷循环,采用高效的板翅式换热器和绕管式换热器,换热效率高,可合理分担各级制冷负荷,实现单线LNG装置大型化。3)WMR冷剂、CMR冷剂节流采用液力透平膨胀机,制冷效率高,单位LNG产品能耗更低;4)高压LNG节流采用液力透平膨胀机,节流效应好,天然气液化率更高。

Claims (7)

1.一种适用于超大规模的三循环天然气液化装置,其特征在于:包括天然气液化管路、丙烷预冷循环***、WMR制冷循环***和CMR制冷循环***,其中:
所述天然气液化管路由丙烷换热器、WMR换热器、CMR换热器、LNG膨胀机、LNG闪蒸罐和LNG增压泵依次连接组成;
所述丙烷预冷循环***包括丙烷换热器、丙烷压缩机、丙烷压缩机出口冷却器、高压丙烷气液分离罐、中压丙烷气液分液罐和低压丙烷气液分离罐,用于对天然气、WMR冷剂和CMR冷剂进行预冷;其中,丙烷压缩机、丙烷压缩机出口冷却器、第一高压丙烷节流阀、丙烷换热器和丙烷压缩机高压吸入口依次相连;丙烷压缩机出口冷却器、第二高压丙烷节流阀、高压丙烷气液分离罐、第一中压丙烷节流阀、丙烷换热器、丙烷压缩机中压吸入口依次相连;高压丙烷气液分离罐、第二中压丙烷节流阀、中压丙烷气液分离罐、低压丙烷节流阀、丙烷换热器、低压丙烷气液分离罐、丙烷压缩机低压吸入口依次相连;高压丙烷气液分离罐出口气相与丙烷压缩机高压吸入管线相连;中压丙烷气液分离罐气相出口与丙烷压缩机中压吸入管线相连;
所述WMR制冷循环***包括WMR换热器、WMR压缩机入口缓冲罐、WMR压缩机、WMR压缩机出口冷却器和WMR膨胀机,用于对天然气、CMR冷剂进一步冷却和部分液化;其中,WMR换热器、WMR压缩机入口缓冲罐、WMR压缩机、WMR压缩机出口冷却器、丙烷换热器、WMR换热器、WMR膨胀机、WMR换热器依次相连;
所述CMR制冷循环***包括CMR换热器、CMR压缩机入口缓冲罐、CMR压缩机、CMR压缩机出口冷却器和CMR膨胀机,用于为天然气和CMR冷剂全部液化和过冷提供冷量;其中,CMR换热器、CMR压缩机入口缓冲罐、CMR压缩机、CMR压缩机出口冷却器、丙烷换热器、WMR换热器、CMR换热器、CMR膨胀机、CMR换热器依次相连。
2.根据权利要求1所述的一种适用于超大规模的三循环天然气液化装置,其特征在于:所述LNG膨胀机、WMR膨胀机和CMR膨胀机均为液力透平膨胀机。
3.根据权利要求2所述的一种适用于超大规模的三循环天然气液化装置,其特征在于:所述丙烷换热器为板翅式换热器,所述WMR换热器和CMR换热器均为绕管式换热器。
4.一种基于权利要求1所述适用于超大规模的三循环天然气液化装置的方法,其特征在于:包括如下步骤:
1)丙烷循环***为天然气、WMR冷剂和CMR冷剂预冷提供冷量:
从丙烷压缩机增压的丙烷经丙烷冷却器冷却后分成两股,其中一股液相丙烷通过第一高压丙烷节流阀节流降压力后进入丙烷换热器,为天然气、WMR冷剂和CMR冷剂冷却提供冷量,从丙烷换热器出来的气相丙烷回到丙烷压缩机高压吸入口;另一股液相丙烷通过第二高压丙烷节流阀节流降压力后进入高压丙烷气液分离罐进行气液分离,其中:罐顶气相丙烷回到丙烷压缩机高压吸入口,罐底液相分成两股,其中一股液相丙烷通过第一中压丙烷节流阀节流降压力后进入丙烷换热器,为天然气、WMR冷剂和CMR冷剂继续冷却提供冷量,从丙烷换热器出来的气相丙烷回到丙烷压缩机中压吸入口;另一股液相丙烷通过第二中压丙烷节流阀节流降压力后进入中压丙烷气液分离罐进行气液分离,罐顶气相丙烷回到丙烷压缩机中压吸入口,罐底的液相丙烷通过低压丙烷节流阀节流降压力后进入丙烷换热器,为天然气、WMR冷剂和CMR冷剂继续冷却提供冷量,从丙烷换热器出来的气相丙烷经过低压丙烷气液分离罐后回到丙烷压缩机低压吸入口;低压丙烷、中压丙烷、高压丙烷经丙烷压缩机增压后进行循环;
2)WMR制冷***为天然气、CMR冷剂进一步冷却及部分液化提供冷量:
从WMR换热器底部出来的WMR冷剂进入WMR压缩机入口缓冲罐,经WMR压缩机增压并经WMR冷却器冷却后,进入丙烷换热器中冷却液化;液态WMR进入WMR换热器进一步冷却后从顶部出来,经WMR膨胀机膨胀至低压后再进入WMR换热器,为天然气、WMR冷剂和CMR冷剂进一步冷却并部分液化提供冷量;从WMR换热器底部出来的低压WMR冷剂回到WMR压缩机入口缓冲罐后进行循环;
3)CMR制冷***为天然气和CMR冷剂全部液化和过冷提供冷量:
CMR冷剂经CMR压缩机增压后依次经CMR冷却器、丙烷换热器、WMR换热器、CMR换热器冷却后从CMR换热器顶部出来,再经CMR膨胀机膨胀至低压后再进入CMR换热器,为天然气和自身液化过冷提供冷量;从CMR换热器底部出来的低压CMR回到CMR压缩机入口缓冲罐后进行循环。
5.根据权利要求4所述的适用于超大规模的三循环天然气液化装置的方法,其特征在于:所述WMR冷剂的组成为甲烷、乙烷和丙烷,其中甲烷体积含量为5%~15%、乙烷为70%~85%,丙烷为10%~20%。
6.根据权利要求4所述的适用于超大规模的三循环天然气液化装置的方法,其特征在于:所述CMR冷剂的组成为氮气、甲烷、乙烷,其中氮气体积含量为10%~25%、乙烷为40%~65%,丙烷为30%~45%。
7.根据权利要求4所述的适用于超大规模的三循环天然气液化装置的方法,其特征在于:从CMR换热器顶部出来的液化并过冷至-155℃~-160℃的天然气,经LNG膨胀机膨胀至120kPa.a进入LNG闪蒸罐中闪蒸,闪蒸出的BOG送至下游BOG增压装置,罐底LNG经LNG增压泵输增压后送至LNG存储单元。
CN201910500987.6A 2019-06-11 2019-06-11 一种适用于超大规模的三循环天然气液化装置及方法 Active CN110186251B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910500987.6A CN110186251B (zh) 2019-06-11 2019-06-11 一种适用于超大规模的三循环天然气液化装置及方法
PCT/CN2019/096445 WO2020248328A1 (zh) 2019-06-11 2019-07-18 一种适用于超大规模的三循环天然气液化装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910500987.6A CN110186251B (zh) 2019-06-11 2019-06-11 一种适用于超大规模的三循环天然气液化装置及方法

Publications (2)

Publication Number Publication Date
CN110186251A CN110186251A (zh) 2019-08-30
CN110186251B true CN110186251B (zh) 2024-01-26

Family

ID=67721163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910500987.6A Active CN110186251B (zh) 2019-06-11 2019-06-11 一种适用于超大规模的三循环天然气液化装置及方法

Country Status (2)

Country Link
CN (1) CN110186251B (zh)
WO (1) WO2020248328A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112009697A (zh) * 2020-09-02 2020-12-01 成都精智艺科技有限责任公司 一种高效lng船舶动力供应***及方法
CN112815624A (zh) * 2021-02-08 2021-05-18 惠生(南通)重工有限公司 Flng的混合冷剂回收存储及组分调整装置
CN117848093A (zh) * 2024-01-13 2024-04-09 广东博益空调配套设备有限公司 一种翅片式液化器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644527A (zh) * 2009-08-26 2010-02-10 四川空分设备(集团)有限责任公司 天然气液化工艺的制冷***和液化***
CN102538391A (zh) * 2012-02-19 2012-07-04 中国石油集团工程设计有限责任公司 多级单组分制冷天然气液化***及方法
CN102620460A (zh) * 2012-04-26 2012-08-01 中国石油集团工程设计有限责任公司 带丙烯预冷的混合制冷循环***及方法
CN102628634A (zh) * 2012-04-26 2012-08-08 中国石油集团工程设计有限责任公司 三循环复叠式制冷天然气液化***及方法
CN103322769A (zh) * 2012-03-20 2013-09-25 中国海洋石油总公司 一种基荷型天然气液化工厂的级联式液化***
CN104833175A (zh) * 2015-04-15 2015-08-12 中国海洋石油总公司 一种flng/flpg油气预处理及液化方法
CN210220390U (zh) * 2019-06-11 2020-03-31 中国石油工程建设有限公司 一种适用于超大规模的三循环天然气液化装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6647744B2 (en) * 2002-01-30 2003-11-18 Exxonmobil Upstream Research Company Processes and systems for liquefying natural gas
US6742357B1 (en) * 2003-03-18 2004-06-01 Air Products And Chemicals, Inc. Integrated multiple-loop refrigeration process for gas liquefaction
CN102654346A (zh) * 2012-05-22 2012-09-05 中国海洋石油总公司 一种丙烷预冷双混合冷剂并联液化***
US20160076808A1 (en) * 2014-09-15 2016-03-17 Propak Systems Ltd. Method and system for treating and liquefying natural gas
US10753676B2 (en) * 2017-09-28 2020-08-25 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644527A (zh) * 2009-08-26 2010-02-10 四川空分设备(集团)有限责任公司 天然气液化工艺的制冷***和液化***
CN102538391A (zh) * 2012-02-19 2012-07-04 中国石油集团工程设计有限责任公司 多级单组分制冷天然气液化***及方法
CN103322769A (zh) * 2012-03-20 2013-09-25 中国海洋石油总公司 一种基荷型天然气液化工厂的级联式液化***
CN102620460A (zh) * 2012-04-26 2012-08-01 中国石油集团工程设计有限责任公司 带丙烯预冷的混合制冷循环***及方法
CN102628634A (zh) * 2012-04-26 2012-08-08 中国石油集团工程设计有限责任公司 三循环复叠式制冷天然气液化***及方法
CN104833175A (zh) * 2015-04-15 2015-08-12 中国海洋石油总公司 一种flng/flpg油气预处理及液化方法
CN210220390U (zh) * 2019-06-11 2020-03-31 中国石油工程建设有限公司 一种适用于超大规模的三循环天然气液化装置

Also Published As

Publication number Publication date
CN110186251A (zh) 2019-08-30
WO2020248328A1 (zh) 2020-12-17

Similar Documents

Publication Publication Date Title
CA2618576C (en) Natural gas liquefaction process for lng
CN100400994C (zh) 自冷却的lng工艺
CN110186251B (zh) 一种适用于超大规模的三循环天然气液化装置及方法
US20160003529A1 (en) Natural Gas Liquefaction Process
US20150204603A1 (en) System And Method For Natural Gas Liquefaction
CN105674686B (zh) 一种膨胀制冷富甲烷气液化的方法及装置
US11391511B1 (en) Methods and systems for hydrogen liquefaction
CN113503692A (zh) 氢液化***
CN210220390U (zh) 一种适用于超大规模的三循环天然气液化装置
CN113758148A (zh) 一种用于低温氮气冷量回收的装置及其使用方法
CN115451647A (zh) 一种集成液化空气储能***的氢液化***
CN216620451U (zh) 一种lng重整制氢和lng冷能液化氢气一体化***
CN108489133B (zh) 多级压缩混合工质制冷/液化***
CN102628634B (zh) 三循环复叠式制冷天然气液化***及方法
CN203310202U (zh) 一种应用于基荷型天然气液化工厂的双混合冷剂液化***
CN101614464A (zh) 高低温氮气双膨胀天然气液化方法
CN110627609B (zh) 一种结合混合冷剂和丙烷辅助制冷的乙烷回收方法
CN216384787U (zh) 一种氢气液化设备及***
CN106500458B (zh) 预冷式天然气液化工艺及***
CN102564061B (zh) 一种应用于基荷型天然气液化工厂的双级混合冷剂循环液化***
CN106016967B (zh) 一种回热式混合工质制冷气体液化循环***
CN110563540B (zh) 一种结合预增压与丙烷制冷的乙烷回收方法
CN114518015A (zh) 一种采用氮透平膨胀预冷的氢气液化工艺
CN111238163B (zh) 一种混合工质高压气体液化与过冷***
CN204785551U (zh) 一种bog再液化回收装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210726

Address after: No.2 Daqing East Road, Dushanzi District, Karamay City, Xinjiang Uygur Autonomous Region 834000

Applicant after: CNPC Engineering Co.,Ltd.

Applicant after: CHINA PETROLEUM ENGINEERING & CONSTRUCTION Corp.

Applicant after: CHINA NATIONAL PETROLEUM Corp.

Address before: No. 6, Sichuan hi tech Zone, sublime Road, Chengdu, Sichuan

Applicant before: CHINA PETROLEUM ENGINEERING & CONSTRUCTION Corp.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant