CN110142300A - 一种冷轧立式活套轨道几何参数检测方法 - Google Patents

一种冷轧立式活套轨道几何参数检测方法 Download PDF

Info

Publication number
CN110142300A
CN110142300A CN201910437200.6A CN201910437200A CN110142300A CN 110142300 A CN110142300 A CN 110142300A CN 201910437200 A CN201910437200 A CN 201910437200A CN 110142300 A CN110142300 A CN 110142300A
Authority
CN
China
Prior art keywords
track
cold rolling
vertical type
rolling vertical
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910437200.6A
Other languages
English (en)
Other versions
CN110142300B (zh
Inventor
雷振尧
陈伟刚
张扬
王会静
李洋龙
王建功
李昕洋
孙文晋
李敬伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shougang Jingtang United Iron and Steel Co Ltd
Original Assignee
Shougang Jingtang United Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shougang Jingtang United Iron and Steel Co Ltd filed Critical Shougang Jingtang United Iron and Steel Co Ltd
Priority to CN201910437200.6A priority Critical patent/CN110142300B/zh
Publication of CN110142300A publication Critical patent/CN110142300A/zh
Application granted granted Critical
Publication of CN110142300B publication Critical patent/CN110142300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B41/00Guiding, conveying, or accumulating easily-flexible work, e.g. wire, sheet metal bands, in loops or curves; Loop lifters
    • B21B41/12Arrangements of interest only with respect to provision for indicating or controlling operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明属于冶金设备装配精度控制技术领域,公开了一种冷轧立式活套轨道几何参数检测方法,包括:在冷轧立式活套轨道的多个坐标取样点上分别设置靶片;采用无协作目标检测方法获取所述靶片的点位坐标;比较所述点位坐标与冷轧立式活套轨道的理论设计模型,计算出各检测数据的偏差值;基于所述偏差值,获取轨道直线度、垂直度,活套开口距离、活套轨距以及活套四轨对中参数。本发明提供的冷轧立式活套轨道几何参数检测方法通过在轨道上设置靶标配合无协作目标检测方法实现高精度的轨道检测。

Description

一种冷轧立式活套轨道几何参数检测方法
技术领域
本发明涉及冶金设备装配精度控制技术领域,特别涉及一种冷轧立式活套轨道几何参数检测方法。
背景技术
冷轧产线立式活套多为四轨活套,由于地基沉降及设备损耗等原因,需要定期对冷轧活套进行空间精度检测。一般涉及到轨道直线度、垂直度,活套开口距离,活套轨距,活套四轨对中等几何参数。现有技术中,通常通过人工操作测量设备仪表进行各结构进行测量,而后汇总分析,通常检测误差较大,导致最终的几何参数往往精度较低,可靠性较差,导致生产安全事故风险高。
发明内容
本发明提供一种冷轧立式活套轨道几何参数检测方法,解决现有技术中检测误差大,精度低的技术问题。
为解决上述技术问题,本发明提供了一种冷轧立式活套轨道几何参数检测方法,包括:
在冷轧立式活套轨道的多个坐标取样点上分别设置靶片;
采用无协作目标检测方法获取所述靶片的点位坐标;
比较所述点位坐标与冷轧立式活套轨道的理论设计模型,计算出各检测数据的偏差值;
基于所述偏差值,获取轨道直线度、垂直度,活套开口距离、活套轨距以及活套四轨对中参数。
进一步地,所述坐标取样点包括:第一取样点以及第二取样点;
所述第一取样点和所述第二取样点分别设置在相邻的第一轨道侧面和第二轨道侧面上;
其中,所述第一轨道侧面为冷轧立式活套轨道的入口侧或出口侧的两个轨道的相对的两个侧面;
所述第二轨道侧面为冷轧立式活套轨道的操作侧或者驱动侧的两个轨道的相对的两个侧面。
进一步地,在所述轨道由多段支轨道拼接而成的情况下,每段支轨道的两端部的第一侧面和第二侧面均设置有坐标取样点。
进一步地,所述采用无协作目标检测方法获取所述靶片的点位坐标包括:
分别在冷轧立式活套轨道的入口侧以及出口侧设置检测位,检测第一侧面上的靶标的点位坐标;
在冷轧立式活套轨道的操作侧或者驱动侧的两个轨道的连线上设置检测位,检测第二侧面上的靶片的点位坐标。
进一步地,在计算各检测数据的偏差值时,考虑所述靶片的厚度值。
进一步地,所述靶片包括:主体;
所述主体上设置有反差色十字靶心。
进一步地,所述无协作目标检测方法基于无协作目标全站仪实现。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本申请实施例中提供的冷轧立式活套轨道几何参数检测方法,通过无协作目标检测方法,检测被测轨道的坐标取样点上靶标的点位坐标,并进一步通过坐标***的转换,获得被测目标定向坐标尺寸,通过设备设计的理想模型,实现实测数据与理论模型对比,最终通过计算获得目标几何参数。通过靶标配合无协助目标监测方法实现轨道的空间位置检测,与理论设计模型比对实现偏差检测,得到高精度的***检测,从而将将测精度提升到0.2mm。
附图说明
图1为本发明提供的冷轧立式活套轨道几何参数检测方法流程图;
图2为本发明提供的冷轧立式活套轨道靶标布置示意图。
具体实施方式
本申请实施例通过提供一种冷轧立式活套轨道几何参数检测方法,解决现有技术中检测误差大,精度低的技术问题。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细说明,应当理解本发明实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。
参见图1,一种冷轧立式活套轨道几何参数检测方法,包括:
在冷轧立式活套轨道的多个坐标取样点上分别设置靶片;
采用无协作目标检测方法获取所述靶片的点位坐标;
比较所述点位坐标与冷轧立式活套轨道的理论设计模型,计算出各检测数据的偏差值;
基于所述偏差值,获取轨道直线度、垂直度,活套开口距离、活套轨距以及活套四轨对中参数。
参见图2,所述坐标取样点包括:第一取样点以及第二取样点;所述第一取样点和所述第二取样点分别设置在相邻的第一轨道侧面和第二轨道侧面上。
具体来说,四轨活套包括四个轨道,每根轨道设置有第一轨道侧面和第二轨道侧面。
即,所述第一轨道侧面为冷轧立式活套轨道的入口侧或出口侧的两个轨道的相对的两个侧面,轨道一的第一轨道侧面11,轨道二的第一轨道侧面21,轨道三的第一轨道侧面31和轨道四的第一轨道侧面41;所述第二轨道侧面为冷轧立式活套轨道的操作侧或者驱动侧的两个轨道的相对的两个侧面,轨道一的第二轨道侧面12,轨道二的第二轨道侧面22,轨道三的第一轨道侧面32和轨道四的第一轨道侧面42。
一般来说,在所述轨道由多段支轨道拼接而成的情况下,每段支轨道的两端部的第一侧面和第二侧面均设置有坐标取样点。从而能够判断各支轨道的装配精度。
进一步地,所述采用无协作目标检测方法获取所述靶片的点位坐标包括:
分别在冷轧立式活套轨道的入口侧以及出口侧设置检测位,检测第一侧面上的靶标的点位坐标;
在冷轧立式活套轨道的操作侧或者驱动侧的两个轨道的连线上设置检测位,检测第二侧面上的靶片的点位坐标。
进一步地,在计算各检测数据的偏差值时,考虑所述靶片的厚度值,从而避免靶片厚度影响定位坐标的精度。
进一步地,所述靶片包括:主体;所述主体上设置有反差色十字靶心。
一般来说,靶片为明非暗色系颜色圆形纸片中间以反差色十字星标记,背面覆粘合胶,可粘附于金属表面。
进一步地,所述无协作目标检测方法基于无协作目标全站仪实现。
下面将通过具体的操作过程加以说明。
利用全站仪无协作目标检测技术,分别在操作侧双轨中间位,入口侧,出口侧三个站位对四个轨道的顶面与侧面进行检测,每条轨道在接口处上下即单根轨道两端取点。
通过游标卡尺测量每根轨道轨宽。
获得轨道表面空间坐标后,对坐标空间进行转换,以导向侧轨道工作区域最低位置为原点,轧制方向为正向,建立坐标系,与设计模型拟合,计算出偏移量。
算法(以处于同一高度的四轨点位i为例):
关键参数:操作侧入口端面中心点位x方向坐标值xOI
操作侧出口端面中心点位x方向坐标值xOO
驱动侧入口端面中心点位x方向坐标值xDI
驱动侧出口端面中心点位x方向坐标值xDO
操作侧入口侧面中心点位y方向坐标值yOI
操作侧出口侧面中心点位y方向坐标值yOO
驱动侧入口侧面中心点位y方向坐标值yDI
驱动侧出口侧面中心点位y方向坐标值yDO
操作侧入口轨道轨宽wOI
操作侧出口轨道轨宽wOO
驱动侧入口轨道轨宽wDI
驱动侧出口轨道轨宽wDO
活套标准开口a
活套标准轨距b
活套设计中心偏移d
计算结果:操作侧入口轨道垂直度ΔxOIi=xOIi
操作侧出口轨道垂直度ΔxOOi=xOOi-a;
传动侧入口轨道垂直度ΔxDIi=xDIi
传动侧出口轨道垂直度ΔxDOi=xDOi-a;
操作侧开口ΔaOi=xOOi-xOIi
传动侧开口ΔaDi=xDOi-xDIi
操作侧入口轨道直线度
操作侧出口轨道直线度
传动侧入口轨道直线度
传动侧出口轨道直线度
入口侧轨距
出口侧轨距
活套四轨对中:
非导向侧轨道相对导向侧轨道中心线偏移量;
入口或出口侧轨道中心线相对带钢运行中心线偏移量。
通过在0级或0级以上平面度大理石水平标定台面上粘贴标定基片,测定标定基片表面高度坐标,然后于基片表面粘贴靶片,测定靶片表面高度坐标,计算差值获取靶片厚度。
本发明具体实施过程主要分为三部分:1、靶片布设;2活套轨道开口度、垂直度检测;3、活套轨距、直线度检测;4、四轨位置标定与二维显示。
下面分部分逐步进行说明。
一、靶片布设
步骤01:清理轨道表面锈蚀物、油污等杂物;
步骤02:于每节轨道两端顶面及侧面布设靶片;
二、活套轨道开口度及垂直度检测
步骤01:将仪器架设于操作侧(或传动侧)两轨连线上;
步骤02:将仪器调平,误差控制在0.001°以内;
步骤03:取点激光对准入口轨道顶面中心位,仰角0°,并将此刻状态定义为0°水平角;
步骤04:仪器调制水平角180°,仰角0°,观察取点位置,与出口轨道顶面中心位偏差1mm以内,若超差,重做步骤01~步骤04;
步骤05:测量每个顶端靶片位与仪器定向坐标值,并上下浮动获取五个样本,记录稳定值。
三、活套轨矩及直线度检测
步骤01:仪器放置与入口轨道附近,使两轨侧面尽量正对仪器,并仪器对入口第一根底辊存在可视条件;
步骤02:检测底辊入口侧表面母线两端坐标;
步骤03:通过两点方向定义坐标系X正向;
步骤04:测量每个侧面靶片位与仪器X定向坐标值,并上下浮动获取五个样本,记录稳定值;
步骤05:仪器放置与出口轨道附近,使两轨侧面尽量正对仪器,并仪器对出口最后一根底辊存在可视条件;
步骤06:检测底辊出口侧表面母线两端坐标;
步骤07:通过两点方向定义坐标系X正向;
步骤08:测量每个侧面靶片位与仪器X定向坐标值,并上下浮动获取五个样本,记录稳定值。
四、记录数据,计算结果,绘制二维折线图
步骤01:将上一节发明内容中阐述的公式关系输入至excel表格,利用excel函数计算功能使数据实现数据自动计算;
步骤02:通过excel绘制二维折线图,将点位偏移方向及距离标示与折线图内。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本申请实施例中提供的冷轧立式活套轨道几何参数检测方法,通过无协作目标检测方法,检测被测轨道的坐标取样点上靶标的点位坐标,并进一步通过坐标***的转换,获得被测目标定向坐标尺寸,通过设备设计的理想模型,实现实测数据与理论模型对比,最终通过计算获得目标几何参数。通过靶标配合无协助目标监测方法实现轨道的空间位置检测,与理论设计模型比对实现偏差检测,得到高精度的***检测,从而将将测精度提升到0.2mm。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (7)

1.一种冷轧立式活套轨道几何参数检测方法,其特征在于,包括:
在冷轧立式活套轨道的多个坐标取样点上分别设置靶片;
采用无协作目标检测方法获取所述靶片的点位坐标;
比较所述点位坐标与冷轧立式活套轨道的理论设计模型,计算出各检测数据的偏差值;
基于所述偏差值,获取轨道直线度、垂直度,活套开口距离、活套轨距以及活套四轨对中参数。
2.如权利要求1所述的冷轧立式活套轨道几何参数检测方法,其特征在于,所述坐标取样点包括:第一取样点以及第二取样点;
所述第一取样点和所述第二取样点分别设置在相邻的第一轨道侧面和第二轨道侧面上;
其中,所述第一轨道侧面为冷轧立式活套轨道的入口侧或出口侧的两个轨道的相对的两个侧面;
所述第二轨道侧面为冷轧立式活套轨道的操作侧或者驱动侧的两个轨道的相对的两个侧面。
3.如权利要求2所述的冷轧立式活套轨道几何参数检测方法,其特征在于,在所述轨道由多段支轨道拼接而成的情况下,每段支轨道的两端部的第一侧面和第二侧面均设置有坐标取样点。
4.如权利要求1所述的冷轧立式活套轨道几何参数检测方法,其特征在于,所述采用无协作目标检测方法获取所述靶片的点位坐标包括:
分别在冷轧立式活套轨道的入口侧以及出口侧设置检测位,检测第一侧面上的靶标的点位坐标;
在冷轧立式活套轨道的操作侧或者驱动侧的两个轨道的连线上设置检测位,检测第二侧面上的靶片的点位坐标。
5.如权利要求1~4任一项所述的冷轧立式活套轨道几何参数检测方法,其特征在于:在计算各检测数据的偏差值时,考虑所述靶片的厚度值。
6.如权利要求5所述的冷轧立式活套轨道几何参数检测方法,其特征在于,所述靶片包括:主体;
所述主体上设置有反差色十字靶心。
7.如权利要求5所述的冷轧立式活套轨道几何参数检测方法,其特征在于:所述无协作目标检测方法基于无协作目标全站仪实现。
CN201910437200.6A 2019-05-24 2019-05-24 一种冷轧立式活套轨道几何参数检测方法 Active CN110142300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910437200.6A CN110142300B (zh) 2019-05-24 2019-05-24 一种冷轧立式活套轨道几何参数检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910437200.6A CN110142300B (zh) 2019-05-24 2019-05-24 一种冷轧立式活套轨道几何参数检测方法

Publications (2)

Publication Number Publication Date
CN110142300A true CN110142300A (zh) 2019-08-20
CN110142300B CN110142300B (zh) 2021-02-26

Family

ID=67592927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910437200.6A Active CN110142300B (zh) 2019-05-24 2019-05-24 一种冷轧立式活套轨道几何参数检测方法

Country Status (1)

Country Link
CN (1) CN110142300B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849298A (zh) * 2019-11-07 2020-02-28 中铁宝桥集团有限公司 一种导轨的安装检测与误差分析方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822977B1 (ko) * 2002-07-12 2008-04-16 주식회사 포스코 스트립 루프 컨트롤 설비의 스윙롤 제어용 가이드롤 레벨측정장치
CN102445166A (zh) * 2011-09-21 2012-05-09 天元建设集团有限公司 一种行车轨道检测方法
CN102950464A (zh) * 2011-08-17 2013-03-06 五冶集团上海有限公司 无取向硅钢连续生产线安装方法
CN203079561U (zh) * 2013-01-18 2013-07-24 新疆维吾尔自治区特种设备检验研究院 起重机轨距偏差量自动监测装置
CN103212584A (zh) * 2012-01-20 2013-07-24 五冶集团上海有限公司 取向硅钢超长多轨卧式活套带钢跑偏控制方法
CN103264711A (zh) * 2013-05-31 2013-08-28 株洲时代电子技术有限公司 一种轨道参数测量***
CN104358194A (zh) * 2014-10-27 2015-02-18 同济大学 基于激光跟踪仪的轨道静态平顺性测量与分析方法
CN105562438A (zh) * 2014-10-10 2016-05-11 五冶集团上海有限公司 立式活套快速调试方法
CN205506040U (zh) * 2016-02-03 2016-08-24 宝山钢铁股份有限公司 导轨快速检测装置
CN106595700A (zh) * 2015-10-15 2017-04-26 南京理工大学 基于三点坐标测量的靶道空间基准标定方法
CN107101586A (zh) * 2017-04-24 2017-08-29 沪杭铁路客运专线股份有限公司 一种用于检测crts ii型无砟轨道板空间几何形位的方法及装置
CN107782240A (zh) * 2017-09-27 2018-03-09 首都师范大学 一种二维激光扫描仪标定方法、***及装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822977B1 (ko) * 2002-07-12 2008-04-16 주식회사 포스코 스트립 루프 컨트롤 설비의 스윙롤 제어용 가이드롤 레벨측정장치
CN102950464A (zh) * 2011-08-17 2013-03-06 五冶集团上海有限公司 无取向硅钢连续生产线安装方法
CN102445166A (zh) * 2011-09-21 2012-05-09 天元建设集团有限公司 一种行车轨道检测方法
CN103212584A (zh) * 2012-01-20 2013-07-24 五冶集团上海有限公司 取向硅钢超长多轨卧式活套带钢跑偏控制方法
CN203079561U (zh) * 2013-01-18 2013-07-24 新疆维吾尔自治区特种设备检验研究院 起重机轨距偏差量自动监测装置
CN103264711A (zh) * 2013-05-31 2013-08-28 株洲时代电子技术有限公司 一种轨道参数测量***
CN105562438A (zh) * 2014-10-10 2016-05-11 五冶集团上海有限公司 立式活套快速调试方法
CN104358194A (zh) * 2014-10-27 2015-02-18 同济大学 基于激光跟踪仪的轨道静态平顺性测量与分析方法
CN106595700A (zh) * 2015-10-15 2017-04-26 南京理工大学 基于三点坐标测量的靶道空间基准标定方法
CN205506040U (zh) * 2016-02-03 2016-08-24 宝山钢铁股份有限公司 导轨快速检测装置
CN107101586A (zh) * 2017-04-24 2017-08-29 沪杭铁路客运专线股份有限公司 一种用于检测crts ii型无砟轨道板空间几何形位的方法及装置
CN107782240A (zh) * 2017-09-27 2018-03-09 首都师范大学 一种二维激光扫描仪标定方法、***及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849298A (zh) * 2019-11-07 2020-02-28 中铁宝桥集团有限公司 一种导轨的安装检测与误差分析方法
CN110849298B (zh) * 2019-11-07 2021-05-25 中铁宝桥集团有限公司 一种导轨的安装检测与误差分析方法

Also Published As

Publication number Publication date
CN110142300B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN203079561U (zh) 起重机轨距偏差量自动监测装置
CN201488689U (zh) 一种用于测量汽车最小离地间隙的测量仪
CN106052599A (zh) 一种测量直线导轨精度的装置及非接触式测量方法
CN107479078A (zh) 铁路测量中大地坐标转换为独立平面坐标的方法及***
CN110371816A (zh) 自动跟随式电梯导轨垂直度检测仪及其检测方法
CN101819035B (zh) 一种用于crtsⅱ型轨道板制板的检测方法
CN110142300A (zh) 一种冷轧立式活套轨道几何参数检测方法
CN101210812B (zh) 起重运输机械轨道空间关系自动化检测方法
CN113324476A (zh) 一种起重机导轨检测***及其检测方法
CN108343448A (zh) 一种隧道任意断面姿态确定的方法
CN206876177U (zh) 地铁隧道工程线路测点点位的快速定位装置
CN108637037B (zh) 一种钢材冷矫直机校验矫直辊水平度的方法
CN109855611A (zh) 一种基于全站仪的pc墙体快速测量校准方法
CN112647378B (zh) 一种双棱镜轨检小车测量方法
CN105403189A (zh) 一种导轨平行度测量方法及装置
CN106989661B (zh) 一种测试机床静压导轨表面形状误差的方法
CN105648862A (zh) 轨道中线坐标动态连续检测方法
CN211619787U (zh) 一种用于测量起重机轨道中心线的装置
CN103851990A (zh) 一种管道预制安装的测量组合工具
CN103512507A (zh) 一种大跨距钢轨轨距测量方法
CN106949886A (zh) 地铁隧道工程线路测点点位的快速定位装置及定位方法
CN110360937B (zh) 一种基于激光测距仪的纸卷幅宽自动测量方法
CN112304282A (zh) 一种新型离心机轨道安装测量方法
CN112833856B (zh) 基于全站仪的高精度港区堆场轨道检测方法
CN113124734A (zh) 一种机械式地铁隧道管片错台测量尺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant