CN110158148A - 晶硅及其晶体生长工艺 - Google Patents

晶硅及其晶体生长工艺 Download PDF

Info

Publication number
CN110158148A
CN110158148A CN201910354175.5A CN201910354175A CN110158148A CN 110158148 A CN110158148 A CN 110158148A CN 201910354175 A CN201910354175 A CN 201910354175A CN 110158148 A CN110158148 A CN 110158148A
Authority
CN
China
Prior art keywords
crystal
crystal silicon
growth technique
silicon
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910354175.5A
Other languages
English (en)
Inventor
刘海
张新皓
许一柠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GCL Jiangsu Silicon Material Technology Development Co., Ltd.
Original Assignee
JIANGSU XIEXIN SOFT CONTROL EQUIPMENT TECHNOLOGY DEVELOPMENT CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU XIEXIN SOFT CONTROL EQUIPMENT TECHNOLOGY DEVELOPMENT CO LTD filed Critical JIANGSU XIEXIN SOFT CONTROL EQUIPMENT TECHNOLOGY DEVELOPMENT CO LTD
Priority to CN201910354175.5A priority Critical patent/CN110158148A/zh
Publication of CN110158148A publication Critical patent/CN110158148A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/002Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种晶硅及其晶体生长工艺。其中,晶硅的晶体生长工艺包括如下步骤:在单位时间内,根据熔体中掺杂元素的分凝系数K,控制加料重量和长晶重量的加料比率,使其为K的线性函数。上述晶硅的晶体生长工艺,能够使溶液中减少的杂质总量与进入晶体的杂质总量相等,从而得到电阻率分布均匀的晶硅材料。此外,还涉及一种采用上述晶体生长工艺制备得到的晶硅。

Description

晶硅及其晶体生长工艺
技术领域
本发明涉及晶硅生长领域,特别是涉及一种晶硅及其晶体生长工艺。
背景技术
晶硅生长过程中,会添加掺杂元素使其生长成想要的导电类型和电阻率,导电类型分为N型和P型,P型的掺杂剂为Ⅲ族元素,包含硼、铝、镓、铟、铊。N型的掺杂剂为Ⅴ族元素,包含磷、砷、锑、铋。此外,为了使得硅片有一些其他特性,比如机械强度,也会添加锗、氮等元素。
然而,在晶硅的生长过程中,由于杂质在不同固液相的溶解度不一样,杂质在界面两边材料中分布的浓度是不同的,这就是所谓杂质的分凝现象。掺杂元素(硼、磷)的分凝系数往往小于1,杂质会在溶液中积累,导致晶棒的组分浓度不均匀,从而使得组分不均匀或电阻率分布不均匀(差异大)。例如,锗的分凝系数是0.3,磷的分凝系数为0.35,砷的分凝系数为0.30,锑的分凝系数为0.023,镓的分凝系数为0.08,较小的分凝系数意味着更为严重的偏析,所以在硅晶体生长完成后,电阻率沿晶体生长方向变化很大。例如,对于掺磷或掺砷的N型硅晶体,若熔化后结晶的初始电阻率为3.0Ω·cm,则在其凝固到最终形成硅锭的晶体高度的70%左右时,其电阻率通常会低于1Ω·cm,导致部分晶体硅不能使用,这将大大限制硅锭的利用率,增加生产成本。
发明内容
基于此,有必要针对如何使晶硅材料的电阻率分布均匀的问题,提供一种晶硅及其晶体生长工艺。
根据本发明的一个方面,本发明提供了一种晶硅的晶体生长工艺,该方法包括,在单位时间内,根据熔体中掺杂元素的分凝系数K,控制加料重量和长晶重量的加料比率,使其为K的线性函数。
另外,根据本发明上述实施例的晶硅生长工艺还可以具备如下附加的技术特征。
在本发明的一些实施例中,所述晶硅生长工艺为连续直拉单晶硅生长。
在本发明的一些实施例中,所述加料比率=1-AK,其中A=0.3~3。其中,A可以为0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9。
在本发明的一些实施例中,其中,所述晶硅生长工艺为定向凝固生长。
在本发明的一些实施例中,所述加料比率=1-AK,其中A=0.05~3。其中,A可以为0.06,0.07,0.08,0.09,0.1,0.15,0.2,0.25,0.35,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0。
在本发明的一些实施例中,晶体最终的重量Wc、初始装料量Wm与初始分凝系数K满足AK≤Wm/Wc,其中A=0.05~3。
在本发明的一些实施例中,所述掺杂元素为Ⅲ族、Ⅴ族元素掺杂剂或者Ge。
在本发明的一些实施例中,所述Ⅲ、Ⅴ族元素掺杂剂掺杂元素为硼、铝、镓、磷、砷或者铟。
根据本发明的第二方面,本发明还提出了一种晶硅,根据本发明的实施例,所述晶硅由前面所述的晶硅生长工艺制备得到。
采用前面所述的晶硅生长工艺能够使溶液中减少的杂质总量与进入晶体的杂质总量相等,因此,能够得到电阻率分布均匀的晶硅材料。
附图说明
图1为本发明实施例1、实施例2和对比例1的晶硅的电阻率曲线分布图;
图2为本发明实施例3、实施例4和对比例2的晶硅的电阻率曲线分布图;
图3为本发明实施例5、实施例6和对比例3的晶硅的电阻率曲线分布图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
根据本发明的一个方面,本发明提供了一种晶硅的晶体生长工艺,该方法包括,在单位时间内,根据熔体中掺杂元素的分凝系数K,控制加料重量和长晶重量的加料比率,使其为K的线性函数。
采用这种晶硅生长工艺能够使溶液中减少的杂质总量与进入晶体的杂质总量相等,从而能够得到电阻率分布均匀的晶硅材料。
在本发明的一些实施例中,所述晶硅生长为连续直拉单晶硅生长。尤其是CCZ工艺(Continuous Czochralski,连续提拉法晶体生长)。
CCZ工艺需要再次加料或连续加料,并且需要在重新加料的原料中添加掺杂剂,但当将粒状掺杂剂添加到熔体中时,有的掺杂剂会漂浮在液体表面上并且难以溶解,造成单晶生长失败;有的掺杂剂熔点低,直接气化,不仅污染石墨件,而且造成掺杂的不精确。现有技术中会将含有预定杂质元素的多晶硅先熔化成液体再连续供给熔体,但这样做需要内置或外置加热器,工艺复杂,成本高。
本发明在初始装载有掺杂元素的原料后,后续只需要连续或间歇性的添加硅原料,则可有效控制所有晶棒的组分浓度,从而获得电阻率分布均匀的晶硅材料。
在连续直拉晶体生长过程中,假定单位时间内凝固的晶体重量为MC,溶液中浓度为NC,溶液中掺杂元素的分凝系数为K,则进入晶体的杂质总量为MC*NC*K。该单位时间内加料重量为MS,则单位时间内溶液重量减少MC-MS。如控制加料重量MS,使(MC-MS)*NC=MC*NC*K,即溶液中减少的杂质总量与进入晶体的杂质总量相等,可以得到电阻率一致的晶体。加料比率MS/MC=(1-K)。
考虑到实际生产中,电阻率或组分浓度本身要求的为一个范围,加料比例可以控制在一个范围,电阻率或者说组分浓度要求本身有一个范围。本发明进行了大量的实验验证,结果验证,优选地,加料比率=1-AK,其中A=0.3~3。更优地,A=1~3。针对连续直拉单晶硅,控制加料比率在上述范围内,能够更有效控制所有晶棒的组分浓度,从而获得电阻率分布更加均匀的晶硅材料。
在本发明的一些实施例中,晶体最终最大的重量Wc、初始装料量Wm与初始分凝系数加料比例1-AK,由于最终晶体重量应小于等于总投料量(初始装料与加入的料),Wc≤Wm+(1-AK)Wc即满足AK≤Wm/Wc,其中A=0.05~3。
在长晶过程中,加料比例小于1,长晶速率大于加料速率,初始装料量和最终重量保持上述比值时,能够保证不会出现溶液一直存在。
在本发明的一些实施例中,加料的位置靠近坩埚角加热器温度较高的区域,便于加入的硅料能及时融化,不进入长晶区域,从而避免晶体生长品质变差。
在本发明的一些实施例中,所述加料为连续加料,所述单位时间为计算加料速率的周期时间,该时间为大于0小于等于0.1小时。具体地,可以为0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09小时。
在本发明的一些实施例中,所述加料为周期性加料方式,所述单位时间为一次加料的时间加上一次间隔的时间,所述加料的时间为1~24小时,具体地,可以为2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23小时。所述间隔的时间小于1小时,具体地,可以为0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9小时。
在本发明的一些实施例中,所述晶硅生长工艺为DSS(DirectionalSolidification System,定向凝固法)。
DSS坩埚在装料过程中会存在大量的空隙,硅料融化后空隙会被填满,致使坩埚上方留有一定的空间,而坩埚作为一次性投入产品,单次坩埚投料较少,为了进一步的减少成本,现有技术中有的的铸锭炉会加装二次加料装置,再次投入液态或固态的原料,铸造出大重量的多晶硅锭,使一次性投入的石英坩埚得到更大利用,同时降低生产成本,提高生产效率。
现有技术中为了控制硅晶体电阻率主要采用的是反掺杂技术,如在掺杂硼(P型)或镓(P型)的熔体中,反掺磷(N型)的掺杂剂,达到控制电阻率的目的。若采用固体加料方式,掺杂有掺杂剂的原料在硅液中熔化需要一定时间,可能导致掺杂不均匀,晶体硅电阻率的提升效果存在不稳定性。若采用液体加料方式,但这样做需要内置或外置加热器,工艺复杂,成本更高。
本发明在初始装载有掺杂元素的原料后,后续只需要连续或间歇性周期性的添加硅原料,则可有效控制所有晶棒的组分浓度,从而获得电阻率分布均匀的晶硅材料。
在定向凝固晶体生长过程中,假定单位时间内凝固的晶体重量为MC,溶液中浓度为NC,溶液中掺杂元素的分凝系数为K,则进入晶体的杂质总量为MC*NC*K。该单位时间内加料重量为MS,则单位时间内溶液重量减少MC-MS。如控制加料重量MS,使(MC-MS)*NC=MC*NC*K,即溶液中减少的杂质总量与进入晶体的杂质总量相等,可以得到电阻率一致的晶体。加料比率MS/MC=(1-K)。
在本发明的一些实施例中,晶体最终最大的重量Wc、初始装料量Wm与初始分凝系数加料比例1-AK,由于最终晶体重量应小于等于总投料量(初始装料与加入的料),Wc≤Wm+(1-AK)Wc即满足AK≤Wm/Wc,其中A=0.05~3。
在长晶过程中,加料比例小于1,长晶速率大于加料速率,初始装料量和最终重量保持上述比值时,能够保证不会出现溶液一直存在。
在本发明的一些实施例中,加料的位置靠近坩埚角加热器温度较高的区域。便于加入的硅料能及时融化,不进入长晶区域,从而避免晶体生长品质变差。
考虑到实际生产中,电阻率或组分浓度本身要求的为一个范围,加料比例可以控制在一个范围,电阻率或者说组分浓度要求本身有一个范围。本发明进行了大量的实验验证,结果验证,对于定向凝固生长来说,优选地,加料比率=1-AK,其中A=0.05~3。更优地,A=0.5~2。
在本发明的一些实施例中,所述加料为连续加料,所述单位时间为整个加料时间,加料的时间为1~24小时。具体地,可以为2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23小时。
在本发明的一些实施例中,所述加料为周期性加料方式,所述单位时间为一次加料的时间加上一次间隔的时间,所述加料的时间为1~24小时,具体地,可以为2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23小时。所述间隔的时间小于1小时。可以为0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9小时。
下面结合具体实施例对本发明的晶硅的晶体生长工艺进行进一步的说明。
实施例1
在可加料的CCZ工艺中,坩埚初始装料200kg,掺杂的元素为磷,磷在硅中的分凝系数为0.35,控制加料比率=1-1*K=0.65,采用不间断加料的方式,加料时间46小时,得到最终342kg晶棒。测试得到电阻率随晶体重量变化的曲线,如图1中曲线“CCZ磷,A=1”所示。表明实施例1得到的晶硅的电阻率分布均匀。
实施例2
在可加料的DSS工艺中,坩埚容量400kg,掺杂的元素为磷,分凝系数为0.35,控制加料比率=1-1*K=0.65,采用不间断加料的方式,加料时间40小时,得到最终1180kg硅锭。测试得到电阻率随晶体重量变化的曲线,如图1中曲线“DSS磷,A=1”所示。由图1可以看出,实施例2的晶硅的电阻率在0.9~1.1的范围内波动,但波动不大,表明实施例2得到的晶硅的电阻率分布均匀。
实施例3
在可加料的CCZ工艺中,坩埚初始装料200kg,掺杂的元素为硼,磷在硅中的分凝系数为0.8,控制加料比率=1-0.5*K=0.6,采用不间断加料的方式,加料时间40小时,得到最终330kg晶棒。测试得到电阻率随分凝比例变化的曲线,如图2所示。表明实施例3得到的晶硅的电阻率在0.6-0.9范围内分布相对均匀。
实施例4
在可加料的DSS工艺中,坩埚容量600kg,掺杂的元素为硼,硼在硅中的分凝系数为0.8,控制加料比率=1-0.63*K=0.5,采用不间断加料的方式,加料时间40小时,得到最终1200kg硅锭。测试得到电阻率随晶体重量变化的曲线,如图2所示。由图2可以看出,实施例2的晶硅的电阻率在0.9~1.2的范围内波动,但波动不大,表明实施例2得到的晶硅的在0.9-1.3范围内电阻率分布均匀。
实施例5
在可加料的CCZ工艺中,坩埚初始装料100kg,掺杂的元素为镓,镓在硅中的分凝系数为0.008,控制加料比率=1-3*K=0.976,采用不间断加料的方式,加料时间48小时,得到最终390kg晶棒。测试得到电阻率随晶体重量变化的曲线,如图3所示。表明实施例1得到的晶硅的在0.9-1.7范围内电阻率分布均匀。
实施例6
在可加料的DSS工艺中,坩埚初始装料200kg,掺杂的元素为镓,镓在硅中的分凝系数为0.008,控制加料比率=1-1.5*K=0.988,采用不间断加料的方式,加料时间48小时,得到最终1000kg硅锭。测试得到电阻率随晶体重量变化的曲线,如图3所示。表明实施例1得到的晶硅的在0.8-1.9范围内电阻率分布均匀。
实施例7
在可加料的CCZ工艺中,坩埚初始装料180kg,掺杂的元素为Ge,Ge在硅中的分凝系数为0.3,控制加料比率=1-1*K=0.7,采用不间断加料的方式,加料时间30小时,得到最终260kg晶棒,组分纵向偏差小于20%。
在可加料的DSS工艺中,坩埚初始装料300kg,掺杂的元素为Ge,Ge在硅中的分凝系数为0.3,控制加料比率=1-0.9*K=0.67,采用不间断加料的方式,加料时间30小时,得到最终480kg硅锭,组分均匀,纵向偏差小于25%。
对比例1
在传统的CCZ工艺中,掺杂的元素为磷,分凝系数为0.35,杂质在晶体头尾的电阻率如图1所示。由图1可以看出,电阻率随着分凝比例的增大而减小,表明电阻率和组分不均匀。
对比例2
在传统的DSS工艺中,掺杂的元素为硼,分凝系数为0.8,杂质在晶体头尾的电阻率如图2所示。由图2可以看出,电阻率随着分凝比例的增大而减小,表明电阻率和组分不均匀。
对比例3
在传统的DSS工艺中,掺杂的元素为Ga,分凝系数为0.008,杂质在晶体头尾的电阻率如图3所示。由图3可以看出,电阻率随着分凝比例的增大而减小,表明电阻率和组分不均匀。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种晶硅的晶体生长工艺,其特征在于,在单位时间内,根据熔体中掺杂元素的分凝系数K,控制加料重量和长晶重量的加料比率,使其为K的线性函数。
2.根据权利要求1所述的晶硅的晶体生长工艺,其特征在于,所述晶硅生长工艺为连续直拉单晶硅生长。
3.根据权利要求2所述的晶硅的晶体生长工艺,其特征在于,加料比率=1-AK,其中A=0.3~3。
4.根据权利要求1所述的晶硅的晶体生长工艺,其特征在于,所述晶硅生长工艺为定向凝固生长。
5.根据权利要求4所述的晶硅的晶体生长工艺,其特征在于,加料比率=1-AK,其中A=0.05~3。
6.根据权利要求1~5中任一项所述的晶硅的晶体生长工艺,其特征在于,晶体最终的重量Wc、初始装料量Wm与初始分凝系数K满足AK≤Wm/Wc,其中A=0.05~3。
7.根据权利要求1~5中任一项所述的晶硅的晶体生长工艺,其特征在于,所述掺杂元素为Ⅲ族、Ⅴ族元素掺杂剂或者Ge。
8.根据权利要求1~5中任一项所述的晶硅的晶体生长工艺,其特征在于,所述单位时间为不存在周期性的间隔时间,所述单位时间为大于0小于等于24小时。
9.根据权利要求1~5中任一项所述的晶硅的晶体生长工艺,其特征在于,所述单位时间为存在周期性的间隔时间,间隔时间不大于1小时。
10.一种晶硅,其特征在于,采用权利要求1~9中任一项所述的晶硅的晶体生长工艺制备得到。
CN201910354175.5A 2019-04-29 2019-04-29 晶硅及其晶体生长工艺 Pending CN110158148A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910354175.5A CN110158148A (zh) 2019-04-29 2019-04-29 晶硅及其晶体生长工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910354175.5A CN110158148A (zh) 2019-04-29 2019-04-29 晶硅及其晶体生长工艺

Publications (1)

Publication Number Publication Date
CN110158148A true CN110158148A (zh) 2019-08-23

Family

ID=67633089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910354175.5A Pending CN110158148A (zh) 2019-04-29 2019-04-29 晶硅及其晶体生长工艺

Country Status (1)

Country Link
CN (1) CN110158148A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113355739A (zh) * 2021-05-12 2021-09-07 晶澳太阳能有限公司 单晶硅及其制备方法
EP3933076A1 (en) * 2020-06-30 2022-01-05 Jinko Green Energy (Shanghai) Management Co., Ltd Method for preparing monocrystalline silicon and solar cell and photovoltaic module with monocrystalline silicon
CN114622278A (zh) * 2020-12-08 2022-06-14 内蒙古中环协鑫光伏材料有限公司 一种硅单晶及其制备方法、硅片、太阳能电池和组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050092236A1 (en) * 2003-11-03 2005-05-05 Bender David L. System for continuous growing of monocrystalline silicon
US20120279437A1 (en) * 2011-05-06 2012-11-08 GT Advanced CZ, LLC Growth of a uniformly doped silicon ingot by doping only the initial charge
CN102912424A (zh) * 2012-10-10 2013-02-06 浙江大学 提高直拉单晶硅轴向电阻率均匀性的方法及得到的单晶硅
CN105755533A (zh) * 2016-05-20 2016-07-13 麦斯克电子材料有限公司 一种直拉法制备高电阻硅单晶的方法
CN105887193A (zh) * 2016-05-30 2016-08-24 上海超硅半导体有限公司 轴向电阻率均匀的硅单晶生长技术

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050092236A1 (en) * 2003-11-03 2005-05-05 Bender David L. System for continuous growing of monocrystalline silicon
US20120279437A1 (en) * 2011-05-06 2012-11-08 GT Advanced CZ, LLC Growth of a uniformly doped silicon ingot by doping only the initial charge
CN102912424A (zh) * 2012-10-10 2013-02-06 浙江大学 提高直拉单晶硅轴向电阻率均匀性的方法及得到的单晶硅
CN105755533A (zh) * 2016-05-20 2016-07-13 麦斯克电子材料有限公司 一种直拉法制备高电阻硅单晶的方法
CN105887193A (zh) * 2016-05-30 2016-08-24 上海超硅半导体有限公司 轴向电阻率均匀的硅单晶生长技术

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3933076A1 (en) * 2020-06-30 2022-01-05 Jinko Green Energy (Shanghai) Management Co., Ltd Method for preparing monocrystalline silicon and solar cell and photovoltaic module with monocrystalline silicon
CN114622278A (zh) * 2020-12-08 2022-06-14 内蒙古中环协鑫光伏材料有限公司 一种硅单晶及其制备方法、硅片、太阳能电池和组件
CN114622278B (zh) * 2020-12-08 2024-04-05 内蒙古中环晶体材料有限公司 一种硅单晶及其制备方法、硅片、太阳能电池和组件
CN113355739A (zh) * 2021-05-12 2021-09-07 晶澳太阳能有限公司 单晶硅及其制备方法
CN113355739B (zh) * 2021-05-12 2023-01-24 晶澳太阳能有限公司 单晶硅及其制备方法

Similar Documents

Publication Publication Date Title
EP2173660B1 (en) Method for controlling resistivity in ingots made of compensated feedstock silicon
CN106795647B (zh) 电阻率控制方法及n型单晶硅
CN102912424B (zh) 提高直拉单晶硅轴向电阻率均匀性的方法及得到的单晶硅
CN110158148A (zh) 晶硅及其晶体生长工艺
CN105755532A (zh) 一种晶体硅的制备方法及晶体硅
US20110030793A1 (en) Method for producing photovoltaic-grade crystalline silicon by addition of doping impurities and photovoltaic cell
CN104846437B (zh) 电阻率分布均匀的掺镓晶体硅及其制备方法
CN1317429C (zh) 制造掺杂高挥发性异物的硅单晶的方法
CN101560693A (zh) 一种含有掺杂元素的太阳能级硅晶体的制备方法
CN103608496A (zh) 具有均匀多重掺杂物的硅锭及其制造方法和装置
CN105887193A (zh) 轴向电阻率均匀的硅单晶生长技术
US20100310445A1 (en) Process Control For UMG-Si Material Purification
CN110382748A (zh) 形成具有经改善的电阻率控制的单晶硅晶锭的方法
CN106222742B (zh) 一种晶体硅及其制备方法
CN114540950B (zh) 一种降低炉压生长n型直拉单晶硅的方法
US20150243569A1 (en) Method and system for controlling resistivity in ingots made of compensated feedstock silicon
CN105951173A (zh) N型单晶硅晶锭及其制造方法
CN112831828B (zh) 掺镓直拉单晶硅的生长方法、掺镓单晶硅及应用
CN102560646A (zh) 一种掺杂电阻率均匀的n型铸造硅单晶及其制备方法
CN101876085A (zh) 一种多晶硅锭及其制备方法
CN102560627A (zh) 一种掺杂电阻率均匀的n型直拉硅单晶及其制备方法
CN101812726A (zh) 一种镓掺杂p型晶体硅的制备方法
CN105970284B (zh) 一种p型单晶硅片及其制造方法
CN101812728A (zh) 一种n型晶体硅的制备方法
Antypas LEC growth of large InP single crystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191018

Address after: 221001 No. 88 Yangshan Road, Xuzhou Economic Development Zone, Jiangsu Province

Applicant after: GCL Jiangsu Silicon Material Technology Development Co., Ltd.

Address before: 221001 No. 88 Yangshan Road, Xuzhou Economic Development Zone, Jiangsu Province

Applicant before: Jiangsu Xiexin Soft Control Equipment Technology Development Co.,Ltd.

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20190823

RJ01 Rejection of invention patent application after publication