CN110127665A - 多壁碳纳米管/石墨烯气凝胶及其检测有机磷农药的方法 - Google Patents

多壁碳纳米管/石墨烯气凝胶及其检测有机磷农药的方法 Download PDF

Info

Publication number
CN110127665A
CN110127665A CN201910415802.1A CN201910415802A CN110127665A CN 110127665 A CN110127665 A CN 110127665A CN 201910415802 A CN201910415802 A CN 201910415802A CN 110127665 A CN110127665 A CN 110127665A
Authority
CN
China
Prior art keywords
carbon nanotube
walled carbon
phase extraction
solid
graphene aerogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910415802.1A
Other languages
English (en)
Inventor
孙鹏
高玉玲
刘秀娟
王金梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang Bayi Agricultural University
Original Assignee
Heilongjiang Bayi Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang Bayi Agricultural University filed Critical Heilongjiang Bayi Agricultural University
Priority to CN201910415802.1A priority Critical patent/CN110127665A/zh
Publication of CN110127665A publication Critical patent/CN110127665A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/291Gel sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明涉及的是多壁碳纳米管/石墨烯气凝胶及其检测有机磷农药的方法,所述多壁碳纳米管/石墨烯气凝胶检测有机磷农药的方法为:固相萃取柱的制备:将多壁碳纳米管/石墨烯气凝胶装填至固相萃取柱内,装填固相萃取柱的下筛板,再将多壁碳纳米管/石墨烯气凝胶轻轻地装入,用上筛板轻轻压实;固相萃取前处理:在萃取前,分别用甲醇、丙酮、乙腈、四氢呋喃和去离子水活化固相萃取柱;取待测水样以1 mL/min流速上样;用四氢呋喃洗脱保留在固相萃取吸附剂上的分析物;收集洗脱液,在室温下水浴氮气吹干,用丙酮复溶后,过0.22μm微孔滤膜;GC/MS分析。本发明检测水中农药残留时,省时高效、有机溶剂消耗少。

Description

多壁碳纳米管/石墨烯气凝胶及其检测有机磷农药的方法
技术领域
本发明涉及的是有机磷农药检测技术领域,具体涉及的是多壁碳纳米管/石墨烯气凝胶及其检测有机磷农药的方法。
背景技术
有机磷(OPPs)农药具有高效、广谱等优点,且对细菌、害虫、杂草生长等能够有效的控制作用,并能提高农业产量,成为我国使用最广、用量最大的一类农药。但其中70%的OPPs农药为剧毒、高毒类。我国农业部在2007 年发布公告禁止使用甲胺磷 、对硫磷、甲基对硫磷、久效磷及磷胺等OPPs杀虫剂。近年来随着农药的广泛和不合理的使用,农产品中农药残留超标的问题日益突出,致使农产品中农药残留超标严重,同时对环境水体造成了严重威胁,引起了社会各界的广泛关注,因此建立准确、可靠的定性、定量分析方法非常必要。
目前检测OPPs农药的方法主要有气相色谱法(GC),气相色谱-质谱法(GC/MS)、高效液相色谱法(HPLC)、液相色谱-串联质谱法(HPLC-MS/MS)等。气相色谱-质谱法(GC-MS)因具有分析速度快、定性能力强等优势,已成为当前农药残留分析中最为常用的方法。样品预处理,是分析过程中最关键、最重要的步骤,样品预处理技术往往成为分析成功与否的关键。水样品中OPPs检测分析前处理主要方法为液液萃取、固相萃取、固相微萃取、分散液液微萃取、分子印迹、液相微萃取、微波萃取、分散固相萃取、中空纤维液相微萃取、单液滴微萃取等,液液萃取消耗有机试剂量大,对环境污染大,固相萃取是近年发展起来一种样品预处理技术,主要用于样品的分离、纯化和浓缩,与传统的液液萃取法相比较有效的将分析物与干扰组分分离,提高分析物的回收率,减少样品预处理过程,操作简单、省时、省力,广泛的应用在食品、环境、医药、化工等领域。
石墨烯、多壁碳纳米管具有比表面积大、吸附能力强、机械强度高、化学稳定性好等特性,一直受到广大研究者的关注,已成为纳米科技中最受瞩目的部分之一。但二维碳纳米材料在实际生产应用中不易从水中分离,往往需要多次离心,且容易导致二次污染,也有研究表明石墨烯在环境有可能有潜在的生物毒性,因此限制了其在水污染处理的进一步应用。
发明内容
本发明的目的是提供一种多壁碳纳米管/石墨烯气凝胶及其检测有机磷农药的方法,用于克服现有传统萃取技术使用有机试剂量大的问题。
本发明解决其技术问题所采用的技术方案是:这种多壁碳纳米管/石墨烯气凝胶通过以下方法制备:
一、取0.4g氧化石墨烯粉末和0.1g多壁碳纳米管,将其分散到100mL水中,超声分散1 h获得黑棕色分散液;
二、取5 mL黑棕色分散液置于内径为11mm的25mL试管中,用氨水调节溶液pH值为弱碱性,再加入20μL 浓度为50mol/L乙二胺水溶液,缓慢充分摇匀,在80℃下水浴反应24 h,得到的反应物为石墨烯水凝胶;
三、取出试管内多壁碳纳米管/石墨烯水凝胶,用20%的乙醇水溶液浸泡6h,去除多壁碳纳米管/石墨烯水凝胶中残留的可溶性杂质及置换部分水溶液,防止多壁碳纳米管/石墨烯水凝胶在冷冻干燥过程中出现变形或是碎裂;
四、取出多壁碳纳米管/石墨烯水凝胶,置于表面皿中,冷冻干燥48h,获得多壁碳纳米管/石墨烯气凝胶,多壁碳纳米管/石墨烯气凝胶为三维黑色多孔的柱形碳材料。
上述多壁碳纳米管/石墨烯气凝胶检测水样中有机磷农药的方法:
一、固相萃取柱的制备:
将所述多壁碳纳米管/石墨烯气凝胶装填至固相萃取柱内,先将固相萃取柱的下筛板装填上,再将多壁碳纳米管/石墨烯气凝胶轻轻地装于3mL固相萃取柱内,最后安装固相萃取柱的上筛板,将上筛板轻轻向下将多壁碳纳米管/石墨烯气凝胶压实;
二、固相萃取前处理:
在萃取前,分别用3 mL甲醇、3 mL丙酮、3 mL乙腈、3 mL四氢呋喃和10 mL去离子水活化固相萃取柱;取40 mL待测水样以1 mL/min流速上样;用5 mL四氢呋喃为洗脱剂,洗脱保留在固相萃取吸附剂上的分析物;收集洗脱液,在室温下水浴氮气吹干,用1mL丙酮复溶后,过0.22 μm微孔滤膜;
三、GC/MS分析:
利用GC/MS法对步骤二处理后水样中有机磷农药进行分离并对其进行定性定量分析,检测水中特丁硫磷、治螟磷、乐果、杀扑磷4种农药。
上述GC/MS法分析时,
气相色谱条件:Rtx-50 弹性石英毛细管柱;载气:氦气;柱温升温程序:由70℃保持2min,以15 ℃/min速率升至160℃,保持2 min,以10 ℃/min速率升至210℃,保持2 min,以5℃/min速率升至220℃,保持2 min,以10 ℃/min速率升至270℃,保持14 min,进样器温度:200℃;进样器模式:不分流进样,进样量:1 μL;
质谱条件:EI电子轰击式离子源, 气体总流量26.5 mL/min,柱流量:1.2 mL/ min,喷雾嘴温度220℃,电离能为70eV, 电离温度为260 ℃,接口温度为270℃;每种OPPs农药分别选择 1 个定量离子,2个定性离子,按照出峰顺序分时段分别检测。
本发明具有以下有益效果:
1、本发明建立的多壁碳纳米管/石墨烯气凝胶固相萃取结合GC/MS法回收率高、精密度好、较宽的线性范围、操作简单方便、可重复使用等优点,对环境地表水中OPPs类农药残留的检测提供了一种新方法,也可作为一种固相萃取材料应用于复杂基质的净化,在农药多残留分析中具有较好的应用前景;该方法的平均回收率为 92.8%~103.4%,相对标准偏差(n=3)为2.1% ~ 7.6%。
2、传统的样品前处理技术,如液液萃取、固液提取、过滤、蒸馏等,普遍存在操作繁琐耗时,需要大量使用对环境和人体有害的有机溶剂等缺点,本发明检测水中农药残留时,省时高效、有机溶剂消耗少。
3、在分析过程中,样品的分离、纯化都是必不可少的前处理步骤。样品前处理的好坏将直接影响分析的结果。本发明利用制备的多壁碳纳米管/石墨烯气凝胶固相萃取,取代传统的液相萃取,使样品在前处理过程更加环保并减少了有机试剂的使用量,且方法的准确度高、精密度高、重现性好。
4、本发明制备的多壁碳纳米管/石墨烯气凝胶作为一种固相萃取材料应用于复杂基质的净化,在农药多残留分析中具有较好的应用前景。
附图说明
图1为本发明制备的多壁碳纳米管/石墨烯气凝胶图;
图2为本发明中固相萃取柱的制备示意图;
图3为本发明中固相萃取前处理过程示意图;
图4为特丁硫磷、治螟磷、乐果、杀扑磷标准溶液色谱图,图中1为特丁硫磷,2为治螟磷,3为乐果,4为杀扑磷。
具体实施方式
下面结合附图对本发明作进一步的说明:
这种多壁碳纳米管/石墨烯气凝胶通过以下方法制备:
取0.4 g氧化石墨烯粉末和0.1g多壁碳纳米管,将其分散到100 mL水中,超声分散1 h获得黑棕色分散液,获得分散液。取5 mL分散液置于内径为11 mm的25 mL试管中,用氨水调节溶液pH值为弱碱性,在加入20 μL 浓度为50 mol/L乙二胺水溶液,缓慢充分摇匀,在80℃下水浴反应24 h ,取出试管内反应物,用20 %的乙醇水溶液(20%,v/v)浸泡 6 h,去除多壁碳纳米管/石墨烯水凝胶中残留的可溶性杂质及置换部分水溶液,防止多壁碳纳米管/石墨烯水凝胶在冷冻干燥过程中出现变形或是碎裂等现行。取出多壁碳纳米管/石墨烯水凝胶,置于表面皿中,冷冻干燥48 h,获得三维黑色多孔的柱形碳材料为多壁碳纳米管/石墨烯气凝胶(参阅图1)。
三维碳材料保留了二维石墨烯碳材料的优点,不仅具有二维碳材料所固有的理化性质,而且巨大的比表面积和多孔性结构有效的增大了与污染物的接触面积、强化了污染物的扩散作用,且材料具有可循环利用等优良特性。
上述多壁碳纳米管/石墨烯气凝胶检测水样中有机磷农药的方法:
一、固相萃取柱的制备:
参阅图2,将使用内径为11 mm的25 mL试管制备的多壁碳纳米管/石墨烯气凝胶,装填至内径为9 mm的3 mL固相萃取柱内,先将固相萃取柱的下筛板装填上后,将多壁碳纳米管/石墨烯气凝胶固相萃取吸附剂轻轻的装于3mL固相萃取柱内,最后安装固相萃取柱的上筛板,将上筛板轻轻向下将多壁碳纳米管/石墨烯气凝胶压实,提高吸附剂的萃取吸附效率。
二、固相萃取前处理:
参阅图3,在萃取前,分别用3 mL甲醇、3 mL丙酮、3 mL乙腈、3 mL四氢呋喃和10 mL去离子水活化小柱。取40 mL待测水样以1 mL/min流速上样。5 mL四氢呋喃为洗脱剂,洗脱保留在固相萃取吸附剂上的分析物。收集洗脱液,在室温下水浴氮气吹干。1mL丙酮复溶后,过0.22 μm微孔滤膜,用于准备做GC/MS分析。
(1)活化,除去柱内的杂质并创造一定的溶剂环境。首先用适当的溶剂将固体吸附剂活化,然后再用与样品溶剂相同的溶剂活化。此步骤可以将柱内固体吸附剂润湿,并将官能团溶剂化,清除固体吸附剂和填充物上的杂质。
(2)上样,将样品用一定的溶剂溶解转移柱内,选择性保留组分在柱上。
样品溶液通过固相吸附剂进行保留吸附,且流速应确保固体吸附剂能有效的吸附目标化合物。
(3)淋洗,最大程度除去干扰物。选择最适宜且具有洗脱能力的洗脱剂,清洗固体吸附剂,淋洗去除固相吸附剂上样品基质组分,同时确保目标分析物不受影响。
三、GC/MS分析:
气相色谱条件:Rtx-50 弹性石英毛细管柱(30 m×250 μm×0.25μm);载气:氦气(纯度≥ 99.999 %);柱温升温程序:由70℃保持2 min,以15 ℃/min速率升至160℃,保持2 min,以10 ℃/min速率升至210℃,保持2 min,以5 ℃/min速率升至220℃,保持2 min,以10 ℃/min速率升至270℃,保持14 min,进样器温度:200℃;进样器模式:不分流进样,进样量:1 μL。
质谱条件:EI (lectron impact)电子轰击式离子源, 气体总流量26.5 mL/min,柱流量:1.2 mL/ min,喷雾嘴温度220℃,电离能为70 eV, 电离温度为260 ℃,接口温度为270℃。每种OPPs农药分别选择 1 个定量离子,2个定性离子,按照出峰顺序分时段分别检测,具体见表1。
表1 4种OPPs农药的保留时间,定量离子,定性离子
四、线性范围、定量限与检测限
在最优实验条件下,用空白基质匹配混合标准溶液进行GC/MS分析,以各分析物的质量浓度(μg L-1)为横坐标,对相应的峰面积绘制基质匹配标准工作曲线,得到线性范围及相关系数。以 3倍 (S/N=3) 和 10 倍 (S/N=10) 信噪比分别计算 LOD和 LOQ,结果见表2。由表2可知,4种OPPs类杀虫剂在0.5 - 500 μg L-1 范围内,线性关系良好,相关系数为 0.9993-0.9998。4种OPPs类杀虫剂的 LOD 为 0.28 - 0.52 µg L-1,LOQ 为0.96 - 1.64 µg L-1,方法灵敏度可以满足实际水样定量检测分析的要求。
表2 4种OPPs农药的线性范围、相关系数、定量限、检出限及相对标准偏差(n=3)
五、准确度与精密度
在最优实验条件下,制备不同水样的基质匹配标准工作曲线,对 4种OPPs农药在不同空白水样中的加标回收率进行考察。在2、5、10 µg L-1 3 个加标浓度水平下,每个浓度水平重复测定 3 次,实验结果见表3。由表3可知,:4种OPPs农药的平均回收率为92.8%~103.4%,相对标偏差(RSD)为2.1% ~ 7.6%。该方法的准确度和精密度数据均符合水中农药残留检测要求。
表3 4种OPPs农药在水中的加标回收率 (n = 3)
本发明提供的检测方法的平均回收率为 92.8%~103.4%,相对标准偏差(n=3)为2.1%~ 7.6%,具有回收率高、精密度好、较宽的线性范围、操作简单方便、可重复使用等优点。

Claims (3)

1.一种多壁碳纳米管/石墨烯气凝胶,其特征在于:这种多壁碳纳米管/石墨烯气凝胶通过以下方法制备:
一、取0.4g氧化石墨烯粉末和0.1g多壁碳纳米管,将其分散到100mL水中,超声分散1 h获得黑棕色分散液;
二、取5 mL黑棕色分散液置于内径为11mm的25mL试管中,用氨水调节溶液pH值为弱碱性,再加入20μL 浓度为50mol/L乙二胺水溶液,缓慢充分摇匀,在80℃下水浴反应24 h,得到的反应物为多壁碳纳米管/石墨烯水凝胶;
三、取出试管内多壁碳纳米管/石墨烯水凝胶,用20%的乙醇水溶液浸泡6h,去除多壁碳纳米管/石墨烯水凝胶中残留的可溶性杂质及置换部分水溶液,防止多壁碳纳米管/石墨烯水凝胶在冷冻干燥过程中出现变形或是碎裂;
四、取出多壁碳纳米管/石墨烯水凝胶,置于表面皿中,冷冻干燥48h,获得多壁碳纳米管/石墨烯气凝胶,多壁碳纳米管/石墨烯气凝胶为三维黑色多孔的柱形碳材料。
2.一种权利要求1所述的多壁碳纳米管/石墨烯气凝胶检测水样中有机磷农药的方法,其特征在于:
一、固相萃取柱的制备:
将所述多壁碳纳米管/石墨烯气凝胶装填至固相萃取柱内,先将固相萃取柱的下筛板装填上,再将多壁碳纳米管/石墨烯气凝胶轻轻地装于3mL固相萃取柱内,最后安装固相萃取柱的上筛板,将上筛板轻轻向下将多壁碳纳米管/石墨烯气凝胶压实;
二、固相萃取前处理:
在萃取前,分别用3 mL甲醇、3 mL丙酮、3 mL乙腈、3 mL四氢呋喃和10 mL去离子水活化固相萃取柱;取40 mL待测水样以1 mL/min流速上样;用5 mL四氢呋喃为洗脱剂,洗脱保留在固相萃取吸附剂上的分析物;收集洗脱液,在室温下水浴氮气吹干,用1mL丙酮复溶后,过0.22 μm微孔滤膜;
三、GC/MS分析:
利用GC/MS法对步骤二处理后水样中有机磷农药进行分离并对其进行定性定量分析,检测水中特丁硫磷、治螟磷、乐果、杀扑磷4种农药。
3.根据权利要求2所述的多壁碳纳米管/石墨烯气凝胶固相萃取结合GC/MS法检测水样中有机磷农药,其特征在于:所述的GC/MS法分析时,
气相色谱条件:Rtx-50 弹性石英毛细管柱;载气:氦气;柱温升温程序:由70℃保持2min,以15℃/min速率升至160℃,保持2min,以10℃/min速率升至210℃,保持2min,以5℃/min速率升至220℃,保持2min,以10℃/min速率升至270℃,保持14 min,进样器温度:200℃;进样器模式:不分流进样,进样量:1 μL;
质谱条件:EI电子轰击式离子源, 气体总流量26.5 mL/min,柱流量:1.2 mL/ min,喷雾嘴温度220℃,电离能为70eV, 电离温度为260 ℃,接口温度为270℃;每种OPPs农药分别选择 1 个定量离子,2个定性离子,按照出峰顺序分时段分别检测。
CN201910415802.1A 2019-05-18 2019-05-18 多壁碳纳米管/石墨烯气凝胶及其检测有机磷农药的方法 Pending CN110127665A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910415802.1A CN110127665A (zh) 2019-05-18 2019-05-18 多壁碳纳米管/石墨烯气凝胶及其检测有机磷农药的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910415802.1A CN110127665A (zh) 2019-05-18 2019-05-18 多壁碳纳米管/石墨烯气凝胶及其检测有机磷农药的方法

Publications (1)

Publication Number Publication Date
CN110127665A true CN110127665A (zh) 2019-08-16

Family

ID=67571481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910415802.1A Pending CN110127665A (zh) 2019-05-18 2019-05-18 多壁碳纳米管/石墨烯气凝胶及其检测有机磷农药的方法

Country Status (1)

Country Link
CN (1) CN110127665A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156042A (zh) * 2021-04-16 2021-07-23 陕西科技大学 一种筛查羊乳中磺胺类药物残留的方法
CN115650221A (zh) * 2022-10-28 2023-01-31 航天特种材料及工艺技术研究所 一种抗氧化弹性石墨烯气凝胶及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674315A (zh) * 2012-04-25 2012-09-19 浙江大学 一种石墨烯-碳纳米管复合全碳超轻弹性气凝胶及其制备方法
CN105129927A (zh) * 2015-09-10 2015-12-09 上海大学 石墨烯/碳纳米管气凝胶复合电容型脱盐电极的制备方法
CN105129772A (zh) * 2015-09-18 2015-12-09 同济大学 制备氨基化碳纳米管-石墨烯气凝胶的方法
CN107576741A (zh) * 2017-09-14 2018-01-12 浙江省海洋水产研究所 一种固相萃取‑气相色谱串联质谱法检测水产品中有机磷农药多组分残留的方法
US20180298157A1 (en) * 2017-04-18 2018-10-18 Hk Investment Production Trading Water Soluble Engraved Graphene and its Applications
CN108831757A (zh) * 2018-07-27 2018-11-16 福州大学 一种n和s双掺杂石墨烯/碳纳米管气凝胶的制备方法
CN109254104A (zh) * 2018-09-26 2019-01-22 新疆农垦科学院 一种葡萄酒中有机磷农残的检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674315A (zh) * 2012-04-25 2012-09-19 浙江大学 一种石墨烯-碳纳米管复合全碳超轻弹性气凝胶及其制备方法
CN105129927A (zh) * 2015-09-10 2015-12-09 上海大学 石墨烯/碳纳米管气凝胶复合电容型脱盐电极的制备方法
CN105129772A (zh) * 2015-09-18 2015-12-09 同济大学 制备氨基化碳纳米管-石墨烯气凝胶的方法
US20180298157A1 (en) * 2017-04-18 2018-10-18 Hk Investment Production Trading Water Soluble Engraved Graphene and its Applications
CN107576741A (zh) * 2017-09-14 2018-01-12 浙江省海洋水产研究所 一种固相萃取‑气相色谱串联质谱法检测水产品中有机磷农药多组分残留的方法
CN108831757A (zh) * 2018-07-27 2018-11-16 福州大学 一种n和s双掺杂石墨烯/碳纳米管气凝胶的制备方法
CN109254104A (zh) * 2018-09-26 2019-01-22 新疆农垦科学院 一种葡萄酒中有机磷农残的检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P. SUN ET AL.: "Determination of six organophosphorus pesticides in water samples by three-dimensional graphene aerogel-based solid-phase extraction combined with gas chromatography/mass spectrometry", 《RSC ADVANCES》 *
吴利瑞等: "氨基化碳纳米管/石墨烯气凝胶对甲醛吸附研究", 《中国环境科学》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156042A (zh) * 2021-04-16 2021-07-23 陕西科技大学 一种筛查羊乳中磺胺类药物残留的方法
CN113156042B (zh) * 2021-04-16 2022-11-25 陕西科技大学 一种筛查羊乳中磺胺类药物残留的方法
CN115650221A (zh) * 2022-10-28 2023-01-31 航天特种材料及工艺技术研究所 一种抗氧化弹性石墨烯气凝胶及其制备方法
CN115650221B (zh) * 2022-10-28 2023-11-21 航天特种材料及工艺技术研究所 一种抗氧化弹性石墨烯气凝胶及其制备方法

Similar Documents

Publication Publication Date Title
Akbarzade et al. Zero valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spectrometry
Lord et al. Evolution of solid-phase microextraction technology
Wu et al. Single-walled carbon nanotubes coated fibers for solid-phase microextraction and gas chromatography–mass spectrometric determination of pesticides in Tea samples
Zhao et al. Application of bamboo charcoal as solid-phase extraction adsorbent for the determination of atrazine and simazine in environmental water samples by high-performance liquid chromatography-ultraviolet detector
Chen et al. Recent applications of ambient ionization mass spectrometry in environmental analysis
Katsumata et al. Preconcentration of atrazine and simazine with multiwalled carbon nanotubes as solid-phase extraction disk
Chu et al. Detection of β-agonists in pork tissue with novel electrospun nanofibers-based solid-phase extraction followed ultra-high performance liquid chromatography/tandem mass spectrometry
US10191019B2 (en) Vacuum-assisted in-needle capplicary adsorption trap with multiwalled polyaniline/carbon nanotube nanocomposite sorbent
Bruins et al. On-line coupling of solid-phase extraction with mass spectrometry for the analysis of biological samples: I. Determination of clenbuterol in urine
CN110514774B (zh) 一种分析水中酚类化合物的方法
CN108663471A (zh) 一种测定河口沉积物中多种内分泌干扰物含量的方法
CN103389349B (zh) 水产养殖环境水体中孔雀石绿及其代谢物含量检测方法
Cai et al. Gas chromatography/ion trap mass spectrometry applied for the analysis of triazine herbicides in environmental waters by an isotope dilution technique
Pena et al. Development of a sample preparation procedure of sewage sludge samples for the determination of polycyclic aromatic hydrocarbons based on selective pressurized liquid extraction
Serrano et al. Fullerenes as sorbent materials for benzene, toluene, ethylbenzene, and xylene isomers preconcentration
CN110127665A (zh) 多壁碳纳米管/石墨烯气凝胶及其检测有机磷农药的方法
US20210325351A1 (en) Chromatographic analysis device employing multi-function integrated probe, and use method
Zheng et al. Novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane-silica monolithic capillary microextraction and its application to the fractionation of aluminum in rainwater and fruit juice by electrothermal vaporization inductively coupled plasma mass spectrometry
Zhou et al. Preconcentration sensitive determination of pyrethroid insecticides in environmental water samples with solid phase extraction with SiO2 microspheres cartridge prior to high performance liquid chromatography
Ji et al. Diamond nanoparticles coating for in‐tube solid‐phase microextraction to detect polycyclic aromatic hydrocarbons
Yang et al. Porous capillary monolithic column coupled with ultrahigh performance liquid chromatography-tandem mass spectrometry for fast and effective separation and determination of estrogens
Kopperi et al. Non-targeted evaluation of selectivity of water-compatible class selective adsorbents for the analysis of steroids in wastewater
Gu et al. Recent developments and applications in the microextraction and separation technology of harmful substances in a complex matrix
Sun et al. Determination of organophosphorus pesticides using solid-phase extraction followed by gas chromatography–mass spectrometry
Dong et al. Magnetic solid-phase extraction based on magnetic amino modified multiwalled carbon nanotubes for the fast determination of seven pesticide residues in water samples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190816