CN110157034A - 一种高疏水气凝胶多孔材料的制备方法 - Google Patents

一种高疏水气凝胶多孔材料的制备方法 Download PDF

Info

Publication number
CN110157034A
CN110157034A CN201910431116.3A CN201910431116A CN110157034A CN 110157034 A CN110157034 A CN 110157034A CN 201910431116 A CN201910431116 A CN 201910431116A CN 110157034 A CN110157034 A CN 110157034A
Authority
CN
China
Prior art keywords
cellulose
porous material
nano
polymer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910431116.3A
Other languages
English (en)
Other versions
CN110157034B (zh
Inventor
刘红霞
齐晓俊
徐旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201910431116.3A priority Critical patent/CN110157034B/zh
Publication of CN110157034A publication Critical patent/CN110157034A/zh
Application granted granted Critical
Publication of CN110157034B publication Critical patent/CN110157034B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/05Polysiloxanes containing silicon bound to hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种高疏水气凝胶多孔材料的制备方法。首先利用纳米纤维素稳定含有聚合物的Pickering乳液凝胶结合冷冻干燥技术得到纳米纤维素/聚合物复合气凝胶,然后用简单的化学接枝的方法将聚甲基氢硅氧烷(PMHS)接枝到纳米纤维素/聚合物复合气凝胶结构中进而得到高疏水性的气凝胶多孔材料。本发明制备过程简单,原料易得,所制备的气凝胶多孔材料不仅具有低密度、高孔隙率,且具有良好的疏水亲油性以及高效的吸油能力,在油水分离方面有良好的应用前景。

Description

一种高疏水气凝胶多孔材料的制备方法
技术领域
本发明属于气凝胶多孔材料制备技术领域,特别涉及一种高疏水气凝胶多孔材料的制备方法。该方法基于Pickering乳液技术,以纳米纤维素和非水溶性聚合物作为基材来制备气凝胶多孔材料。
背景技术
当代社会因石油的开采炼制和储运及使用导致不同程度的泄露而污染海洋水体、以及化工废水的胡乱排放造成水生物生存环境恶化,因此迫切需要开发能够有效分离油水的新型材料。纳米纤维素气凝胶多孔材料凭借其极低的密度、极高的孔隙率、高吸附能力和天然可生物降解性在污水处理和油水分离领域具有广泛的应用前景。
由于纤维素分子链上大量羟基的存在,使得纳米纤维素气凝胶具有较好的亲水性能,一方面导致纤维素气凝胶经长时间水的浸泡后结构被破坏,另一方面也会影响其对油的吸附性能,因此提高纳米纤维素气凝胶的耐水性能和吸油性能是当前亟待解决的关键问题。而借助于纳米纤维素稳定的Pickering乳液技术,我们可以简便快速的得到高孔隙率、低密度纳米纤维素/聚合物复合气凝胶以提高其耐水性能,进一步采用具有高反应活性的聚甲基氢硅氧烷对其进行疏水改性,进而制备具有高疏水性的纳米纤维素/聚合物复合气凝胶材料。这种Pickering乳液技术和化学接枝相结合的方法在制备高疏水的气凝胶多孔材料方面具有简便快捷、低成本及实际推广意义。
发明内容
本发明的目的是提供一种高疏水气凝胶多孔材料的制备方法。
本发明的思路:先通过纳米纤维素稳定的油相中含有聚合物的Pickering乳液的凝胶化,然后再经冷冻干燥得到基于纳米纤维素/聚合物复合气凝胶。随后用简单的化学接枝的方法将聚甲基氢硅氧烷(PMHS)接枝到纳米纤维素/聚合物复合气凝胶结构中对其进行疏水改性,进而得到高疏水的气凝胶多孔材料。
具体步骤为:
(1)将质量浓度为0.1~1%的纳米纤维素的水分散液与质量浓度为0.5~7%的聚合物溶液按照体积比为1~10:1混合,然后将所得混合物在功率为100~1000W的超声波乳化仪中超声0.5~10分钟,得到纳米纤维素稳定的水包油的Pickering乳液,静置24~48小时后即得Pickering乳液凝胶。
(2)将步骤(1)中制得的Pickering乳液凝胶在-30~-10℃下冷冻12~24小时,然后再放入-40~-90℃、真空度为6~14Pa的冷冻干燥机中冷冻24~48小时,即制得纳米纤维素/聚合物复合气凝胶。
(3)用质量浓度为99.5%的冰乙酸将体积比为10:0.15的无水乙醇和去离子水的混合液调至pH值为2,然后加入1~3mL甲基氢硅氧烷并搅拌均匀,制得混合液。
(4)将步骤(2)中制得的纳米纤维素/聚合物复合气凝胶放入步骤(3)制得的混合液中,60℃下磁力搅拌90min,接着用质量浓度为25%的氨水调节反应液的pH为7.5,继续搅拌60min后,分别用无水乙醇和去离子水各洗涤三次,最后冷冻干燥,制得聚甲基氢硅氧烷修饰的纳米纤维素/聚合物复合气凝胶,即为高疏水气凝胶多孔材料。
所述纳米纤维素为至少一维的尺度在纳米范围内的纤维素材料,包括从各种原材料提取制备的具有形貌结构的纤维素纳米晶和纤维素纳米纤,其中所述原材料为棉花、木材、竹子或麻类。
所述聚合物为非水溶性聚合物,具体为聚苯乙烯、聚碳酸酯、聚酰胺、聚乳酸、聚甲基丙烯酸甲酯、聚己内酯、聚乳酸-羟基乙酸共聚物或醋酸纤维素。
所述有机溶剂为与水不相容、但能溶解相应聚合物的有机溶剂,具体为二氯甲烷、1, 2-二氯乙烷、氯仿、正己烷或环己烷。
所述化学试剂及原料的纯度均为分析纯及以上纯度。
本发明方法的优点:
(1)本发明方法适用于从各种原材料提取制备的不同形貌的纳米纤维素以及各种非水溶性的聚合物,易于大规模推广。
(2)本发明方法中所用试剂都是常见试剂,价格便宜,且制备过程简便快速。
(3)本发明方法制得的气凝胶多孔材料具有高孔隙率、低密度、生物可降解性及高疏水性能。
附图说明
图1为本发明实施例制备的高疏水气凝胶多孔材料的扫描电子显微镜照片。
图2为本发明实施例制备的高疏水气凝胶多孔材料的接触角测试图,以及对不同种类油的吸附量对比图。
图3为本发明实施例制备的高疏水气凝胶多孔材料吸附四氯化碳(使用苏丹红染色)前后的对比照片。
具体实施方式
下面结合具体实施例对本发明做进一步描述,但本发明不局限于以下实施例,以下实施例中所使用的化学试剂和原料均为分析纯。
实施例:
(1)将0.4wt% 纳米纤维素纤丝(CNF)分散液作为水相、2wt%聚乳酸(PLA)作为油相,按照水油体积比4:1混合,然后将所得混合物在功率为500W的超声波乳化仪中超声5分钟,使其乳化成CNF稳定的水包油型Pickering乳液,静置36小时后即得Pickering乳液凝胶。
(2)将上述乳液凝胶样品放置于-10℃冰箱中冷冻24h,然后在真空度为10Pa,温度-50℃的冷冻干燥机中干燥48h除去溶剂即得到CNF/PLA复合气凝胶。
(3)用99.5%冰乙酸将100mL乙醇和1.5mL水的混合液调至pH=2后,加入3mL的甲基氢硅氧烷(MHS),磁子搅拌均匀;随后将CNF/PLA复合气凝胶放入上述混合液中,60℃下磁力搅拌90min。
(4)接着用25%氨水调pH=7.5于60℃下继续搅拌反应60min后,分别用乙醇和蒸馏水各洗涤三次,最后冷冻干燥即得聚甲基氢硅氧烷修饰后的CNF/PLA复合气凝胶多孔材料。
采用扫描电子显微镜观察可知本实施例所制备的高疏水气凝胶多孔材料具有明显的孔隙结构,孔壁表面覆盖着一层由PMHS水解后与CNF结合形成的致密的纤维丝状网络,并测得其水接触角为141.0 °。此气凝胶多孔材料具有优异的疏水性能,不仅能快速的吸附水面上和水底下的油,并且能将油水混合液快速分离。同时可吸附大多数油类,对二甲基硅油、环己烷和甲苯有的吸附量分别达到38.36g/g、42.35g/g和43g/g,尤其对四氯化碳的吸附量最高达到了132.05 g/g。

Claims (1)

1.一种高疏水气凝胶多孔材料的制备方法,其特征在于具体步骤为:
(1)将质量浓度为0.1~1%的纳米纤维素的水分散液与质量浓度为0.5~7%的聚合物溶液按照体积比为1~10:1混合,然后将所得混合物在功率为100~1000W的超声波乳化仪中超声0.5~10分钟,得到纳米纤维素稳定的水包油的Pickering乳液,静置24~48小时后即得Pickering乳液凝胶;
(2)将步骤(1)中制得的Pickering乳液凝胶在-30~-10℃下冷冻12~24小时,然后再放入-40~-90℃、真空度为6~14Pa的冷冻干燥机中冷冻24~48小时,即制得纳米纤维素/聚合物复合气凝胶;
(3)用质量浓度为99.5%的冰乙酸将体积比为10:0.15的无水乙醇和去离子水的混合液调至pH值为2,然后加入1~3mL甲基氢硅氧烷并搅拌均匀,制得混合液;
(4)将步骤(2)中制得的纳米纤维素/聚合物复合气凝胶放入步骤(3)制得的混合液中,60℃下磁力搅拌90min,接着用质量浓度为25%的氨水调节反应液的pH为7.5,继续搅拌60min后,分别用无水乙醇和去离子水各洗涤三次,最后冷冻干燥,制得聚甲基氢硅氧烷修饰的纳米纤维素/聚合物复合气凝胶,即为高疏水气凝胶多孔材料;
所述纳米纤维素为至少一维的尺度在纳米范围内的纤维素材料,包括从各种原材料提取制备的具有形貌结构的纤维素纳米晶和纤维素纳米纤,其中所述原材料为棉花、木材、竹子或麻类;
所述聚合物为非水溶性聚合物,具体为聚苯乙烯、聚碳酸酯、聚酰胺、聚乳酸、聚甲基丙烯酸甲酯、聚己内酯、聚乳酸-羟基乙酸共聚物或醋酸纤维素;
所述有机溶剂为与水不相容、但能溶解相应聚合物的有机溶剂,具体为二氯甲烷、1,2-二氯乙烷、氯仿、正己烷或环己烷;
所述化学试剂及原料的纯度均为分析纯及以上纯度。
CN201910431116.3A 2019-05-22 2019-05-22 一种高疏水气凝胶多孔材料的制备方法 Active CN110157034B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910431116.3A CN110157034B (zh) 2019-05-22 2019-05-22 一种高疏水气凝胶多孔材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910431116.3A CN110157034B (zh) 2019-05-22 2019-05-22 一种高疏水气凝胶多孔材料的制备方法

Publications (2)

Publication Number Publication Date
CN110157034A true CN110157034A (zh) 2019-08-23
CN110157034B CN110157034B (zh) 2021-10-29

Family

ID=67631977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910431116.3A Active CN110157034B (zh) 2019-05-22 2019-05-22 一种高疏水气凝胶多孔材料的制备方法

Country Status (1)

Country Link
CN (1) CN110157034B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430349A (zh) * 2020-11-30 2021-03-02 桂林理工大学 一种光热转换多孔材料的制备方法及其产品
ES2818298A1 (es) * 2019-10-07 2021-04-09 Consejo Superior Investigacion Procedimiento para la preparación de aerogeles hidrofóbicos
CN112843794A (zh) * 2020-12-24 2021-05-28 广西大学 一种疏水/亲油型生物质气凝胶及其制备方法和应用
CN113415800A (zh) * 2021-06-23 2021-09-21 桂林理工大学 一种碳泡沫材料及其制备方法和应用
CN113563634A (zh) * 2021-07-27 2021-10-29 王宇昕 一种亲水性多孔材料的疏水改性方法
CN113943444A (zh) * 2021-10-21 2022-01-18 桂林理工大学 一种多级孔隙结构的气-水凝胶的制备方法及其产品
CN114369191A (zh) * 2022-01-24 2022-04-19 西南石油大学 一种超疏水聚苯乙烯基多孔材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112072A1 (en) * 2003-11-13 2005-05-26 Grant Industries, Inc. Topical cosmetic composition containing hybrid silicone composite powder
CN101205423A (zh) * 2006-12-18 2008-06-25 天津科技大学 一种疏水性纳米二氧化硅的制备方法
CN104294608A (zh) * 2014-09-29 2015-01-21 大连工业大学 一种基于聚甲基氢硅氧烷制备疏水材料的方法
CN106117592A (zh) * 2016-07-21 2016-11-16 桂林理工大学 一种纳米纤维素/聚合物复合气凝胶的制备方法
CN106589390A (zh) * 2016-11-09 2017-04-26 中国石油天然气股份有限公司 一种纳米纤维素晶体疏水接枝的改性方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112072A1 (en) * 2003-11-13 2005-05-26 Grant Industries, Inc. Topical cosmetic composition containing hybrid silicone composite powder
CN101205423A (zh) * 2006-12-18 2008-06-25 天津科技大学 一种疏水性纳米二氧化硅的制备方法
CN104294608A (zh) * 2014-09-29 2015-01-21 大连工业大学 一种基于聚甲基氢硅氧烷制备疏水材料的方法
CN106117592A (zh) * 2016-07-21 2016-11-16 桂林理工大学 一种纳米纤维素/聚合物复合气凝胶的制备方法
CN106589390A (zh) * 2016-11-09 2017-04-26 中国石油天然气股份有限公司 一种纳米纤维素晶体疏水接枝的改性方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
冯春祥编: "《元素有机化合物及其聚合物》", 31 December 1999, 国防科技大学出版社 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2818298A1 (es) * 2019-10-07 2021-04-09 Consejo Superior Investigacion Procedimiento para la preparación de aerogeles hidrofóbicos
WO2021069783A1 (es) * 2019-10-07 2021-04-15 Consejo Superior De Investigaciones Científicas Procedimiento para la preparación de aerogeles hidrofóbicos
EP4043099A4 (en) * 2019-10-07 2023-10-25 Consejo Superior De Investigaciones Científicas METHOD FOR PRODUCING HYDROPHOBIC AEROGELS
CN112430349A (zh) * 2020-11-30 2021-03-02 桂林理工大学 一种光热转换多孔材料的制备方法及其产品
CN112843794A (zh) * 2020-12-24 2021-05-28 广西大学 一种疏水/亲油型生物质气凝胶及其制备方法和应用
CN113415800A (zh) * 2021-06-23 2021-09-21 桂林理工大学 一种碳泡沫材料及其制备方法和应用
CN113563634A (zh) * 2021-07-27 2021-10-29 王宇昕 一种亲水性多孔材料的疏水改性方法
CN113943444A (zh) * 2021-10-21 2022-01-18 桂林理工大学 一种多级孔隙结构的气-水凝胶的制备方法及其产品
CN113943444B (zh) * 2021-10-21 2022-12-27 桂林理工大学 一种多级孔隙结构的气-水凝胶的制备方法及其产品
CN114369191A (zh) * 2022-01-24 2022-04-19 西南石油大学 一种超疏水聚苯乙烯基多孔材料的制备方法
CN114369191B (zh) * 2022-01-24 2023-09-19 西南石油大学 一种超疏水聚苯乙烯基多孔材料的制备方法

Also Published As

Publication number Publication date
CN110157034B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN110157034A (zh) 一种高疏水气凝胶多孔材料的制备方法
Nguyen et al. Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications
Wang et al. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis
Xiao et al. Evaluation of the microbial cell structure damages in alkaline pretreatment of waste activated sludge
Ormaechea et al. Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM
Awogbemi et al. Advances in biotechnological applications of waste cooking oil
CN106117592B (zh) 一种纳米纤维素/聚合物复合气凝胶的制备方法
Li et al. Oil removal from water with yellow horn shell residues treated by ionic liquid
CN107011534B (zh) 一种超疏水超亲油三聚氰胺泡沫及其制备方法与应用
CN108421421B (zh) 具有水下超疏油性质复合涂层的织物网及其制备方法
CN105566502B (zh) 耐水性可再生纳米纤维素薄膜的制备方法
CN105107468A (zh) 一种超疏水超亲油秸秆纤维的制备方法
Yang et al. Hydrophobic modification of platanus fruit fibers as natural hollow fibrous sorbents for oil spill cleanup
CN107442152B (zh) Fe/Co-NPS共掺杂的多孔碳微球的制备及其在有机污染物去除方面的应用
CN103302708B (zh) 一种新型疏水性木材的制备方法
CN106496642A (zh) 乙酰化纳米纤维素基磁性吸油气凝胶的制备方法
CN110756179A (zh) 超疏水超亲油改性海绵材料的制备方法
CN106589264B (zh) 一种丙烯酸基复合水凝胶的制备方法
CN109137133A (zh) 一种丝瓜络纤维素/壳聚糖复合纤维的制备方法
Pawar et al. Sustainable, hydrophobic, and reusable paper waste aerogel as an effective and versatile oil absorbent
CN103061117B (zh) 一种木棉纤维吸油材料
CN105195116B (zh) 一种β‑环糊精修饰多孔葡聚糖凝胶吸附剂的制备方法
Wu et al. Chemical modification of poplar wood featuring compressible rebound 3D structure as water treatment absorbents
CN106519286A (zh) 一种固态荧光探针材料的制备方法
CN101747518B (zh) 一种复合高分子微球及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant