CN110128136B - 一种防静电陶瓷材料及其制备方法 - Google Patents

一种防静电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN110128136B
CN110128136B CN201910527811.XA CN201910527811A CN110128136B CN 110128136 B CN110128136 B CN 110128136B CN 201910527811 A CN201910527811 A CN 201910527811A CN 110128136 B CN110128136 B CN 110128136B
Authority
CN
China
Prior art keywords
ball
temperature
ceramic material
solution
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910527811.XA
Other languages
English (en)
Other versions
CN110128136A (zh
Inventor
谢红兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia New Material Technology Co ltd
Hubei Asia Ceramics Co Ltd
Original Assignee
Hubei Asia Ceramics Co ltd
Asia New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Asia Ceramics Co ltd, Asia New Material Technology Co ltd filed Critical Hubei Asia Ceramics Co ltd
Priority to CN201910527811.XA priority Critical patent/CN110128136B/zh
Publication of CN110128136A publication Critical patent/CN110128136A/zh
Application granted granted Critical
Publication of CN110128136B publication Critical patent/CN110128136B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种防静电陶瓷材料及其制备方法,该陶瓷材料将氧化锆、α‑氧化铝、耐火耐磨填料、去离子水混合后,湿法球磨、过滤、烘干、粉碎得到球磨料;球磨料真空保温烧结得到陶瓷基体;陶瓷基体、导电纤维、二氧化硅气凝胶粉末混合后,高速干法球磨得到致密保温的陶瓷材料,该陶瓷材料具有优异的强度、耐磨性、抗静电性,通过机械加工、抛光即可得到特定形状尺寸的陶瓷成品,大大节约了能耗和加工成本。

Description

一种防静电陶瓷材料及其制备方法
技术领域
本发明涉及特种陶瓷材料技术领域,具体涉及一种防静电陶瓷材料及其制备方法。
背景技术
防静电陶瓷材料是一种新型的防静电材料,可以克服当前使用的,如环氧类、三聚氰胺类、PVC类防静电涂料、地板、橡胶等高分子材料带来的问题,问题包括易老化、不耐磨、易污染、不防静电、耐久性和防火欠佳等。研究表明,当材料的体积电阻率超过1010Ω·m时,耗散电荷的效果减弱;从消除静电的角度考虑,体积电阻率不超过1010Ω·m,表面电阻在105-109Ω时,积累电荷可以迅速释放,达到防静电效果。
普通的陶瓷材料具有很高的电阻率,容易积聚电荷而产生静电,放电时产生的电磁效应干扰精密仪器的正常工作,甚至产生电火花而引燃粉尘,导致***事故。目前防静电材料主要包括以下几类:(1)高分子基复合材料,通过在高分子材料中加入炭黑、石墨、短切纤维、碳纳米管等填料,或者直接利用材料本身形成导电通路,存在填料分散性、耐久性、耐高温性、耐磨损性差的问题;(2)防静电釉,在传统釉粉中加入半导体氧化物颗粒、导电纤维,借助导电颗粒或导电纤维形成的导电网络,实现防静电功能。
授权公告号CN103497003B的专利公开了一种防静电陶瓷材料及其制备方法,以氧化锆陶瓷材料为基体,基体表面存在厚度≥2μm的表面改性层,表面改性层中含有铁元素和碳元素,采用铁粉包埋氧化锆、覆盖石墨层、高温加热、冷却得到。该材料具有良好的防静电功能,制备简便,成本低廉。现有的防静电陶瓷材料在选材和制备过程中,仍然存在以下问题:1、常用的高分子类抗静电添加剂耐磨性、阻燃性较差,因静电发生火灾时,会燃烧生成大量有毒烟气,应用范围受到限制;2、大部分采用单一的陶瓷基体,如氧化铝陶瓷基体或氧化锆陶瓷基体,会导致成品电阻率过高,无法保证静电缓慢安全地释放;3、制备过程将基体与导电材料混合后,空气气氛下高温烧结,烧结时间长,导电材料会部分氧化分解生成挥发气体,导致成品不够致密,内部形成大小不均匀的孔洞,无法满足抗静电、保温隔热的要求。
发明内容
为了克服上述的技术问题,本发明的目的在于提供一种防静电陶瓷材料及其制备方法,该陶瓷材料采用氧化锆、α-氧化铝、耐火耐磨填料、去离子水混合后,湿法球磨、过滤、烘干、粉碎得到球磨料;球磨料真空保温烧结得到陶瓷基体;陶瓷基体、导电纤维、二氧化硅气凝胶粉末混合后,高速干法球磨得到致密保温的陶瓷材料,该陶瓷材料通过机械加工、抛光即可得到特定形状尺寸的陶瓷成品,与现有技术相比大大节约了能耗和加工成本,同时强度、耐磨性、抗静电性优异。
本发明的目的可以通过以下技术方案实现:
本发明提供一种防静电陶瓷材料,该陶瓷材料由以下重量份的成分制备而成:氧化锆65-78份、氧化铝12-20份、导电纤维0.35-1.3份、耐火耐磨填料4.5-7.2份、二氧化硅气凝胶粉末3-6份;
其中,所述导电纤维的制备方法包括以下步骤:
1)将棉浆粕与75-85wt%的离子液体水溶液按照质量比1:8-10混合均匀,得到纺丝原液;
2)将氧化石墨烯、磷酸三钙、水性丙烯酸乳液混合均匀后,超声分散于去离子水中,得到浸渍液;其中,氧化石墨烯、磷酸三钙、水性丙烯酸乳液、去离子水的质量比为5:2~3:3~5:80~95;
3)将纺丝原液经过滤、纺丝、凝固、拉伸、水洗、漂白后,浸渍于预先升温至75-80℃的浸渍液中,取出后微波干燥,得到该导电纤维。
本发明考虑到现有技术中大多采用炭黑、石墨、短切纤维、碳纳米管等抗静电填料,会导致陶瓷材料的电阻率过高,无法保证静电缓慢且安全地释放。发明人进行大量的实验设计和筛选,将棉浆粕溶解在离子液体水溶液中形成纺丝原液,纺丝原液经常规的过滤、纺丝、凝固、水洗、漂白后,浸渍于含有氧化石墨烯的浸渍液中,微波干燥得到该导电纤维。具体地,棉浆粕中的棉纤维属于天然纤维且具有良好的抗静电性,溶解在离子液体水溶液中,使得纺丝原液的粘度适中,可纺性好;然后将活性高的石墨烯与分散剂硫酸三钙、水性丙烯酸乳液混匀后,通过超声在去离子水中均匀分散,未发生团聚现象,处理后的棉纤维经过浸渍液的浸渍处理,使得石墨烯附着在棉纤维的表面和内部,干燥后的纤维呈现良好的导电性能,体积电阻率经测量达到5.2-5.6×103Ω·m。
作为本发明进一步的方案,所述离子液体为1-(3-磺酸基)丙酸哌啶十二烷基苯磺酸离子液体;其中,阴离子为十二烷基苯磺酸根,阳离子为1-(3-磺酸基)丙酸哌啶,阴离子与阳离子的摩尔浓度比为1:0.9。
作为本发明进一步的方案,步骤3)纺丝时的溶液温度为75-85℃,纺丝速率为110-120m/min;凝固浴温度为8-12℃,凝固浴溶液采用15wt%的离子液体水溶液。
作为本发明进一步的方案,所述耐火耐磨填料的制备方法如下:
1)将铝矾土、蒙脱土、二氧化钛、氧化钙、去离子水按照质量比12~18:15~20:3~8:2~5:35~45混合后得到湿料,送入球磨机中,控制球料比1:1,以400-600r/min湿法球磨2-3小时,取出过滤,烘干、粉碎得到粒径0.5-10μm的磨料;
2)磨料投入造粒机中,在40-60r/min的转速下加入雾化水形成生球,加水量达到磨料质量的10-15%时,造粒使生球粒径达到100-180μm,取出得填料粗品;
3)填料粗品置于160-180℃的烘箱中干燥1-2小时,冷却至室温即可。
本发明的耐火耐磨填料,选取铝矾土、蒙脱土、二氧化钛、氧化钙与去离子水混合后,湿法球磨得到磨料,磨料在雾化水的作用下造粒得到填料粗品,粗品干燥、冷却后得到成品。现有的具有耐火耐磨功能的添加剂,大多选取金属氧化物或金属单质,通过简单的混合、粉碎、烘干得到,缺乏严格的工艺控制,使得分散性、致密性较差,耐火耐磨性能不稳定。
铝矾土是由长石、云母等矿物风化而成,主要矿物类型是三水铝合、硬水铝石和勃姆石。蒙脱土是一类纳米厚度的表面带负电的硅酸盐片层,依靠层间的静电作用而堆积在一起构成土状矿物,其晶体结构中的晶胞是由两层硅氧四面体中间夹一层铝氧八面体构成,具有独特的一维层状纳米结构和阳离子交换特性。该耐火耐磨填料的成分体系中,铝矾土作为基料,二氧化钛、氧化钙作为耐火助磨添加剂,加水后蒙脱土发挥良好的吸附性吸水膨胀,变成糊状物,对铝矾土、二氧化钛、氧化钙进行包覆,高速湿法球磨使得成分铝矾土、二氧化钛、氧化钙充分撞击分散,得到粒径均匀细小的磨料,烘干过程中蒙脱土失水收缩,对其他成分的粘附作用加强,利于提高造粒时的生球生成速率和粒径的均匀性。该耐火耐磨填料经过球磨、造粒、干燥处理后,使得成分较复杂的铝矾土分散均匀,粒径均匀细小,减弱了后期煅烧过程中成分相互推开导致的膨胀。在1400-1500℃以上烧结时,该耐火耐磨填料会逐渐发生固体颗粒溶解与析晶过程,形成连续的固相骨架,液相填充空隙,致密性好,经检测具有超过1750℃的耐火度。
作为本发明进一步的方案,所述二氧化硅气凝胶粉末的比表面积为700-760m2/g,堆积密度为110-120kg/m3,气孔率>90%,孔径≤20nm。
本发明还提供了上述防静电陶瓷材料的制备方法,包括以下步骤:
S1、基料球磨:将氧化锆、α-氧化铝、耐火耐磨填料混合均匀得到混合基料,加入混合基料质量8-10倍量的去离子水,送入球磨机中,控制球料比1:1,以400-600r/min湿法球磨4-6小时,过滤、烘干、粉碎得到粒径4-8μm的球磨料;
S2、基料烧结:球磨料送入真空烧结炉内,在1450-1520℃的温度下保温烧结4-6小时,冷却至室温后得到陶瓷基体;
S3、共混研磨:将陶瓷基体、导电纤维、二氧化硅气凝胶粉末混合均匀后得到混合料,送入球磨机中,控制球料比1.5:1,以700-800r/min干法球磨6-8小时,干燥粉碎后得到该防静电陶瓷材料。
本发明防静电陶瓷材料的制备方法,采用先将氧化锆、α-氧化铝、耐火耐磨填料、去离子水混合后,400-600r/min的转速湿法球磨4-6小时,原料成分表面上的不饱和键与水分子间发生可逆反应,有助于原料颗粒裂纹的生成及扩张,同时在水中处于悬浮状态,对球磨细碎的缓冲作用小,有利于物料的球磨细碎,提高了研磨速度;球磨料在1450-1520℃温度下的真空烧结,通过控制升温速率和保温时间,同时保持真空条件,使得氧化锆、氧化铝、耐火耐磨填料内的铝矾土不易被氧化,产生规律相变,体积膨胀并产生裂纹,使得陶瓷基体具有优异的强度、韧性、耐火阻燃性、耐磨性;现有技术中陶瓷基体与抗静电添加剂混合后还需要高温烧结,本发明将陶瓷基体、导电纤维、二氧化硅气凝胶粉末混合后,利用球磨机以700-800r/min高速干法球磨,干燥粉碎即可,得到的陶瓷材料通过机械加工、抛光即可得到特定形状尺寸的陶瓷成品,大大节约了能耗和加工成本。
作为本发明进一步的方案,所述真空烧结炉升温至1450-1520℃的过程如下:以6-8℃/min的速率升温至720-760℃,保温20-30min;以10-13℃/min的速率升温至1000-1050℃,保温30-40min;以15-18℃/min的速率升温至1450-1520℃。
本发明的有益效果:
1、本发明的防静电陶瓷材料,球磨料在1450-1520℃温度下的真空烧结,通过控制升温速率和保温时间,同时保持真空条件,使得氧化锆、氧化铝、耐火耐磨填料内的铝矾土不易被氧化,产生规律相变,体积膨胀并产生裂纹,使得陶瓷基体具有优异的强度、韧性、耐火阻燃性、耐磨性;将陶瓷基体、导电纤维、二氧化硅气凝胶粉末混合后,利用球磨机以700-800r/min高速干法球磨,干燥粉碎即可,得到的陶瓷材料通过机械加工、抛光即可得到特定形状尺寸的陶瓷成品,大大节约了能耗和加工成本,强度、耐磨性、抗静电性优异。
2、本发明的导电纤维,棉浆粕中的棉纤维具有良好的抗静电性,溶解在离子液体水溶液中,使得纺丝原液的粘度适中,可纺性好;然后将活性高的石墨烯与分散剂硫酸三钙、水性丙烯酸乳液混匀后,通过超声在去离子水中均匀分散,未发生团聚现象,处理后的棉纤维经过浸渍液的浸渍处理,使得石墨烯附着在棉纤维的表面和内部,干燥后的纤维呈现良好的导电性能,体积电阻率经测量达到5.2-5.6×103Ω·m。
3、本发明的耐火耐磨填料,铝矾土作为基料,二氧化钛、氧化钙作为耐火助磨添加剂,加水后蒙脱土发挥良好的吸附性吸水膨胀,变成糊状物,对铝矾土、二氧化钛、氧化钙进行包覆,高速湿法球磨使得成分铝矾土、二氧化钛、氧化钙充分撞击分散,得到粒径均匀细小的磨料,烘干过程中蒙脱土失水收缩,对其他成分的粘附作用加强,利于提高造粒时的生球生成速率和粒径的均匀性;在1400-1500℃以上烧结时,该耐火耐磨填料会逐渐发生固体颗粒溶解与析晶过程,形成连续的固相骨架,液相填充空隙,致密性好,经检测具有超过1750℃的耐火度。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
本实施例的防静电陶瓷材料,由以下重量份的成分制备而成:氧化锆72份、α-氧化铝16份、导电纤维0.52份、耐火耐磨填料5.6份、二氧化硅气凝胶粉末4.2份;二氧化硅气凝胶粉末的比表面积为700-760m2/g,堆积密度为110-120kg/m3,气孔率>90%,孔径≤20nm。
其中,导电纤维的制备方法包括以下步骤:
1)将棉浆粕与82wt%的离子液体水溶液按照质量比1:8.5混合均匀,得到纺丝原液;离子液体为1-(3-磺酸基)丙酸哌啶十二烷基苯磺酸离子液体;其中,阴离子为十二烷基苯磺酸根,阳离子为1-(3-磺酸基)丙酸哌啶,阴离子与阳离子的摩尔浓度比为1:0.9。
2)将氧化石墨烯、磷酸三钙、水性丙烯酸乳液混合均匀后,超声分散于去离子水中,得到浸渍液;其中,氧化石墨烯、磷酸三钙、水性丙烯酸乳液、去离子水的质量比为5:2.2:4:86;
3)将纺丝原液经过滤、纺丝、凝固、拉伸、水洗、漂白后,浸渍于预先升温至76℃的浸渍液中,取出后微波干燥,得到该导电纤维。纺丝时的溶液温度为80℃,纺丝速率为116m/min;凝固浴温度为10℃,凝固浴溶液采用15wt%的离子液体水溶液。
耐火耐磨填料的制备方法如下:
1)将铝矾土、蒙脱土、二氧化钛、氧化钙、去离子水按照质量比16:17:6:4:43混合后得到湿料,送入球磨机中,控制球料比1:1,以500r/min湿法球磨2.6小时,取出过滤,烘干、粉碎得到粒径0.5-10μm的磨料;
2)磨料投入造粒机中,在52r/min的转速下加入雾化水形成生球,加水量达到磨料质量的12%时,造粒使生球粒径达到100-180μm,取出得填料粗品;
3)填料粗品置于170℃的烘箱中干燥1.6小时,冷却至室温即可。
本实施例防静电陶瓷材料的制备方法,包括以下步骤:
S1、基料球磨:将氧化锆、α-氧化铝、耐火耐磨填料混合均匀得到混合基料,加入混合基料质量10倍量的去离子水,送入球磨机中,控制球料比1:1,以560r/min湿法球磨5.5小时,过滤、烘干、粉碎得到粒径4-8μm的球磨料;
S2、基料烧结:球磨料送入真空烧结炉内,在1480℃的温度下保温烧结5.5小时,冷却至室温后得到陶瓷基体;升温至1480℃的过程如下:以7℃/min的速率升温至750℃,保温26min;以12℃/min的速率升温至1030℃,保温35min;以16℃/min的速率升温至1480℃。
S3、共混研磨:将陶瓷基体、导电纤维、二氧化硅气凝胶粉末混合均匀后得到混合料,送入球磨机中,控制球料比1.5:1,以750r/min干法球磨7.5小时,干燥粉碎后得到该防静电陶瓷材料。
实施例2
本实施例的防静电陶瓷材料,由以下重量份的成分制备而成:氧化锆70份、α-氧化铝15份、导电纤维0.64份、耐火耐磨填料6.2份、二氧化硅气凝胶粉末5份;二氧化硅气凝胶粉末的比表面积为700-760m2/g,堆积密度为110-120kg/m3,气孔率>90%,孔径≤20nm。
其中,导电纤维的制备方法包括以下步骤:
1)将棉浆粕与78wt%的离子液体水溶液按照质量比1:9.2混合均匀,得到纺丝原液;离子液体为1-(3-磺酸基)丙酸哌啶十二烷基苯磺酸离子液体;其中,阴离子为十二烷基苯磺酸根,阳离子为1-(3-磺酸基)丙酸哌啶,阴离子与阳离子的摩尔浓度比为1:0.9。
2)将氧化石墨烯、磷酸三钙、水性丙烯酸乳液混合均匀后,超声分散于去离子水中,得到浸渍液;其中,氧化石墨烯、磷酸三钙、水性丙烯酸乳液、去离子水的质量比为5:2.8:4.5:82;
3)将纺丝原液经过滤、纺丝、凝固、拉伸、水洗、漂白后,浸渍于预先升温至76℃的浸渍液中,取出后微波干燥,得到该导电纤维。纺丝时的溶液温度为82℃,纺丝速率为115m/min;凝固浴温度为9℃,凝固浴溶液采用15wt%的离子液体水溶液。
耐火耐磨填料的制备方法如下:
1)将铝矾土、蒙脱土、二氧化钛、氧化钙、去离子水按照质量比16:17:7:4.2:40混合后得到湿料,送入球磨机中,控制球料比1:1,以480r/min湿法球磨2.3小时,取出过滤,烘干、粉碎得到粒径0.5-10μm的磨料;
2)磨料投入造粒机中,在56r/min的转速下加入雾化水形成生球,加水量达到磨料质量的13%时,造粒使生球粒径达到100-180μm,取出得填料粗品;
3)填料粗品置于175℃的烘箱中干燥1.8小时,冷却至室温即可。
本实施例防静电陶瓷材料的制备方法,包括以下步骤:
S1、基料球磨:将氧化锆、α-氧化铝、耐火耐磨填料混合均匀得到混合基料,加入混合基料质量8.9倍量的去离子水,送入球磨机中,控制球料比1:1,以580r/min湿法球磨5.6小时,过滤、烘干、粉碎得到粒径4-8μm的球磨料;
S2、基料烧结:球磨料送入真空烧结炉内,在1500℃的温度下保温烧结5.6小时,冷却至室温后得到陶瓷基体;真空烧结炉升温至1500℃的过程如下:以7.6℃/min的速率升温至750℃,保温28min;以12℃/min的速率升温至1030℃,保温38min;以17℃/min的速率升温至1510℃。
S3、共混研磨:将陶瓷基体、导电纤维、二氧化硅气凝胶粉末混合均匀后得到混合料,送入球磨机中,控制球料比1.5:1,以760r/min干法球磨7.2小时,干燥粉碎后得到该防静电陶瓷材料。
实施例3
本实施例的防静电陶瓷材料,由以下重量份的成分制备而成:氧化锆76份、α-氧化铝18份、导电纤维0.88份、耐火耐磨填料6.5份、二氧化硅气凝胶粉末3.5份;二氧化硅气凝胶粉末的比表面积为700-760m2/g,堆积密度为110-120kg/m3,气孔率>90%,孔径≤20nm。
其中,导电纤维的制备方法包括以下步骤:
1)将棉浆粕与83wt%的离子液体水溶液按照质量比1:10混合均匀,得到纺丝原液;离子液体为1-(3-磺酸基)丙酸哌啶十二烷基苯磺酸离子液体;其中,阴离子为十二烷基苯磺酸根,阳离子为1-(3-磺酸基)丙酸哌啶,阴离子与阳离子的摩尔浓度比为1:0.9。
2)将氧化石墨烯、磷酸三钙、水性丙烯酸乳液混合均匀后,超声分散于去离子水中,得到浸渍液;其中,氧化石墨烯、磷酸三钙、水性丙烯酸乳液、去离子水的质量比为5:2.8:4.5:93;
3)将纺丝原液经过滤、纺丝、凝固、拉伸、水洗、漂白后,浸渍于预先升温至80℃的浸渍液中,取出后微波干燥,得到该导电纤维。纺丝时的溶液温度为82℃,纺丝速率为119m/min;凝固浴温度为11℃,凝固浴溶液采用15wt%的离子液体水溶液。
耐火耐磨填料的制备方法如下:
1)将铝矾土、蒙脱土、二氧化钛、氧化钙、去离子水按照质量比15:19:6:4.3:42混合后得到湿料,送入球磨机中,控制球料比1:1,以570r/min湿法球磨3小时,取出过滤,烘干、粉碎得到粒径0.5-10μm的磨料;
2)磨料投入造粒机中,在60r/min的转速下加入雾化水形成生球,加水量达到磨料质量的15%时,造粒使生球粒径达到100-180μm,取出得填料粗品;
3)填料粗品置于178℃的烘箱中干燥2小时,冷却至室温即可。
本实施例防静电陶瓷材料的制备方法,包括以下步骤:
S1、基料球磨:将氧化锆、α-氧化铝、耐火耐磨填料混合均匀得到混合基料,加入混合基料质量9.5倍量的去离子水,送入球磨机中,控制球料比1:1,以550r/min湿法球磨6小时,过滤、烘干、粉碎得到粒径4-8μm的球磨料;
S2、基料烧结:球磨料送入真空烧结炉内,在1476℃的温度下保温烧结5.8小时,冷却至室温后得到陶瓷基体;真空烧结炉升温至1476℃的过程如下:以7.5℃/min的速率升温至750℃,保温28min;以12℃/min的速率升温至1036℃,保温37min;以18℃/min的速率升温至1476℃。
S3、共混研磨:将陶瓷基体、导电纤维、二氧化硅气凝胶粉末混合均匀后得到混合料,送入球磨机中,控制球料比1.5:1,以800r/min干法球磨7.5小时,干燥粉碎后得到该防静电陶瓷材料。
实施例4
本实施例的防静电陶瓷材料,由以下重量份的成分制备而成:氧化锆66份、α-氧化铝19份、导电纤维1.2份、耐火耐磨填料6.6份、二氧化硅气凝胶粉末5份;二氧化硅气凝胶粉末的比表面积为700-760m2/g,堆积密度为110-120kg/m3,气孔率>90%,孔径≤20nm。
其中,导电纤维的制备方法包括以下步骤:
1)将棉浆粕与85wt%的离子液体水溶液按照质量比1:10混合均匀,得到纺丝原液;离子液体为1-(3-磺酸基)丙酸哌啶十二烷基苯磺酸离子液体;其中,阴离子为十二烷基苯磺酸根,阳离子为1-(3-磺酸基)丙酸哌啶,阴离子与阳离子的摩尔浓度比为1:0.9。
2)将氧化石墨烯、磷酸三钙、水性丙烯酸乳液混合均匀后,超声分散于去离子水中,得到浸渍液;其中,氧化石墨烯、磷酸三钙、水性丙烯酸乳液、去离子水的质量比为5:3:4:92;
3)将纺丝原液经过滤、纺丝、凝固、拉伸、水洗、漂白后,浸渍于预先升温至80℃的浸渍液中,取出后微波干燥,得到该导电纤维。纺丝时的溶液温度为83℃,纺丝速率为120m/min;凝固浴温度为12℃,凝固浴溶液采用15wt%的离子液体水溶液。
耐火耐磨填料的制备方法如下:
1)将铝矾土、蒙脱土、二氧化钛、氧化钙、去离子水按照质量比18:18:7:4:37混合后得到湿料,送入球磨机中,控制球料比1:1,以570r/min湿法球磨2.6小时,取出过滤,烘干、粉碎得到粒径0.5-10μm的磨料;
2)磨料投入造粒机中,在60r/min的转速下加入雾化水形成生球,加水量达到磨料质量的13%时,造粒使生球粒径达到100-180μm,取出得填料粗品;
3)填料粗品置于175℃的烘箱中干燥2小时,冷却至室温即可。
本实施例防静电陶瓷材料的制备方法,包括以下步骤:
S1、基料球磨:将氧化锆、α-氧化铝、耐火耐磨填料混合均匀得到混合基料,加入混合基料质量10倍量的去离子水,送入球磨机中,控制球料比1:1,以600r/min湿法球磨5.6小时,过滤、烘干、粉碎得到粒径4-8μm的球磨料;
S2、基料烧结:球磨料送入真空烧结炉内,在1520℃的温度下保温烧结4-6小时,冷却至室温后得到陶瓷基体;真空烧结炉升温至1520℃的过程如下:以8℃/min的速率升温至756℃,保温30min;以12℃/min的速率升温至1024℃,保温38min;以16℃/min的速率升温至1520℃。
S3、共混研磨:将陶瓷基体、导电纤维、二氧化硅气凝胶粉末混合均匀后得到混合料,送入球磨机中,控制球料比1.5:1,以800r/min干法球磨7.5小时,干燥粉碎后得到该防静电陶瓷材料。
对比例1
本对比例与实施例1的区别在于,耐火耐磨填料替换为铝矾土。
对比例2
本对比例与实施例1的区别在于,导电纤维替换为碳纳米管。
对比例3
本对比例与实施例1的区别在于,未添加二氧化硅气凝胶粉末。
对比例4
本对比例与实施例1的区别在于,未添加导电纤维。
对比例5
本对比例与实施例1的区别在于,未添加耐火耐磨填料。
性能测试
针对实施例1-4、对比例1-5制备的陶瓷材料,参照标准GB/T 4740-1999测试抗压强度,参照标准GB 26539-2011测试体积电阻,采用三点抗弯强度测试法测试抗弯强度,并测试了导热系数,具体测试结果见表1。
表1.陶瓷材料性能测试结果
Figure BDA0002098753510000141
Figure BDA0002098753510000151
由上表可以看出,本发明实施例的陶瓷材料在力学性能抗压强度、抗弯强度上优于对比例,导热系数小,保温隔热性能上也优于对比例。体积电阻数值稳定在4.3-4.6×106Ω之间,符合陶瓷材料的抗静电要求,且抗静电性能稳定。对比例2将导电纤维替换为碳纳米管,虽然体积电阻降低,导电性能提高,但是不利于稳定安全地释放静电。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上内容仅仅是对本发明所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (6)

1.一种防静电陶瓷材料,其特征在于,该陶瓷材料由以下重量份的成分制备而成:氧化锆65-78份、α氧化铝12-20份、导电纤维0.35-1.3份、耐火耐磨填料4.5-7.2份、二氧化硅气凝胶粉末3-6份;
其中,所述导电纤维的制备方法包括以下步骤:
1)将棉浆粕与75-85wt%的离子液体水溶液按照质量比1:8-10混合均匀,得到纺丝原液;
2)将氧化石墨烯、磷酸三钙、水性丙烯酸乳液混合均匀后,超声分散于去离子水中,得到浸渍液;其中,氧化石墨烯、磷酸三钙、水性丙烯酸乳液、去离子水的质量比为5:2~3:3~5:80~95;
3)将纺丝原液经过滤、纺丝、凝固、拉伸、水洗、漂白后,浸渍于预先升温至75-80℃的浸渍液中,取出后微波干燥,得到该导电纤维;
所述耐火耐磨填料的制备方法如下:
1)将铝矾土、蒙脱土、二氧化钛、氧化钙、去离子水按照质量比12~18:15~20:3~8:2~5:35~45混合后得到湿料,送入球磨机中,控制球料比1:1,以400-600r/min湿法球磨2-3小时,取出过滤,烘干、粉碎得到粒径0.5-10μm的磨料;
2)磨料投入造粒机中,在40-60r/min的转速下加入雾化水形成生球,加水量达到磨料质量的10-15%时,造粒使生球粒径达到100-180μm,取出得填料粗品;
3)填料粗品置于160-180℃的烘箱中干燥1-2小时,冷却至室温即可。
2.根据权利要求1所述的防静电陶瓷材料,其特征在于,所述离子液体为1-(3-磺酸基)丙酸哌啶十二烷基苯磺酸离子液体;其中,阴离子为十二烷基苯磺酸根,阳离子为1-(3-磺酸基)丙酸哌啶,阴离子与阳离子的摩尔浓度比为1:0.9。
3.根据权利要求1所述的防静电陶瓷材料,其特征在于,步骤3)纺丝时的溶液温度为75-85℃,纺丝速率为110-120m/min;凝固浴温度为8-12℃,凝固浴溶液采用15wt%的离子液体水溶液。
4.根据权利要求1所述的防静电陶瓷材料,其特征在于,所述二氧化硅气凝胶粉末的比表面积为700-760m2 /g,堆积密度为110-120kg/m3,气孔率>90%,孔径≤20nm。
5.根据权利要求1所述的防静电陶瓷材料,其特征在于,所述防静电陶瓷材料制备方法如下:
S1、基料球磨:将氧化锆、α氧化铝、耐火耐磨填料混合均匀得到混合基料,加入混合基料质量8-10倍量的去离子水,送入球磨机中,控制球料比1:1,以400-600r/min湿法球磨4-6小时,过滤、烘干、粉碎得到粒径4-8μm的球磨料;
S2、基料烧结:球磨料送入真空烧结炉内,在1450-1520℃的温度下保温烧结4-6小时,冷却至室温后得到陶瓷基体;
S3、共混研磨:将陶瓷基体、导电纤维、二氧化硅气凝胶粉末混合均匀后得到混合料,送入球磨机中,控制球料比1.5:1,以700-800r/min干法球磨6-8小时,干燥粉碎后得到该防静电陶瓷材料。
6.根据权利要求5所述的防静电陶瓷材料的制备方法,其特征在于,所述真空烧结炉升温至1450-1520℃的过程如下:以6-8℃/min的速率升温至720-760℃,保温20-30min;以10-13℃/min的速率升温至1000-1050℃,保温30-40min;以15-18℃/min的速率升温至1450-1520℃。
CN201910527811.XA 2019-06-18 2019-06-18 一种防静电陶瓷材料及其制备方法 Active CN110128136B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910527811.XA CN110128136B (zh) 2019-06-18 2019-06-18 一种防静电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910527811.XA CN110128136B (zh) 2019-06-18 2019-06-18 一种防静电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110128136A CN110128136A (zh) 2019-08-16
CN110128136B true CN110128136B (zh) 2022-04-19

Family

ID=67577845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910527811.XA Active CN110128136B (zh) 2019-06-18 2019-06-18 一种防静电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110128136B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488272A (zh) * 2021-07-16 2021-10-08 安徽徽宁电器仪表集团有限公司 一种陶瓷化耐火电力电缆
CN114409398A (zh) * 2021-12-28 2022-04-29 福建省德化县益宝陶瓷有限公司 一种抗菌高强度白瓷及其加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106278321A (zh) * 2016-08-21 2017-01-04 长兴盟友耐火材料有限公司 一种高韧性耐火材料及其制备工艺
CN108424129A (zh) * 2018-04-27 2018-08-21 武汉科技大学 一种隔热耐磨耐火浇注料及其制备方法
CN108546120A (zh) * 2018-06-29 2018-09-18 芜湖市元奎新材料科技有限公司 氧化锆抗静电陶瓷材料及其制备方法
CN109208104A (zh) * 2018-08-31 2019-01-15 龙丝(上海)新材料科技有限公司 一种导电纤维素纤维的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180134624A1 (en) * 2015-04-27 2018-05-17 Suntech Advanced Ceramics (Shenzhen) Co., Ltd. Zirconium oxide composite ceramic and preparation method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106278321A (zh) * 2016-08-21 2017-01-04 长兴盟友耐火材料有限公司 一种高韧性耐火材料及其制备工艺
CN108424129A (zh) * 2018-04-27 2018-08-21 武汉科技大学 一种隔热耐磨耐火浇注料及其制备方法
CN108546120A (zh) * 2018-06-29 2018-09-18 芜湖市元奎新材料科技有限公司 氧化锆抗静电陶瓷材料及其制备方法
CN109208104A (zh) * 2018-08-31 2019-01-15 龙丝(上海)新材料科技有限公司 一种导电纤维素纤维的制备方法

Also Published As

Publication number Publication date
CN110128136A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
KR102020066B1 (ko) 내부분방전성 및 부분방전 개시전압 특성이 우수한 절연 전선
CN102993749B (zh) 一种纳米Al2O3复合的耐电晕聚酰亚胺薄膜
CN110128136B (zh) 一种防静电陶瓷材料及其制备方法
Jian et al. A strategy for design of non-percolative composites with stable giant dielectric constants and high energy densities
CN112300602A (zh) 一种无机填料的改性方法
CN113354437B (zh) 一种增韧性柱式瓷绝缘子及其制备方法
CN113277859B (zh) 一种纳米包覆氧化铝颗粒及用其制备的高纯抗热震氧化铝陶瓷材料
CN110922203A (zh) 一种高压输电线路用瓷绝缘子及其制造方法
CN105442182A (zh) 一种低渣球陶瓷纤维毯的制备方法
CN101948651A (zh) 硅酸铝纳米复合保温涂料及其制备方法
CN103641503A (zh) 高炉用抗侵蚀莫来石砖及其制备方法
CN110655379A (zh) 一种纳米复合隔热板及其制备方法
CN113443892A (zh) 一种高韧性圆锥悬式瓷绝缘子及其制备方法
Wang et al. Core-shell structured CaO aggregate prepared by granulating with Al chelating compound and its hydration resistance
CN112094109B (zh) 变压器骨架用氧化铝陶瓷浆料及其制备方法和应用方法
JPH0116794B2 (zh)
CN111393174A (zh) 利用粉煤灰制造m47耐火材料的方法
CN114538888A (zh) 一种低膨胀耐高温气凝胶隔热材料及其制备方法
CN114479524A (zh) 一种钢结构厚涂型钾基地聚物防火涂料及其制备方法
CN111018552A (zh) 一种高度均一性纳米微孔隔热板及其制备方法
CN111704152A (zh) 一种防潮型防火电缆用氧化镁及其用途
JP2015038365A (ja) 断熱材及びその製造方法
CN113149619B (zh) 一种高强度低介电损耗氧化铝陶瓷基片
JP5885799B2 (ja) 断熱材及びその製造方法
CN114195545A (zh) 耐高温低导热核壳结构纳米铝质隔热材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220331

Address after: Room 312, floor 3, No. 6, Lane 205, Gaoji Road, Sijing Town, Songjiang District, Shanghai 201600

Applicant after: Asia New Material Technology Co.,Ltd.

Applicant after: Hubei Asia Ceramics Co., Ltd

Address before: 618000 No. 8, Section 1, Shenzhen Road West, Guanghan City, Deyang City, Sichuan Province

Applicant before: Xie Hongbing

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant