CN110096718A - 一种获取碳酸盐岩油藏中溶洞的体积的方法 - Google Patents

一种获取碳酸盐岩油藏中溶洞的体积的方法 Download PDF

Info

Publication number
CN110096718A
CN110096718A CN201810090712.5A CN201810090712A CN110096718A CN 110096718 A CN110096718 A CN 110096718A CN 201810090712 A CN201810090712 A CN 201810090712A CN 110096718 A CN110096718 A CN 110096718A
Authority
CN
China
Prior art keywords
solution cavity
well
fluid
pit shaft
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810090712.5A
Other languages
English (en)
Other versions
CN110096718B (zh
Inventor
庞伟
李冬梅
张同义
徐艳东
杜娟
陶杉
艾爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Research Institute of Petroleum Engineering
Original Assignee
China Petroleum and Chemical Corp
Sinopec Research Institute of Petroleum Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Research Institute of Petroleum Engineering filed Critical China Petroleum and Chemical Corp
Priority to CN201810090712.5A priority Critical patent/CN110096718B/zh
Publication of CN110096718A publication Critical patent/CN110096718A/zh
Application granted granted Critical
Publication of CN110096718B publication Critical patent/CN110096718B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种获取碳酸盐岩油藏中溶洞的体积的方法,所述方法包括:建立耦合井筒—溶洞—地层流动的试井分析模型,其中,所述试井分析模型考虑基岩的渗流,基岩向溶洞的窜流,溶洞内的管流和波动;基于所述试井分析模型计算井钻遇溶洞和/或非井钻遇溶洞的体积。相较于现有技术,根据本发明的方法可以为缝洞型碳酸盐岩油藏确定更加准确可靠的溶洞体积,从而为缝洞型碳酸盐岩油藏地质储量提供依据,为该类油藏动态评价提供基础信息,对保障缝洞型碳酸盐岩油藏高效开发、提高经济效益具有重要作用。

Description

一种获取碳酸盐岩油藏中溶洞的体积的方法
技术领域
本发明涉及地质勘探开发领域,具体涉及一种获取碳酸盐岩油藏中溶洞的体 积的方法。
背景技术
碳酸盐岩油藏在世界已发现油藏中占据重要位置,全世界256个大型油田中, 碳酸盐岩油田约占45%,已发现的碳酸盐岩油藏储量和产量占世界总量的50%、 65%,在油田开发中一直占有重要地位。
较常见的碳酸盐岩油藏的主体为洞穴型储层储集空间。洞穴型储层储集空间 为大型洞穴(和裂缝),洞穴(包括大洞、巨洞)储集空间巨大,加之裂缝对沟 通洞穴和改善渗流性能的作用,形成了储集空间巨大、储渗能力极好的有利储层 类型,因此,溶洞体积的确定对于确定碳酸盐岩缝洞型油藏储量、指导碳酸盐岩 油藏具有重要意义。另外,钻井过程中钻遇溶洞时会有放空漏失现象,往往造成 钻井液漏失和储层污染,因此溶洞体积的确定对预防钻井漏失、节省钻井成本也 具有指导作用。
但是,在实际环境中,碳酸盐岩油藏中的溶洞构造十分复杂。例如奥陶系碳 酸盐岩缝洞型油藏,其主要储层类型为缝洞型储层,是多期岩溶改造作用的结果, 储集空间主要有溶洞、孔洞、裂缝等,由这些特征明显不同的储集空间组合形成 溶洞型、裂缝-孔洞型、裂缝型以及洞穴型储集体,其在三维空间分布的边界形态 极不规则;储集空间分布不连续,孔隙度变化巨大、规律性差,非均质性非常严 重。这就导致在现有技术中,很难获取准确的碳酸盐岩油藏中的溶洞体积。
发明内容
本发明提供了一种获取碳酸盐岩油藏中溶洞的体积的方法,所述方法包括:
建立耦合井筒—溶洞—地层流动的试井分析模型,其中,所述试井分析模型 考虑基岩的渗流,基岩向溶洞的窜流,溶洞内的管流和波动;
基于所述试井分析模型计算井钻遇溶洞和/或非井钻遇溶洞的体积。
在一实施例中,建立耦合井筒—溶洞—地层流动的试井分析模型,包括:
针对流体从溶洞流入井筒,再由井筒流出地面的流体流动过程建立井—溶洞 中流动模型,其中,所述流体流动过程满足质量守恒方程、动量守恒方程和能量 守恒方程;
将地层基岩中的流体流动引入所述井—溶洞中流动模型,建立所述试井分析 模型。
在一实施例中,建立耦合井筒—溶洞—地层流动的试井分析模型,其中,所 述试井分析模型包括以下模型假设:
碳酸盐岩储层由基岩、微裂缝及溶洞组成;
基岩作为流体储集空间不参与渗流,但通过窜流方式向溶洞及裂缝间提供流 量;
裂缝作为主要的渗流通道,满足达西定律,不仅将基岩及溶洞和裂缝进行沟 通,而且向井提供流量;
地层为各向同性圆形油藏,圆心处有一定产量生产的油井;
地层外部为单一均匀介质;
考虑流体的微可压缩性,假设流体压缩系数相对较小,运动过程中流体的速 度相对较小;
溶洞为圆柱形,并且与井筒同心,溶洞内考虑垂直方向的流动。
在一实施例中,所述流体流动过程满足的质量守恒方程、动量守恒方程和能 量守恒方程为:
其中:
ρ为流体密度,kg/m3
v为流体流动速度,m/s;
x轴为由井筒圆心向下建立的一维坐标轴;
p为压力,Pa;
f为流体受到的摩擦系数,无量纲;
D为井筒的直径,m;
pwf和pv分别为井筒和溶洞中的压力,Pa;
vwf为井筒和溶洞连接处流体的速度,m/s。
在一实施例中,井筒中的压力为:
其中:
D为油管直径,m;
C为油管及流体***中的波速,m/s;
Cv为溶洞的存储常数,m3/MPa;
v0为初始时刻的速度,m/s;
rv为溶洞半径,m。
在一实施例中,将地层基岩中的流体流动引入所述井—溶洞中流动模型,其 中:
对于地层基岩中的流体流动,采用渗流方程
式中:
k为基岩渗透率,md;
p1为井筒位置对应的基岩中的压力,Pa;
p2为溶洞位置对应的基岩中的压力,Pa;
Ct为基岩综合压缩系数,1/Pa;
φ为基岩孔隙度,无量纲。
在一实施例中,针对地层边界为圆形封闭边界的情况,所述试井分析模型为
式中:
μ为流体的粘度,Pa·s;
Cw和Cv分别为井筒及溶洞存储常数,m3/Pa;
sw和sv分布为井筒和溶洞的表皮系数;
Q为日产量,m3/s;
B为流体体积系数;
re为地层外边界半径,m;
r为与井筒中心或溶洞中心的距离,m;
rv为溶洞半径,m;
rw为井筒半径,m。
在一实施例中,基于所述试井分析模型计算非井钻遇溶洞的体积,其中,计 算溶洞向井筒提供的产量,根据实测数据与理论数据拟合,采用物质平衡法得到 非井钻遇溶洞的体积。
在一实施例中,基于所述试井分析模型计算非井钻遇溶洞的体积,包括:
根据溶洞向井筒提供的产量,计算溶洞压力分布;
根据所述溶洞压力分布计算溶洞的理论压力数据,拟合实测压力数据与理论 压力数据,确定非井钻遇溶洞的体积。
在一实施例中,根据所述溶洞压力分布计算溶洞的理论压力数据,拟合实测 压力数据与理论压力数据,确定非井钻遇溶洞的体积,包括:
根据所述溶洞压力分布计算溶洞的无量纲平均压力;
根据所述溶洞的无量纲平均压力计算以井筒为参考点的溶洞无量纲压力;
在实测压力数据与理论压力数据拟合时确定无量纲参数的值,进而确定所述 非井钻遇溶洞的体积。
相较于现有技术,根据本发明的方法可以为缝洞型碳酸盐岩油藏确定更加准 确可靠的溶洞体积,从而为缝洞型碳酸盐岩油藏地质储量提供依据,为该类油藏 动态评价提供基础信息,对保障缝洞型碳酸盐岩油藏高效开发、提高经济效益具 有重要作用。
本发明的其它特征或优点将在随后的说明书中阐述。并且,本发明的部分特 征或优点将通过说明书而变得显而易见,或者通过实施本发明而被了解。本发明 的目的和部分优点可通过在说明书、权利要求书以及附图中所特别指出的步骤来 实现或获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明 的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1是根据本发明一实施例的方法流程图;
图2、3、5以及图6是根据本发明实施例的方法的部分流程图;
图4是根据本发明一实施例的井钻遇溶洞时压力及导数双对数曲线图;
图7是根据本发明一实施例的实测数据与模型数据的双对数拟合图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此本发明的实施 人员可以充分理解本发明如何应用技术手段来解决技术问题,并达成技术效果的 实现过程并依据上述实现过程具体实施本发明。需要说明的是,只要不构成冲突, 本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术 方案均在本发明的保护范围之内。
较常见的碳酸盐岩油藏的主体为洞穴型储层储集空间。洞穴型储层储集空间 为大型洞穴(和裂缝),洞穴(包括大洞、巨洞)储集空间巨大,加之裂缝对沟 通洞穴和改善渗流性能的作用,形成了储集空间巨大、储渗能力极好的有利储层 类型,因此,溶洞体积的确定对于确定碳酸盐岩缝洞型油藏储量、指导碳酸盐岩 油藏具有重要意义。另外,钻井过程中钻遇溶洞时会有放空漏失现象,往往造成 钻井液漏失和储层污染,因此溶洞体积的确定对预防钻井漏失、节省钻井成本也 具有指导作用。
但是,在实际环境中,碳酸盐岩油藏中的溶洞构造十分复杂。例如奥陶系碳 酸盐岩缝洞型油藏,其主要储层类型为缝洞型储层,是多期岩溶改造作用的结果, 储集空间主要有溶洞、孔洞、裂缝等,由这些特征明显不同的储集空间组合形成 溶洞型、裂缝-孔洞型、裂缝型以及洞穴型储集体,其在三维空间分布的边界形态 极不规则;储集空间分布不连续,孔隙度变化巨大、规律性差,非均质性非常严 重。这就导致在现有技术中,很难获取准确的碳酸盐岩油藏中的溶洞体积。
针对上述问题,本发明提出了一种获取碳酸盐岩油藏中溶洞的体积的方法。 本发明的方法首先分析现有技术获取溶洞体积不准的原因。具体的,根据现有技 术试井分析方法确定溶洞体积的主要问题有:
(1)连续介质模型试井模型应用渗透率、窜流系数、储容比来简化溶洞, 没有考虑溶洞本身的流动模型,因此对大尺度溶洞的缝洞油藏适应性很差,且不 能计算出溶洞体积等关键参数。
(2)数值试井模型采用数值模拟的思路进行建模和数值计算,建模过程复 杂、花费时间多,所需参数多且不易获得,成本高,不利于在油田范围推广应用。
(3)等式体模型假设溶洞内压力处处相等,假设过于理想化,无法考虑溶 洞内部的流动。
(4)仅应用质量守恒方程来考虑溶洞内流体依靠弹性能量的采出,而未考 虑溶洞内压力波扰动对流体产出的影响。
(5)目前模型假设从基岩到溶洞、溶洞到井筒之间的流动均为径向流动, 而很多碳酸盐岩储层为串珠型溶洞,流动主要为垂直方向的流动。
基于上述分析结果,本发明提出了一种利用试井分析确定碳酸盐岩油藏中溶 洞的体积的方法,从碳酸盐岩缝洞储层中基岩、裂缝及溶洞的地质特征出发,考 虑溶洞内的流动,建立满足质量守恒定律、动量守恒及能量守恒定律的试井分析 模型,利用试井分析模型计算碳酸盐岩油藏中井钻遇溶洞和/或非井钻遇溶洞的体 积。相较于现有技术,根据本发明的方法可以为缝洞型碳酸盐岩油藏确定更加准 确可靠的溶洞体积,从而为缝洞型碳酸盐岩油藏地质储量提供依据,为该类油藏 动态评价提供基础信息,对保障缝洞型碳酸盐岩油藏高效开发、提高经济效益具 有重要作用。
接下来基于流程图详细描述本发明实施例的实施过程。附图的流程图中示出 的步骤可以在包含诸如一组计算机可执行指令的计算机***中执行。虽然在流程 图中示出了各步骤的逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执 行所示出或描述的步骤。
如图1所示,在一实施例中,首先建立耦合井筒—溶洞—地层流动的试井分 析模型(S110);然后基于试井分析模型根据实测的井底压力数据计算井钻遇溶 洞和/或非井钻遇溶洞的体积(S120)。
具体的,在步骤S110中,试井分析模型考虑基岩的渗流,基岩向溶洞的窜 流,溶洞内的管流和波动。
进一步的,在一实施例中,建立耦合井筒—溶洞—地层流动的试井分析模型 的步骤如图2所示,包括:
S211,针对流体从溶洞流入井筒,再由井筒流出地面的流体流动过程建立 井—溶洞中流动模型,,其中,流体流动过程满足质量守恒方程、动量守恒方程和 能量守恒方程;
S212,将地层基岩中的流体流动引入井—溶洞中流动模型,建立试井分析模 型。
进一步的,在一实施例中,建立耦合井筒—溶洞—地层流动的试井分析模型 时包括以下模型假设:
(1)碳酸盐岩储层由基岩、微裂缝及溶洞组成;
(2)基岩作为流体储集空间不参与渗流,但通过窜流方式向溶洞及裂缝间 提供流量;
(3)裂缝作为主要的渗流通道,满足达西定律,不仅将基岩及溶洞和裂缝 进行沟通,而且向井提供流量;
(4)地层为各向同性圆形油藏,圆心处有一定产量生产的油井;
(5)地层外部为单一均匀介质;
(6)考虑流体的微可压缩性,假设流体压缩系数相对较小,运动过程中流 体的速度相对较小;
(7)溶洞为圆柱形,并且与井筒同心,溶洞内考虑垂直方向的流动。
进一步的,在一实施例中,考虑流体从溶洞流入井筒,再由井筒流出地面, 这一过程的流体流动要满足质量守恒方程、动量守恒方程和能量守恒方程。具体 的,流体流动过程满足的质量守恒方程、动量守恒方程和能量守恒方程为:
其中:
ρ为流体密度,kg/m3
v为流体流动速度,m/s;
x轴为由井筒圆心向下建立的一维坐标轴;
p为压力Pa;
f为流体受到的摩擦系数,无量纲;
D为井筒的直径,m;
pwf和pv分别为井筒和溶洞中的压力,Pa;
vwf为井筒和溶洞连接处流体的速度,m/s。
进一步的,在一实施例中,井筒与溶洞联通组成了一个巨大的流体储集空间, 当开井生产时,由于压力很高,早期的流量由储集空间的弹性压缩提供,井筒及 溶洞中流体存在两种类型的运动,一种是流体的运动,其速度为v,它是由流量Q 来决定;另一种是流体流出后的压力泄压速度,它是以波的形式传播,速度为C。
对井筒中的流体流动,在高压状况下,流体存在压缩性,井筒油管也是一个 弹性体,其变形由油管直径、壁厚及油管材料的杨氏模量决定,质量守恒方程(1) 可写为:
式中:A为微元面积,m2
考虑流体的压缩性和井筒油管的弹性变形,可由公式(4)推导,得到井筒 中流体波动与流动耦合方程为:
式中:
K为流体的体积模量,Pa;
D为油管直径,m;
e为油管壁厚,m;
E为油管杨氏模量,Pa。
定义:
式中:C为油管及流体***中的波速,m/s。
同理,得到溶洞中流体波动与流动耦合方程为:
溶洞中压力传播的波速C可表示为:
式中:E为地层的杨氏模量,Pa;φ为孔隙度。
联立质量守恒方程和动量守恒方程,可得:
式中:Cv为溶洞的存储常数,m3/Pa。
求解式(9),得流体从溶洞流入井筒处的速度为:
式中:v0为初始时刻的速度,m/s。
根据井筒及溶洞处的能量守恒方程,得井筒中的压力为:
其中:
rv为溶洞半径,m。
进一步的,在一实施例中,将地层基岩中的流体流动引入井—溶洞中流动 模型时,对于地层基岩中的流体流动,采用渗流方程
式中:
k为基岩渗透率,md;
p1为井筒位置对应的基岩中的压力,Pa;
p2为溶洞位置对应的基岩中的压力,Pa;
Ct为基岩综合压缩系数,1/Pa;
φ为基岩孔隙度,无量纲。
缝洞型油藏试井模型由井筒、溶洞及地层三部分的流动方程组成。地层边界 可以是无限大地层、封闭边界、定压边界等。具体的,以地层边界为圆形封闭边 界为例,在一实施例中,针对地层边界为圆形封闭边界,得到的耦合井—溶洞— 地层内流体流动的试井分析模型为
式中:
μ为流体的粘度,Pa·s;
Cw和Cv分别为井筒及溶洞存储常数,m3/Pa;
sw和sv分布为井筒和溶洞的表皮系数;
Q为日产量,m3/s;
B为流体体积系数;
re为地层外边界半径,m;
r为与井筒中心或溶洞中心的距离,m;
rv为溶洞半径,m;
rw为井筒半径,m。
需要说明的是,在模型公式(13)建立时假设地层外边界为圆形封闭边界。 在其他实施例中,对于其他边界(如无限大地层、定压边界),在建立模型时只 需要在公式(13)中修改外边界条件即可,其他过程完全相同。
进一步的,如图3所示,在一实施例中,基于试井分析模型根据实测的井底 压力数据计算井钻遇溶洞的体积,包括:
S321,将试井分析模型进行无量纲化;
S322,对无量纲化的模型进行拉普拉斯(Laplace)变换并获取Laplace空间 上的解;
S323,根据Laplace空间上的解计算真实空间下的井底压力解;
S324,将真实空间下的井底压力解与实测井底压力数据进行拟合,求得井钻 遇溶洞的体积。
具体的,在一实施例中,将试井分析模型进行无量纲化,其中,定义无量纲 变量,尤其的,无量纲变量包括与溶洞内流动和波动相关的无量纲量:
式中:
tD为无因次时间;
t为时间,hr;
式中:
p1D为无因次井筒位置对应的基岩中的压力;
h1为井筒位置对应的基岩储层厚度,m;
h2为溶洞位置对应的基岩储层厚度,m;
pi为原始地层压力,Pa;
式中,
p2D为无因次溶洞位置对应的基岩中的压力;
式中,
pwfD为无因次井筒压力;
式中,
pvD为无因次溶洞压力;
式中,
rD为无因次溶洞压力;
式中,
CwD为无因次井筒存储常数;
式中,
CvD为无因次溶洞存储常数;
式中,
λ为无因次厚度;
式中,
CpD为无因次溶洞流动常数;
式中,
CaD为无因次溶洞波动系数。
进一步的,以假设地层外边界为圆形封闭边界的模型公式(13)为例,在一 实施例中,将耦合井—溶洞—地层流动的试井模型进行无量纲化,得到:
进一步的,在一实施例中,在根据Laplace空间上的解计算真实空间下的井 底压力解时,由司帝夫斯特(Stehfest)数值反演算法得到真实空间下的井底压力 解。
具体的,以假设地层外边界为圆形封闭边界的模型公式(13)为例,在一实 施例中,对无量纲化的模型公式(25)进行Laplace变换,得到Laplace空间上的 模型为:
对公式(26)求解,可得Laplace空间上的解,即无量纲井底压力为:
针对公式(30),由Stehfest数值反演算法得到真实空间下的井底压力解。
进一步的,在一实施例中,基于真实空间下的井底压力解,可绘制模型典型 曲线,模型曲线包括压力曲线和压力导数曲线。具体的,在一实施例中,井钻遇 溶洞时压力及导数双对数曲线如图4所示。
这样,在步骤S324中,输入地层基本参数和压力恢复数据,包括地层深度、 孔隙度、渗透率、原始地层压力、地层温度、储层厚度、流体粘度、体积系数、 流体密度、流体压缩系数。压力恢复数据包括开井生产数据(生产时间、产油量)、 关井期间压力恢复数据(压力与时间的关系)。然后就可以通过真实空间下井底 压力的解与实测井底压力数据进行拟合,求得井钻遇溶洞的溶洞体积。
进一步的,在一实施例中,基于试井分析模型计算非井钻遇溶洞的体积,其 中,计算溶洞向井筒提供的产量,根据实测数据与理论数据拟合,采用物质平衡 法得到非井钻遇溶洞的体积。
具体的,如图5所示,在一实施例中,基于试井分析模型计算非井钻遇溶洞 的体积,包括:
S521,根据溶洞向井筒提供的产量,计算溶洞压力分布;
S522,根据溶洞压力分布计算溶洞的理论压力数据,拟合实测压力数据与理 论压力数据,确定非井钻遇溶洞的体积。
具体的,以假设地层外边界为圆形封闭边界的模型公式(13)为例,在一实 施例中,在步骤S521中,地层中有m个溶洞时,当地层中第j个溶洞(j=1,2,..., m)以产量qvj向井提供产量时,其与总产量的流量比为:
qvj/Q (29)
式中:qvj为距离井筒Lj处的溶洞在某一时刻的流量;Q为地面产出流量。
对于地层中第j个溶洞,将其作为点源,若以该溶洞为参考点,根据其向井 筒提供的产量,可以计算出其压力分布为:
式中:zn为J1(zn)=0第n个正根。
进一步的,在一实施例中,在步骤S521中,引入无量纲参数确定非井钻遇 溶洞的体积。具体的,如图6所示,在一实施例中,包括:
S621,根据溶洞压力分布计算溶洞的无量纲平均压力;
S622,根据溶洞的无量纲平均压力计算以井筒为参考点的溶洞无量纲压力;
S623,在实测压力数据与理论压力数据拟合时确定无量纲参数的值,进而确 定非井钻遇溶洞的体积。
具体的,以假设地层外边界为圆形封闭边界的模型公式(13)为例,在一实 施例中,对式(30)进行积分,可得到地层中第j个溶洞的中的无量纲平均压力 为:
式中:
Rvj为地层中第j个溶洞的半径。
以井筒为参考点,可得到距离井筒Lj处的溶洞的无量纲压力为:
式中:
井到洞的无量纲距离;
k,h,φ为井筒到洞之间的地层参数。
结合式(31)和(32),定义下述无量参数:
流度比
储容比
流量比
井到洞的距离L。
在实测压力数据与理论压力数据拟合时确定无量纲参数的值,进而确定出地 层中溶洞的半径和溶洞体积。
接下来根据具体的应用实例详细说明本发明的方法的实际效果。
具体的,以某碳酸盐岩油藏中一口钻遇了溶洞的井为例。应用压力恢复数据 对该井进行试井分析,实测数据与模型数据的双对数拟合图如图7所示。通过拟 合,得出该井钻遇的溶洞体积为51202m3,地层中显示出了1个洞,其体积为 293095m3,与井筒的距离为149m。
从图7中的实测压力导数数据可以看出,实测数据反映出了井筒存储、井筒 存储向溶洞流动过渡、溶洞里的流动和波动、地层渗流等流动阶段;实测数据反 映出了与井连通的溶洞、地层中的溶洞的特征;实测数据的压力曲线和压力导数 曲线与理论模型的压力曲线和压力导数曲线在全部的流动阶段均具有较好的拟 合效果,因此确定的溶洞体积是可靠的。因此,本发明提出的方法可同时确定与 井筒连通的溶洞、地层中的溶洞,更准确地反映了溶洞中的流动特征,物理意义 更明确,模型数据与实测数据拟合效果好,确定的溶洞体积更准确可靠。
上述实施例实施后,达到了如下效果:
(1)建立的模型考虑了基岩的渗流,基岩向溶洞的窜流,溶洞内的管流和 波动等4种流动,因此对大尺度溶洞的缝洞油藏适应性好,能定量确定溶洞体积 等关键参数;
(2)实测数据与理论模型均反映出了与井连通的溶洞、地层中的溶洞的流 动特征,可以分别确定与井连通的溶洞、地层中的溶洞的体积;
(3)模型数据与实测数据拟合效果好,确定的溶洞体积更加准确可靠,, 验证了理论模型的准确性,物理意义更明确;
(4)实测数据反映了井筒存储、井筒存储向溶洞流动过渡、溶洞里的流动 和波动、地层渗流等流动阶段,通过全流动阶段的数据确定溶洞体积,比单纯采 用井筒存储段的数据,更科学合理,降低了多解性;
(5)该方法为解析方法,比数值方法更简便易行,可操作性强。
虽然本发明所公开的实施方式如上,但所述的内容只是为了便于理解本发明 而采用的实施方式,并非用以限定本发明。本发明所述的方法还可有其他多种实 施例。在不背离本发明实质的情况下,熟悉本领域的技术人员当可根据本发明做 出各种相应的改变或变形,但这些相应的改变或变形都应属于本发明的权利要求 的保护范围。

Claims (10)

1.一种获取碳酸盐岩油藏中溶洞的体积的方法,其特征在于,所述方法包括:
建立耦合井筒—溶洞—地层流动的试井分析模型,其中,所述试井分析模型考虑基岩的渗流,基岩向溶洞的窜流,溶洞内的管流和波动;
基于所述试井分析模型计算井钻遇溶洞和/或非井钻遇溶洞的体积。
2.根据权利要求1所述的方法,其特征在于,建立耦合井筒—溶洞—地层流动的试井分析模型,包括:
针对流体从溶洞流入井筒,再由井筒流出地面的流体流动过程建立井—溶洞中流动模型,其中,所述流体流动过程满足质量守恒方程、动量守恒方程和能量守恒方程;
将地层基岩中的流体流动引入所述井—溶洞中流动模型,建立所述试井分析模型。
3.根据权利要求2所述的方法,其特征在于,建立耦合井筒—溶洞—地层流动的试井分析模型,其中,所述试井分析模型包括以下模型假设:
碳酸盐岩储层由基岩、微裂缝及溶洞组成;
基岩作为流体储集空间不参与渗流,但通过窜流方式向溶洞及裂缝间提供流量;
裂缝作为主要的渗流通道,满足达西定律,不仅将基岩及溶洞和裂缝进行沟通,而且向井提供流量;
地层为各向同性圆形油藏,圆心处有一定产量生产的油井;
地层外部为单一均匀介质;
考虑流体的微可压缩性,假设流体压缩系数相对较小,运动过程中流体的速度相对较小;
溶洞为圆柱形,并且与井筒同心,溶洞内考虑垂直方向的流动。
4.根据权利要求3所述的方法,其特征在于,所述流体流动过程满足的质量守恒方程、动量守恒方程和能量守恒方程为:
其中:
ρ为流体密度,kg/m3
v为流体流动速度,m/s;
x轴为由井筒圆心向下建立的一维坐标轴;
p为压力,Pa;
f为流体受到的摩擦系数,无量纲;
D为井筒的直径,m;
pwf和pv分别为井筒和溶洞中的压力,Pa;
vwf为井筒和溶洞连接处流体的速度,m/s。
5.根据4所述的方法,其特征在于,井筒中的压力为:
其中:
D为油管直径,m;
C为油管及流体***中的波速,m/s;
Cv为溶洞的存储常数,m3/MPa;
v0为初始时刻的速度,m/s;
rv为溶洞半径,m。
6.根据5所述的方法,其特征在于,将地层基岩中的流体流动引入所述井—溶洞中流动模型,其中:
对于地层基岩中的流体流动,采用渗流方程
式中:
k为基岩渗透率,md;
p1为井筒位置对应的基岩中的压力,Pa;
p2为溶洞位置对应的基岩中的压力,Pa;
Ct为基岩综合压缩系数,1/Pa;
φ为基岩孔隙度,无量纲。
7.根据6所述的方法,其特征在于,针对地层边界为圆形封闭边界的情况,所述试井分析模型为
式中:
μ为流体的粘度,Pa·s;
Cw和Cv分别为井筒及溶洞存储常数,m3/Pa;
sw和sv分布为井筒和溶洞的表皮系数;
Q为日产量,m3/s;
B为流体体积系数;
re为地层外边界半径,m;
r为与井筒中心或溶洞中心的距离,m;
rv为溶洞半径,m;
rw为井筒半径,m。
8.根据权利要求1~7中任一项所述的方法,其特征在于,基于所述试井分析模型计算非井钻遇溶洞的体积,其中,计算溶洞向井筒提供的产量,根据实测数据与理论数据拟合,采用物质平衡法得到非井钻遇溶洞的体积。
9.根据权利要求8所述的方法,其特征在于,基于所述试井分析模型计算非井钻遇溶洞的体积,包括:
根据溶洞向井筒提供的产量,计算溶洞压力分布;
根据所述溶洞压力分布计算溶洞的理论压力数据,拟合实测压力数据与理论压力数据,确定非井钻遇溶洞的体积。
10.根据权利要求9所述的方法,其特征在于,根据所述溶洞压力分布计算溶洞的理论压力数据,拟合实测压力数据与理论压力数据,确定非井钻遇溶洞的体积,包括:
根据所述溶洞压力分布计算溶洞的无量纲平均压力;
根据所述溶洞的无量纲平均压力计算以井筒为参考点的溶洞无量纲压力;
在实测压力数据与理论压力数据拟合时确定无量纲参数的值,进而确定所述非井钻遇溶洞的体积。
CN201810090712.5A 2018-01-30 2018-01-30 一种获取碳酸盐岩油藏中溶洞的体积的方法 Active CN110096718B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810090712.5A CN110096718B (zh) 2018-01-30 2018-01-30 一种获取碳酸盐岩油藏中溶洞的体积的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810090712.5A CN110096718B (zh) 2018-01-30 2018-01-30 一种获取碳酸盐岩油藏中溶洞的体积的方法

Publications (2)

Publication Number Publication Date
CN110096718A true CN110096718A (zh) 2019-08-06
CN110096718B CN110096718B (zh) 2021-11-02

Family

ID=67442585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810090712.5A Active CN110096718B (zh) 2018-01-30 2018-01-30 一种获取碳酸盐岩油藏中溶洞的体积的方法

Country Status (1)

Country Link
CN (1) CN110096718B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111444462A (zh) * 2020-04-03 2020-07-24 中国石油大学(北京) 根据不稳定试井测算串珠体数据的方法及设备
CN112267872A (zh) * 2020-10-27 2021-01-26 成都理工大学 利用生产动态数据确定气井钻遇溶洞***容积大小的方法
CN112377186A (zh) * 2020-11-30 2021-02-19 中国石油天然气股份有限公司 哑铃状缝洞型碳酸盐岩储层产量分析模型构建方法及装置
CN113294147A (zh) * 2020-02-24 2021-08-24 中国石油化工股份有限公司 一种考虑重力因素影响的单洞型断溶体储层试井解释方法
CN113919111A (zh) * 2020-07-07 2022-01-11 中国石油化工股份有限公司 一种解释断溶体油藏溶洞特征的应用方法
CN114086933A (zh) * 2020-08-03 2022-02-25 中国石油化工股份有限公司 一种试井解释方法、装置、存储介质以及计算机设备
CN115470683A (zh) * 2022-10-31 2022-12-13 中国石油大学(华东) 多孔介质中缝洞对反应性流体控制域的判定和应用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104533370A (zh) * 2014-11-06 2015-04-22 中国石油大学(北京) 压裂水平井油藏、裂缝、井筒全耦合模拟方法
RU2597305C1 (ru) * 2015-08-13 2016-09-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки нефтяной залежи в карбонатных коллекторах
CN106599449A (zh) * 2016-12-12 2017-04-26 中国石油化工股份有限公司 一种溶洞体积计算的试井解释方法
CN107237626A (zh) * 2016-03-29 2017-10-10 中国石油化工股份有限公司 一种井钻遇溶洞体积的确定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104533370A (zh) * 2014-11-06 2015-04-22 中国石油大学(北京) 压裂水平井油藏、裂缝、井筒全耦合模拟方法
RU2597305C1 (ru) * 2015-08-13 2016-09-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки нефтяной залежи в карбонатных коллекторах
CN107237626A (zh) * 2016-03-29 2017-10-10 中国石油化工股份有限公司 一种井钻遇溶洞体积的确定方法
CN106599449A (zh) * 2016-12-12 2017-04-26 中国石油化工股份有限公司 一种溶洞体积计算的试井解释方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
康志宏: ""碳酸盐岩油藏动态储层评价——以塔里木盆地塔河油田为例"", 《中国博士学位论文全文数据库 基础科学辑》 *
段宝江等: ""双洞型碳酸盐岩油藏试井分析研究"", 《科学技术与工程》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113294147A (zh) * 2020-02-24 2021-08-24 中国石油化工股份有限公司 一种考虑重力因素影响的单洞型断溶体储层试井解释方法
CN111444462A (zh) * 2020-04-03 2020-07-24 中国石油大学(北京) 根据不稳定试井测算串珠体数据的方法及设备
CN111444462B (zh) * 2020-04-03 2022-02-08 中国石油大学(北京) 根据不稳定试井测算串珠体数据的方法及设备
CN113919111A (zh) * 2020-07-07 2022-01-11 中国石油化工股份有限公司 一种解释断溶体油藏溶洞特征的应用方法
CN113919111B (zh) * 2020-07-07 2022-08-26 中国石油化工股份有限公司 一种解释断溶体油藏溶洞特征的应用方法
CN114086933A (zh) * 2020-08-03 2022-02-25 中国石油化工股份有限公司 一种试井解释方法、装置、存储介质以及计算机设备
CN114086933B (zh) * 2020-08-03 2024-03-19 中国石油化工股份有限公司 一种试井解释方法、装置、存储介质以及计算机设备
CN112267872A (zh) * 2020-10-27 2021-01-26 成都理工大学 利用生产动态数据确定气井钻遇溶洞***容积大小的方法
CN112377186A (zh) * 2020-11-30 2021-02-19 中国石油天然气股份有限公司 哑铃状缝洞型碳酸盐岩储层产量分析模型构建方法及装置
CN112377186B (zh) * 2020-11-30 2024-01-30 中国石油天然气股份有限公司 哑铃状缝洞型碳酸盐岩储层产量分析模型构建方法及装置
CN115470683A (zh) * 2022-10-31 2022-12-13 中国石油大学(华东) 多孔介质中缝洞对反应性流体控制域的判定和应用方法
CN115470683B (zh) * 2022-10-31 2023-01-17 中国石油大学(华东) 多孔介质中缝洞对反应性流体控制域的判定和应用方法

Also Published As

Publication number Publication date
CN110096718B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN110096718A (zh) 一种获取碳酸盐岩油藏中溶洞的体积的方法
CN109441422B (zh) 一种页岩气井间距优化开采方法
CN110107277A (zh) 一种获取碳酸盐岩油藏中井钻遇溶洞的体积的方法
CN106599449B (zh) 一种溶洞体积计算的试井解释方法
CN103413030B (zh) 一种缝洞型碳酸盐岩气藏动态分析方法及***
CN106285646B (zh) 基于多信息融合的钻井漏失层位识别方法
CN104533370B (zh) 压裂水平井油藏、裂缝、井筒全耦合模拟方法
WO2016192077A1 (zh) 一种致密气压裂水平井数值试井模型建立求解方法
CN106150477B (zh) 一种确定缝洞型油藏的单井控制储量的方法
Zhang et al. Integration of discrete fracture reconstruction and dual porosity/dual permeability models for gas production analysis in a deformable fractured shale reservoir
CN107462936B (zh) 利用压力监测资料反演低渗透储层非达西渗流规律的方法
CN103334739B (zh) 一种测定煤层瓦斯压力的方法及装置
CN110984973A (zh) 缝洞型碳酸盐岩气藏单井控制储量的确定方法
CN106223938B (zh) 数字化岩心流动模拟分析方法和装置
CN105931125B (zh) 一种致密油分段多簇体积压裂水平井产量预测方法
WO2017031615A1 (zh) 一种构建双溶腔盐穴储库地面沉降预测模型的方法
CN110096669A (zh) 一种获取碳酸盐岩油藏中裂缝体积的方法
Ma et al. Simulation and interpretation of the pressure response for formation testing while drilling
CN111950112B (zh) 一种适用于底部封闭的碳酸盐岩储层动态分析方法
CN109441415A (zh) 基于邻井干扰的聚合物驱油藏测试井的试井解释方法
CN107237626A (zh) 一种井钻遇溶洞体积的确定方法
Xue et al. A combined method for evaluation and prediction on permeability in coal seams during enhanced methane recovery by pressure-relieved method
CN111950111B (zh) 一种适用于底部开放的碳酸盐岩储层动态分析方法
CN112035993B (zh) 一种底部定压的碳酸盐岩储层测试评价方法
Song et al. Upscaling of transport properties in complex hydraulic fracture systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant