CN110118994B - 一种基于地震反演和机器学习的陆相烃源岩定量预测方法 - Google Patents

一种基于地震反演和机器学习的陆相烃源岩定量预测方法 Download PDF

Info

Publication number
CN110118994B
CN110118994B CN201910440723.6A CN201910440723A CN110118994B CN 110118994 B CN110118994 B CN 110118994B CN 201910440723 A CN201910440723 A CN 201910440723A CN 110118994 B CN110118994 B CN 110118994B
Authority
CN
China
Prior art keywords
machine learning
organic matter
matter content
lithology
learning network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910440723.6A
Other languages
English (en)
Other versions
CN110118994A (zh
Inventor
赵峦啸
耿建华
钟锴
邹采枫
麻纪强
邵磊
蔡进功
王玮
付晓伟
朱晓军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201910440723.6A priority Critical patent/CN110118994B/zh
Publication of CN110118994A publication Critical patent/CN110118994A/zh
Application granted granted Critical
Publication of CN110118994B publication Critical patent/CN110118994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/24323Tree-organised classifiers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Data Mining & Analysis (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Marketing (AREA)
  • Software Systems (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Development Economics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Primary Health Care (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Medical Informatics (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Operations Research (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明涉及一种基于地震反演和机器学习的陆相烃源岩定量预测方法,用于预测某一区域陆相烃源岩的空间分布和有机质含量,该首先优选对陆相沉积地层砂泥岩岩性区分和有机质含量敏感的弹性属性,然后训练阶段表征“弹性属性‑岩性”和“弹性属性‑有机质含量”映射关系的机器学习网络,最后,将训练的机器学习网络与叠前地震数据的叠前弹性参数反演结果结合,进而预测烃源岩的空间分布和有机质含量。与现有技术相比,本发明预测准确度高。

Description

一种基于地震反演和机器学习的陆相烃源岩定量预测方法
技术领域
本发明涉及一种烃源岩预测方法,尤其是涉及一种基于地震反演和机器学习的陆相烃源岩定量预测方法。
背景技术
现有的烃源岩地震评价技术主要基于地震相的定性分析或基于叠后波阻抗与有机质含量的直接转化关系,这些技术很难用于陆相非均质性较强的烃源岩评价,一方面是陆相沉积环境下的烃源岩相带窄,烃源岩厚度变化大,地震相分析很难对烃源岩进行准确描述,另外一方面由于陆相沉积环境下地震弹性-岩性-有机质含量映射关系非常模糊,弹性参数或地震属性与烃源岩评价参数(有机质含量)之间是一种非常复杂的非线性映射关系,利用简单线性模型驱动很难对其地震岩石物理特征进行全面准确描述。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于地震反演和机器学习的陆相烃源岩定量预测方法。
本发明的目的可以通过以下技术方案来实现:
一种基于地震反演和机器学习的陆相烃源岩定量预测方法,用于预测某一区域陆相烃源岩的空间分布和有机质含量,该方法包括训练阶段和预测阶段,其中,
训练阶段包括:
A1、优选对陆相沉积地层砂泥岩岩性区分和有机质含量敏感的弹性属性;
A2、训练用于预测岩性的第一机器学习网络,所述的第一机器学习网络输入为陆相沉积地层的弹性属性,输出为岩性,所述的岩性包括泥岩和沙岩;
A3、训练用于预测有机质含量的第二机器学习网络,所述的第二机器学习网络输入为泥岩层对应的弹性属性,输出为有机质含量;
预测阶段包括:
B1、对待预测区域的叠前地震数据进行叠前弹性参数反演获取与步骤A1对应的弹性属性;
B2、采用第一机器学习网络预测岩性,获取泥岩层的空间分布;
B3、采用第二机器学习网络对泥岩层有机质含量进行预测,上述泥岩层的空间分布和有机质含量即为陆相烃源岩的空间分布和有机质含量。
训练阶段步骤A1前还包括训练数据的获取,所述的训练数据包括测井数据、钻井或录取的岩性标定数据以及地球化学测试的有机质含量数据。
所述的弹性属性包括纵波速度、横波速度、密度、纵波阻抗、横波阻抗中任意一个或多个的组合。
步骤A1定量评估弹性属性与岩性以及弹性属性与有机质含量之间的相关性,当相关系数>0.5时,选取相应的弹性属性为所述的敏感的弹性属性。
所述的第一机器学习网络为基于随机森林算法的机器学习网络。
所述的第二机器学习网络为基于随机森林算法的机器学习网络。
训练阶段对不同深度段沉积地层分别训练对应的第一机器学习网络,进而预测阶段对不同深度段沉积地层采用对应的第一机器学习网络预测岩性。
训练阶段对不同深度段泥岩层分别训练对应的第二机器学习网络,进而预测阶段对不同深度段泥岩层的采用对应的第二机器学习网络预测有机质含量。
与现有技术相比,本发明具有如下优点:
(1)本发明通过厘定陆相沉积地层的岩性-有机质含量-弹性属性的地震岩石物理响应机理,优选出用于岩性和有机质含量预测的敏感弹性属性,增强陆相烃源岩定量预测的可靠度;
(2)本发明采取了先预测岩性再预测有机质含量的“两步走”策略,将泥岩地层首先筛选出来(泥岩地层才有可能是烃源岩),从而降低了陆相沉积盆地烃源岩定量预测的不确定性;
(3)本发明针对陆相沉积地层“岩性-有机质含量-弹性属性”映射关系模糊的特征,利用随机森林算法有效表征了弹性属性与有机质含量和岩性的非线性映射关系,从而提高了烃源岩定量预测的准确度;
(4)本发明对不同深度段沉积地层采取分段训练分段预测的思路,可以有效去除压实效应对岩性-弹性属性以及有机质含量-弹性属性的影响,进一步提高预测准确度。
附图说明
图1为本发明基于地震反演和机器学习的陆相烃源岩定量预测方法的流程框图;
图2为本实施例东海某陆相沉积盆地A井的测井数据;
图3为压实效应在A井不同深度段对砂泥岩岩性弹性特征的影响;
图4是基于随机森林算法建立纵波速度和密度与砂泥岩岩性的第一机器学习网络,采取分段训练分段预测的方法对A井砂泥岩的岩性预测结果,左图为钻井岩芯标定的真实岩性,右图为机器学习预测的岩性;
图5是基于随机森林算法建立纵波阻抗与有机质含量的第二机器学习网络,采取分段训练分段预测的方法对A井有机质含量的预测结果,其中上段(a)代表A井有机质含量比较低的地层,下段(b)代表A井中有机质含量比较高的地层,黑线为经过地球化学数据标定的有机质含量,灰线为利用机器学习预测的有机质含量;
图6是过A井的基于叠前地震数据的叠前弹性参数反演结果,(a)为纵波速度反演结果,(b)为密度反演结果;
图7是基于随机森林算法得到的砂泥岩岩性(白色为砂岩)预测结果;
图8是基于随机森林算法得到的有机质含量预测结果。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。注意,以下的实施方式的说明只是实质上的例示,本发明并不意在对其适用物或其用途进行限定,且本发明并不限定于以下的实施方式。
实施例
如图1所示,一种基于地震反演和机器学习的陆相烃源岩定量预测方法,用于预测某一区域陆相烃源岩的空间分布和有机质含量,该方法包括训练阶段和预测阶段,其中,
训练阶段包括:
A1、优选对陆相沉积地层砂泥岩岩性区分和有机质含量敏感的弹性属性;
A2、训练用于预测岩性的第一机器学习网络,所述的第一机器学习网络输入为陆相沉积地层的弹性属性,输出为岩性,所述的岩性包括泥岩和沙岩;
A3、训练用于预测有机质含量的第二机器学习网络,所述的第二机器学习网络输入为泥岩层对应的弹性属性,输出为有机质含量;
预测阶段包括:
B1、对待预测区域的叠前地震数据进行叠前弹性参数反演获取与步骤A1对应的弹性属性;
B2、采用第一机器学习网络预测岩性,获取泥岩层的空间分布;
B3、采用第二机器学习网络对泥岩层有机质含量进行预测,上述泥岩层的空间分布和有机质含量即为陆相烃源岩的空间分布和有机质含量。
训练阶段步骤A1前还包括训练数据的获取,所述的训练数据包括测井数据、钻井或录取的岩性标定数据以及地球化学测试的有机质含量数据。
步骤A1从钻井或录取的岩性标定、地球化学测试数据和测井数据中厘清勘探区的砂泥岩区分和烃源岩质量评价(有机质含量)的地震岩石物理响应机理,优选对陆相沉积地层砂泥岩岩性区分和有机质含量敏感的弹性属性,弹性属性包括纵波速度、横波速度、密度、纵波阻抗、横波阻抗中任意一个或多个的组合。本实施例首先定量评估弹性属性与岩性以及弹性属性与有机质含量之间的相关性,当相关系数>0.5时,选取相应的弹性属性为所述的敏感的弹性属性,这里定量评估可以通过大量现有数据进行分析评估。本实施例优选出纵波速度和密度为陆相沉积盆地岩性区分的敏感弹性属性,优选出纵波阻抗为有机质含量预测的敏感弹性属性。
第一机器学习网络为基于随机森林算法的机器学习网络,具体地,基于随机森林算法的机器学习网络具体训练流程如下:
(1)基于测井的岩性-弹性特征数据,利用Bootstrap方法,有放回地进行重采样,随机产生T个训练集S1,S2,…,ST
设集合S中含有n个不同的样本{x1,x2,…,xn},若每次有放回地从集合S中抽取一个样本,一共抽取n次,形成新的集合S*,则集合S*中不包含某个样本xi(i=1,2,…,n)的概率为:
Figure BDA0002071938520000041
当n→∞时,有:
Figure BDA0002071938520000051
因此,虽然新集合S*的样本总数与原集合S的样本总数相等,但新集合中可能包含了重复的样本,若除去重复的样本,新集合S*中仅包含了原集合S中约1-0.368×100%=63.2%的样本。
(2)利用每个训练集,生成对应的决策树C1,C2,…,CT;在每个非叶子节点上选择属性前,从总共M个弹性属性中随机抽取m(0<m<M)个属性作为当前节点的***属性集,并以这m个属性中最优的***方式对该节点进行***。***准则是不纯度,通过比较划分前后的不纯度值,来确定如何***,***后不纯度降低得越多,分类的效果越好。通常选择信息增益、信息增益率或基尼系数来量化不纯度的变化,不同的选取方法形成了不同的决策树方法(包括ID3,C4,5,CART)。
(3)让每棵树完整成长,不进行剪枝。
(4)对于测试集样本X,利用每个决策树进行测试,得到对应类别C1(X),C2(X),…,CT(X)。
(5)采用投票的方法,将T个决策树中输出最多的类别作为测试集样本X所属的岩性。
同样,针对经过地球化学测试标定的泥岩部分有机质含量测井数据,利用相关机器学***均值的方法获得有机质含量的预测。
去除压实效应对岩性-弹性特征的影响,训练阶段对不同深度段沉积地层分别训练对应的第一机器学习网络,进而预测阶段对不同深度段沉积地层采用对应的第一机器学习网络预测岩性。同时训练阶段对不同深度段泥岩层分别训练对应的第二机器学习网络,进而预测阶段对不同深度段泥岩层的采用对应的第二机器学习网络预测有机质含量。
图2为本实施例东海某陆相沉积盆地A井的测井数据,第一栏为根据钻井岩芯标定的砂泥岩岩性,白色是砂岩,黑色是泥岩,从左至右倒数第二栏为根据logR法预测得到的有机质含量,其中的圆点为根据地球化学方法(Rock-Eval)实测得到的有机质含量标定的结果。这些经过标定的数据为砂泥岩岩性-弹性特征和有机质含量-弹性特征的机器学习提供样本数据。
图3是A井不同深度段的沉积地层的砂泥岩弹性特征,可以优选出纵波速度和密度为该陆相沉积盆地岩性区分的敏感弹性属性。同时通过对不同深度段沉积地层采取分段训练分段预测的思路,可以有效去除压实效应对岩性-弹性特征的影响。
图4为基于随机森林算法建立纵波速度和密度两个弹性参数与砂泥岩岩性的机器学习网络1,采取分段训练分段预测的方法对A井砂泥岩的岩性预测结果。其中每一段地层随机选取50%的数据训练,50%的数据进行检测,岩性预测准确率达到了93.5%。该训练网络也为后续的利用叠前弹性参数反演结果进行砂泥岩空间分布预测奠定了基础。
图5是基于随机森林算法建立纵波阻抗与有机质含量的机器学习网络2,采取分段训练分段预测的方法对A井有机质含量的预测结果,其中上段(a)代表A井有机质含量比较低的地层,下段(b)代表A井中有机质含量比较高的地层。黑线为经过地球化学数据标定的有机质含量,灰线为利用机器学习预测的有机质含量。上段和下端地层都选取50%的数据训练,50%的数据监测的方法。可以看到利用机器学习网络预测的有机质含量与利用测井数据计算并标定的有机质含量有非常好的匹配关系,该机器学习网络可以有效刻画有机质含量在纵向上的空间变化。
图6过A井的基于叠前地震数据的叠前弹性参数反演结果,其中上图为纵波速度反演结果,下图为密度反演结果。
图7为联合机器学习网络1和叠前地震反演结果得到的砂泥岩岩性空间分布预测的结果。可以看到过A井段的砂泥岩地震岩性预测结果与实际经过钻井数据标定的砂泥岩岩性分布有较好的对应关系,即长江组地层以砂岩分布为主,MFR-1段和MRF-2段的泥岩分布最为集中。同时,地震预测的砂泥岩岩性分布也与该陆相沉积盆地的沉积相结果较为一致,即从MRF-6段、MRF-5段、MRF-4段的砂泥岩互层浅湖相/半深湖相逐渐过渡为MRF-3段、MRF-2段、MRF-1段的泥岩为主的半深湖/深湖相。
图8为联合机器学习网络2和叠前地震反演结果得到的有机质含量空间分布预测的结果。可以看到过A井段的有机质含量预测结果与经过地球化学标定的通过测井数据计算得到的有机质含量有较好的对应关系:有机质含量整体呈现由MRF-6、MRF-5段到MRF-4段缓慢下降,而在MRF-3、MRF-2、MRF-1又增高的趋势,并且有机质含量在测井曲线上的局部几个高点在地震上都能得到较好的刻画。
上述实施方式仅为例举,不表示对本发明范围的限定。这些实施方式还能以其它各种方式来实施,且能在不脱离本发明技术思想的范围内作各种省略、置换、变更。

Claims (6)

1.一种基于地震反演和机器学习的陆相烃源岩定量预测方法,用于预测某一区域陆相烃源岩的空间分布和有机质含量,其特征在于,该方法包括训练阶段和预测阶段,其中,
训练阶段包括:
A1、优选对陆相沉积地层砂泥岩岩性区分和有机质含量敏感的弹性属性;
A2、训练用于预测岩性的第一机器学习网络,所述的第一机器学习网络输入为陆相沉积地层的弹性属性,输出为岩性,所述的岩性包括泥岩和沙岩;
A3、训练用于预测有机质含量的第二机器学习网络,所述的第二机器学习网络输入为泥岩层对应的弹性属性,输出为有机质含量;
预测阶段包括:
B1、对待预测区域的叠前地震数据进行叠前弹性参数反演获取与步骤A1对应的弹性属性;
B2、采用第一机器学习网络预测岩性,获取泥岩层的空间分布;
B3、采用第二机器学习网络对泥岩层有机质含量进行预测,上述泥岩层的空间分布和有机质含量即为陆相烃源岩的空间分布和有机质含量;
训练阶段对不同深度段沉积地层分别训练对应的第一机器学习网络,进而预测阶段对不同深度段沉积地层采用对应的第一机器学习网络预测岩性;
训练阶段对不同深度段泥岩层分别训练对应的第二机器学习网络,进而预测阶段对不同深度段泥岩层的采用对应的第二机器学习网络预测有机质含量。
2.根据权利要求1所述的一种基于地震反演和机器学习的陆相烃源岩定量预测方法,其特征在于,训练阶段步骤A1前还包括训练数据的获取,所述的训练数据包括测井数据、钻井或录取的岩性标定数据以及地球化学测试的有机质含量数据。
3.根据权利要求1所述的一种基于地震反演和机器学习的陆相烃源岩定量预测方法,其特征在于,所述的弹性属性包括纵波速度、横波速度、密度、纵波阻抗、横波阻抗中任意一个或多个的组合。
4.根据权利要求1或3所述的一种基于地震反演和机器学习的陆相烃源岩定量预测方法,其特征在于,步骤A1具体为:定量评估弹性属性与岩性以及弹性属性与有机质含量之间的相关性,当相关系数>0.5时,选取相应的弹性属性为所述的敏感的弹性属性。
5.根据权利要求1所述的一种基于地震反演和机器学习的陆相烃源岩定量预测方法,其特征在于,所述的第一机器学习网络为基于随机森林算法的机器学习网络。
6.根据权利要求1所述的一种基于地震反演和机器学习的陆相烃源岩定量预测方法,其特征在于,所述的第二机器学习网络为基于随机森林算法的机器学习网络。
CN201910440723.6A 2019-05-24 2019-05-24 一种基于地震反演和机器学习的陆相烃源岩定量预测方法 Active CN110118994B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910440723.6A CN110118994B (zh) 2019-05-24 2019-05-24 一种基于地震反演和机器学习的陆相烃源岩定量预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910440723.6A CN110118994B (zh) 2019-05-24 2019-05-24 一种基于地震反演和机器学习的陆相烃源岩定量预测方法

Publications (2)

Publication Number Publication Date
CN110118994A CN110118994A (zh) 2019-08-13
CN110118994B true CN110118994B (zh) 2020-10-02

Family

ID=67523176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910440723.6A Active CN110118994B (zh) 2019-05-24 2019-05-24 一种基于地震反演和机器学习的陆相烃源岩定量预测方法

Country Status (1)

Country Link
CN (1) CN110118994B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988997A (zh) * 2019-12-27 2020-04-10 中国海洋石油集团有限公司 一种基于机器学习的烃源岩三维空间展布定量预测技术
US11719851B2 (en) 2020-09-02 2023-08-08 Saudi Arabian Oil Company Method and system for predicting formation top depths

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807320A (zh) * 2016-03-17 2016-07-27 成都创源油气技术开发有限公司 页岩气储层的地震预测方法
CN107437229A (zh) * 2016-05-26 2017-12-05 中国石油化工股份有限公司 烃源岩有机碳含量预测模型的构建方法及预测方法
WO2018137747A1 (fr) * 2017-01-30 2018-08-02 Entreprise Nationale De Geophysique Procede pour l'estimation du carbone organique total (cot) à partir des vitesses acoustiques et de la porosite totale (φ t) dans une roche mere.
CN109342697A (zh) * 2018-12-07 2019-02-15 福建农林大学 基于随机森林—普通克里格法的土壤有机碳含量预测方法
CN109507733A (zh) * 2018-12-11 2019-03-22 中国石油天然气股份有限公司大港油田分公司 一种预测烃源岩有机质丰度的方法及装置
CN109709608A (zh) * 2018-12-07 2019-05-03 中国石油天然气股份有限公司 一种混积烃源岩toc含量和岩性组分测定方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349806B2 (en) * 2004-09-15 2008-03-25 United States Of America As Represented By The Secretary Of The Navy System and method for extracting optical properties from environmental parameters in water
CN1239921C (zh) * 2004-10-22 2006-02-01 石油大学(北京) 利用地震记录预测井眼待钻井段坍塌压力和破裂压力的方法
US10353093B2 (en) * 2017-07-27 2019-07-16 International Business Machines Corporation Multi-scale manifold learning for full waveform inversion
CN108897042B (zh) * 2018-08-28 2020-03-10 中国石油天然气股份有限公司 有机质含量地震预测方法及装置
CN109765609A (zh) * 2019-01-30 2019-05-17 中国石油大学(北京) 一种基于目的层与相邻层地震属性的砂体预测方法及***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807320A (zh) * 2016-03-17 2016-07-27 成都创源油气技术开发有限公司 页岩气储层的地震预测方法
CN107437229A (zh) * 2016-05-26 2017-12-05 中国石油化工股份有限公司 烃源岩有机碳含量预测模型的构建方法及预测方法
WO2018137747A1 (fr) * 2017-01-30 2018-08-02 Entreprise Nationale De Geophysique Procede pour l'estimation du carbone organique total (cot) à partir des vitesses acoustiques et de la porosite totale (φ t) dans une roche mere.
CN109342697A (zh) * 2018-12-07 2019-02-15 福建农林大学 基于随机森林—普通克里格法的土壤有机碳含量预测方法
CN109709608A (zh) * 2018-12-07 2019-05-03 中国石油天然气股份有限公司 一种混积烃源岩toc含量和岩性组分测定方法及应用
CN109507733A (zh) * 2018-12-11 2019-03-22 中国石油天然气股份有限公司大港油田分公司 一种预测烃源岩有机质丰度的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
利用地震资料预测和评价烃源岩;顾礼敬 等;《天然气地球科学》;20110630;第22卷(第3期);第554-560页 *
利用随机森林回归算法预测总有机碳含量;冯明刚 等;《矿物岩石地球化学通报》;20180531;第37卷(第3期);第475-481页 *

Also Published As

Publication number Publication date
CN110118994A (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
CN109061765B (zh) 非均质薄砂岩互层油藏的圈闭评价方法
CN105277982B (zh) 一种泥页岩总有机碳含量地震预测方法
CN113553780B (zh) 一种基于机器学习的地层孔隙压力预测方法
Shi et al. Brittleness index prediction in shale gas reservoirs based on efficient network models
CN108897975A (zh) 基于深度信念网络的煤层气测井含气量预测方法
CN110954944A (zh) 一种断层圈闭含油高度地震预测方法
CN116305850B (zh) 一种基于随机森林模型的地层热导率预测方法
CN112034521B (zh) 一种欠压实与生烃混合成因地层超压的预测方法
CN111767674A (zh) 一种基于主动域适应的测井岩性识别方法
CN105807320A (zh) 页岩气储层的地震预测方法
CN110118994B (zh) 一种基于地震反演和机器学习的陆相烃源岩定量预测方法
CN114529110A (zh) 一种基于深度神经网络模型的岩相反演方法及***
CN116168224A (zh) 基于成像砾石含量的机器学习岩相自动识别方法
CN107870368A (zh) 一种基于地震属性的总有机碳含量空间分布预测方法
Abubakar et al. Deep learning applications for wind farms site characterization and monitoring
CN110988997A (zh) 一种基于机器学习的烃源岩三维空间展布定量预测技术
CN117272841B (zh) 一种基于混合神经网络的页岩气甜点预测方法
CN112578475B (zh) 基于数据挖掘的致密储层双甜点识别方法
CN111948718B (zh) 页岩气储层总有机碳含量预测方法及装置
CN114114414A (zh) 一种页岩储层“甜点”信息人工智能预测方法
CN114063162B (zh) 一种基于小样本机器学习SVM Vp/Vs预测方法
CN113608258B (zh) 一种构建高分辨率波阻抗反演标签的自洽深度学习方法
CN110568149B (zh) 沉积盆地烃源岩生排烃史精细快速定量模拟方法
CN112394392B (zh) 对烃源岩分布情况进行评价的方法和装置
Nath et al. Prediction and analysis of geomechanical properties using deep learning: A Permian Basin case study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant