CN110090660B - 一种含y型分子筛的复合材料及其制备方法 - Google Patents

一种含y型分子筛的复合材料及其制备方法 Download PDF

Info

Publication number
CN110090660B
CN110090660B CN201810088997.9A CN201810088997A CN110090660B CN 110090660 B CN110090660 B CN 110090660B CN 201810088997 A CN201810088997 A CN 201810088997A CN 110090660 B CN110090660 B CN 110090660B
Authority
CN
China
Prior art keywords
molecular sieve
composite material
type molecular
mesoporous
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810088997.9A
Other languages
English (en)
Other versions
CN110090660A (zh
Inventor
郑金玉
王成强
罗一斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201810088997.9A priority Critical patent/CN110090660B/zh
Publication of CN110090660A publication Critical patent/CN110090660A/zh
Application granted granted Critical
Publication of CN110090660B publication Critical patent/CN110090660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种含Y型分子筛的复合材料,其特征在于该复合材料还含有拟薄水铝石结构的介孔氧化铝层,且介孔氧化铝层生长于Y型分子筛的晶粒表面并将分子筛晶粒包覆其中,介孔氧化铝层的无序结构从Y型分子筛的FAU晶相结构的有序衍射条纹边缘延伸生长,两种结构搭建在一起;以氧化物重量计,该复合材料的化学组成为(4~12)Na2O·(20~60)SiO2·(30~75)Al2O3;该复合材料的粒度参数D(V,0.5)=1.8~2.5、D(V,0.9)=4.0~8.0。该复合材料粒度分布窄,粒度均匀,表面介孔层孔道通畅,活性中心的可接近性强。

Description

一种含Y型分子筛的复合材料及其制备方法
技术领域
本发明涉及一种含Y型分子筛的复合材料及其制备方法,更进一步说是一种介孔层生长于分子筛晶粒表面并将分子筛包覆其中的复合材料及其制备方法。
背景技术
催化裂化是石油炼制过程中非常重要的工艺过程,广泛应用于石油加工工业中,在炼油厂中占有举足轻重的地位。在催化裂化工艺中,重质馏分如减压馏分油或更重组分的渣油在催化剂存在下发生反应,转化为汽油、馏出液和其他液态裂化产品以及较轻的四碳以下的气态裂化产品。催化裂化反应过程遵循正碳离子反应机理,因此需要使用酸性催化材料,特别是具有较强B酸中心的催化材料。无定形硅铝材料即是一种酸性催化材料,其既具有B酸中心又具有L酸中心,是早期催化裂化催化剂中的主要活性组分,但由于其裂化活性较低且所需要的反应温度比较高逐渐被结晶分子筛所替代。结晶分子筛是一类孔径小于2nm、具有特殊晶相结构的多孔材料,根据IUPAC的定义,孔径小于2nm的材料命名为微孔材料,因此结晶分子筛或沸石一般均属于微孔材料,这类微孔分子筛材料由于具有较为完整的晶体结构以及特殊的骨架结构,因此具有较强的酸性及较高的结构稳定性,在催化反应中显示出很高的催化活性,广泛应用于石油加工和其他催化工业中。
Y型分子筛作为一种典型的微孔分子筛材料,由于其孔道结构规整,稳定性好,酸性强,在催化裂化、加氢裂化等领域得到大规模应用。用于催化裂化催化剂中时,通常需要对Y型分子筛进行一定的改性处理,如通过稀土改性抑制骨架脱铝,提高分子筛结构稳定性,增加酸中心保留程度,进而提高裂化活性;或经过超稳化处理,提高骨架硅铝比,进而提高分子筛的稳定性。
随着石油资源的日益耗竭,原油重质化、劣质化趋势明显,掺渣比例不断提高,同时市场对轻质油品的需求未减,因此近年来在石油加工工业中越来越重视对重油、渣油的深加工,很多炼厂已开始掺炼减压渣油,甚至直接以常压渣油为裂化原料,重油催化裂化逐渐成为炼油企业提高经济效益的关键技术,而其中催化剂的大分子裂化能力则是关注的焦点。在常规裂化催化剂中Y型分子筛是最主要的裂化活性组元,但由于其较小的孔道结构,在大分子反应中表现出较为明显的孔道限制作用,对于重油或渣油等大分子的裂化反应同样显示出一定的抑制作用。因此,对于重油催化裂化,需要使用孔径较大,对反应物分子没有扩散限制,且具有较高裂化活性的材料。
根据IUPAC定义,孔径介于2~50nm的材料为介(中)孔材料,而重油或渣油等大分子的尺寸范围正处于这个孔径范畴内,因此介孔材料特别是介孔硅铝材料的研究引起了催化领域研究人员的极大兴趣。介孔材料最早出现在1992年,由美国Mobil公司首先研制成功(Beck J S,Vartuli J Z,Roth W J et al.,J.Am.Chem.Comm.Soc.,1992,114,10834-10843),命名为M41S系列介孔分子筛,包括MCM-41(Mobil Corporation Material-41)和MCM-48等,分子筛的孔径可达1.6~10nm,均匀可调,孔径分布集中,比表面积和孔体积大,吸附能力强;但由于该类分子筛的孔壁结构为无定形结构,水热稳定性差且酸性较弱,无法满足催化裂化的操作条件,工业应用受到很大的限制。
为解决介孔分子筛水热稳定性差的问题,部分研究工作集中于提高分子筛孔壁厚度,如采用中性模板剂可以得到孔壁较厚的分子筛,但酸性较弱的缺点仍旧存在。在CN1349929A中公开了一种新型的介孔分子筛,在分子筛孔壁中引入沸石的初级和次级结构单元,使其具有传统沸石分子筛的基本结构,该介孔分子筛具有强酸性和超高的水热稳定性。但这种分子筛的不足在于需使用价格昂贵的模板剂,且孔径仅有2.7nm左右,对于大分子裂化反应仍有较大的空间位阻效应,高温水热条件下结构易塌陷,裂化活性较差。
在催化裂化领域中,硅铝材料由于其具有较强的酸性中心和很好的裂化性能而得以广泛的应用。介孔概念的提出,又为新型催化剂的制备提供了可能,目前的研究结果多集中在使用昂贵的有机模板剂和有机硅源,并且多数要经过高温水热后处理过程。为了降低制备成本并得到介孔范围内的多孔材料,更多的研究工作集中于无序介孔材料的开发。US5,051,385公开了一种单分散中孔硅铝复合材料,将酸性无机铝盐和硅溶胶混合后再加入碱反应制成,其中铝含量为5~40重量%,孔径20~50nm,比表面积50~100m2/g。US4,708,945中公开的是先在多孔一水软铝石上负载氧化硅粒子或水合氧化硅,再将所得复合物在600℃以上水热处理一定时间,制得氧化硅负载在类一水软铝石表面上的催化剂,其中氧化硅与过渡态一水软铝石的羟基相结合,表面积达100~200m2/g,平均孔径7~7.5nm。US4,440,872中公开了一系列酸性裂化催化剂,其中一些催化剂的载体是通过在γ-Al2O3上浸渍硅烷,然后经500℃焙烧或水蒸汽处理后制得的。CN1353008A中采用无机铝盐和水玻璃为原料,经过沉淀、洗涤、解胶等过程形成稳定清晰的硅铝溶胶,后经干燥得到白色凝胶,再在350℃~650℃下焙烧1~20小时得到硅铝催化材料。在CN1565733A中公开了一种中孔硅铝材料,该硅铝材料具有拟薄水铝石结构,孔径分布集中,比表面积约200~400m2/g,孔容0.5~2.0ml/g,平均孔径介于8~20nm,最可几孔径为5~15nm,该中孔硅铝材料的制备不需使用有机模板剂,合成成本低,得到的硅铝材料具有高的裂化活性和水热稳定性,在催化裂化反应中表现出良好的大分子裂化性能。
发明内容
发明人在大量试验的基础上发现,基于微孔分子筛所具有的完美的晶体结构、较强的酸性、优异的结构稳定性和催化活性等特点,以及介孔氧化铝材料所具有的孔道特性和酸性特征,在微孔分子筛表面生长氧化铝介孔层,可实现两种结构的有效连接,搭建孔道的梯度分布,有效强化两种结构各自的优点。基于此,形成本发明。
本发明的目的之一是提供一种含Y型分子筛的复合材料,分子筛表面生长一层介孔氧化铝层,两种结构有效连接形成复合结构,孔道分布呈梯度分布,复合材料的粒度分布窄,粒度更加均匀,介孔层孔道通畅,酸性中心的可接近性强;本发明的目的之二是提供所述的含Y型分子筛的复合材料的制备方法。
为了实现本发明的目的之一,本发明提供了一种含Y型分子筛的复合材料,其特征在于该复合材料还含有拟薄水铝石结构的介孔氧化铝层,且介孔氧化铝层生长于Y型分子筛的晶粒表面并均匀地将分子筛晶粒包覆其中,介孔氧化铝层的无序结构从Y型分子筛的FAU晶相结构的有序衍射条纹边缘延伸生长,两种结构搭建在一起;以氧化物重量计,该复合材料的化学组成为(4~12)Na2O·(20~60)SiO2·(30~75)Al2O3;该复合材料的粒度参数D(V,0.5)=1.8~2.5、D(V,0.9)=4.0~8.0。
本发明的含Y型分子筛的复合材料,物相采用X射线衍射法表征,在其XRD谱图中分别在6.2°、10.1°、11.9°、15.7°、18.7°、20.4°、23.7°、27.1°、28°、31.4°、38.5°、49°和65°处有特征衍射峰出现,其中,6.2°、10.1°、11.9°、15.7°、18.7°、20.4°、23.7°、27.1°和31.4°处的特征衍射峰对应于Y型分子筛的FAU晶相结构,而28°、38.5°、49°和65°处的特征衍射峰对应于介孔层的拟薄水铝石结构。
本发明的含Y型分子筛的复合材料,通过透射电镜(TEM)照片,可见介孔氧化铝层的拟薄水铝石无序结构从Y型分子筛的FAU晶相结构的有序衍射条纹边缘延伸生长,两种结构搭建在一起。通过扫描电镜(SEM)可见一种褶皱状结构包覆于分子筛晶粒表面,均匀地将分子筛晶粒包覆其中。
本发明的含Y型分子筛的复合材料,通过激光粒度仪测量,其粒度参数具有D(V,0.5)=1.8~2.5、D(V,0.9)=4.0~8.0的特征。使用激光粒度仪的测量方法,是将微量本发明的复合材料与去离子水混合,取少量浆液加入激光粒度仪中,待分析平稳后记录数条分析数据并进行平均处理,得到相应的粒度分布数据。
本发明的含Y型分子筛的复合材料,以氧化物重量计,该复合材料的化学组成为(4~12)Na2O·(20~60)SiO2·(30~75)Al2O3,其总比表面积为380~700m2/g,总孔体积为0.32~0.48cm3/g。本发明的含Y型分子筛的复合材料,其具有梯度孔分布特征,其BJH孔径分布曲线可见分别在3~4nm和6~9nm出现两个可几孔分布。
为了实现本发明的目的之二,本发明还提供了所说的含Y型分子筛的复合材料的制备方法,其特征在于包括以下步骤:(1)配置可合成NaY分子筛的原料,混合均匀后于95~105℃温度下进行静态晶化;(2)将上述静态晶化后的浆液经过滤、洗涤,得到NaY分子筛滤饼;(3)将步骤(2)得到的NaY分子筛滤饼与去离子水混合打浆均质后,在室温至85℃、剧烈搅拌下以并流方式同时将铝源和碱溶液加入其中,控制混合过程中浆液体系的pH值为9~11;(4)再于室温至90℃温度下恒温处理1~10小时并回收产物。
所说的制备过程中,步骤(1)中所说的可合成NaY分子筛的原料,通常是指导向剂、水玻璃、偏铝酸钠、硫酸铝及去离子水,它们的加入比例可以为常规NaY分子筛的投料比例,例如可以是Na2O:Al2O3:SiO2:H2O=1.5~8:1:5~18:100~500,也可以是用于制备特殊性能的NaY分子筛的投料比例,例如用于制备大晶粒或小晶粒NaY分子筛的投料比例等,对投料比例以及各原材料的浓度没有特殊限定,只要可以获得具有FAU晶相结构的NaY分子筛即可。其中的导向剂可以按照现有技术(US3639099和US3671191)制备,导向剂通常的做法是将硅源、铝源、碱液以及去离子水,按照(15~18)Na2O:Al2O3:(15~17)SiO2:(280~380)H2O的摩尔比混合,搅拌均匀后,在室温至70℃下静置老化0.5~48h。在所述的NaY分子筛的投料比例中,导向剂中Al2O3的含量占总投料Al2O3总量的3~15%、优选5~10%。步骤(1)中所说的静态晶化,时间为8~50小时,优选10~40小时,更优选15~35小时。
所说的制备方法中,步骤(3)中所述铝源选自硝酸铝、硫酸铝和氯化铝中的一种或多种;所述碱溶液选自氨水、氢氧化钾、氢氧化钠和偏铝酸钠中的一种或多种,当以偏铝酸钠为碱溶液时,其氧化铝含量计入总的氧化铝含量中。偏铝酸钠可以为不同苛性比、不同浓度的偏铝酸钠。所述的苛性比优选1.5~11.5、更优选1.65~2.55,所述的浓度优选40~200gAl2O3/L、更优选41~190gAl2O3/L。
所说的制备方法中,步骤(3)中所述的同时将铝源和碱溶液加入的并流方式的概念,是指将n+1(n≥1)种物料(如本发明中的铝源和碱溶液两种物料)同时向容器中加入进行混合,使得每种物料保持匀速加入、n+1种物料均在相同的时间内加入完成的操作方式。例如,具体的操作中可使用蠕动泵,控制分别用于输送铝源和碱溶液的蠕动泵的单位时间内的流量参数,并匀速进行以保证铝源和碱溶液这两种物料在相同的时间内加完。步骤(3)中混合过程的温度为室温至85℃,优选30~70℃。
所说的制备过程中,步骤(4)中的恒温处理温度为室温至90℃,优选40~80℃,处理时间为1~10小时,优选2~8小时;所说的回收产物的过程,通常包括将老化产物过滤,洗涤和干燥的过程,它们为本领域技术人员所熟知,此处不再赘述。
附图说明
图1为实施例1样品的扫描电镜SEM照片。
图2为实施例1样品的透射电镜TEM照片。
图3为实施例1样品的X射线衍射谱图。
图4为实施例1样品的BJH孔径分布曲线。
具体实施方式
下面的实施例将对本发明作进一步的说明,但并不因此而限制本发明。
扫描电镜SEM采用日本日立Hitachi S4800型场发射扫描电镜,加速电压5kV,能谱用Horiba 350软件收集和处理。
透射电镜TEM测试采用FEI公司Tecnai F20G2S-TWIN型透射电子显微镜,操作电压200kV。
样品的物相采用X射线衍射法测定。
样品的比表面、孔体积及孔径分布等数据采用低温氮吸附-脱附法测定。
粒度分布测试使用激光粒度仪测得的,是将微量多孔材料与去离子水混合,取少量浆液加入激光粒度仪中,待分析平稳后记录数条分析数据并进行平均处理,得到相应的粒度分布数据。
在各实施例中,样品的Na2O、Al2O3、SiO2含量用X射线荧光法测定(参见《石油化工分析方法(RIPP实验方法)》,杨翠定等编,科学出版社,1990年出版)。
实施例1
本实施例说明本发明的含Y型分子筛的复合材料及其制备过程。
将水玻璃、硫酸铝、偏铝酸钠、导向剂及去离子水按照8.5SiO2:Al2O3:2.65Na2O:210H2O的摩尔配比进行混合,其中导向剂的质量配比为5%,剧烈搅拌形成NaY分子筛凝胶,将该凝胶置于晶化釜中于100℃下静态晶化34小时,晶化结束后冷却并对晶化浆液进行过滤和洗涤,得到NaY分子筛滤饼;将所得NaY分子筛滤饼与适量去离子水混合打浆,均质后在室温及剧烈搅拌下以并流方式同时将AlCl3溶液(浓度60gAl2O3/L)和氨水(质量分数8%)加入其中,控制混合过程中浆液体系的pH值为10.8,混合一定时间后,再于50℃恒温处理5小时,过滤,洗涤,干燥,得到本发明提供的含Y型分子筛的复合材料,记为AFCY-1。
AFCY-1的扫描电镜SEM照片示于图1,可见褶皱状结构包覆于分子筛晶粒表面。透射电镜(TEM)照片示于图2,可见一种规整有序的衍射条纹和一种没有固定晶面走向的无序结构,其中有序衍射条纹代表FAU晶体结构,无序结构为拟薄水铝石结构,无序结构从有序衍射条纹的边缘衍生生长,两种结构搭建在一起。
AFCY-1的XRD谱图示于图3,在6.2°、10.1°、11.9°、15.7°、18.7°、20.4°、23.7°、27.1°、28°、31.4°、38.5°、49°和65°处出现衍射峰,其中标记为★的特征衍射峰对应于Y型分子筛的FAU晶相结构,标记为▲的特征衍射峰对应于介孔层的拟薄水铝石结构。
AFCY-1的化学组成,以氧化物重量计,为6.5Na2O·22.0SiO2·71.1Al2O3;其总比表面积为418m2/g,总孔体积为0.441cm3/g;其BJH孔径分布曲线示于图4,可见分别在约3.8nm和7.4nm左右出现双峰分布;激光粒度仪测得的其D(V,0.5)=2.50,D(V,0.9)=7.80。
实施例2
本实施例说明本发明的含Y型分子筛的复合材料及其制备过程。
按照实施例1中的摩尔配比制备NaY分子筛凝胶,在100℃下静态晶化18小时,晶化结束后冷却并对晶化浆液进行过滤和洗涤,得到NaY分子筛滤饼;将所得NaY分子筛滤饼与适量去离子水混合打浆,均质后升温至50℃并在剧烈搅拌下以并流方式同时将AlCl3溶液(浓度60gAl2O3/L)和NaOH溶液(浓度1M)加入其中,控制混合过程中浆液体系的pH值为9.4,混合一定时间后,再于70℃恒温处理6小时,过滤,洗涤,干燥,得到本发明提供的含Y型分子筛的复合材料,记为AFCY-2。
AFCY-2的扫描电镜SEM照片具有图1所示特征,可见褶皱状结构包覆于分子筛晶粒表面。透射电镜照片具有图2所示特征,可见规整有序的衍射条纹和没有固定晶面走向的无序结构,无序结构从有序衍射条纹的边缘衍生生长,两种结构搭建在一起。
AFCY-2的XRD谱图具有图3所示特征,同时存在FAU晶相结构和拟薄水铝石结构;其化学组成,以氧化物重量计,为11.7Na2O·57.6SiO2·30.1Al2O3;其总比表面积为651m2/g,总孔体积为0.350cm3/g;其BJH孔径分布曲线具有图4所示特征,可见分别在约3.8nm和6.6nm左右双峰分布;激光粒度仪测得的其D(V,0.5)=1.97,D(V,0.9)=4.11。
实施例3
本实施例说明本发明的含Y型分子筛的复合材料及其制备过程。
按照实施例1中的摩尔配比制备NaY分子筛凝胶,在100℃下静态晶化45小时,晶化结束后冷却并对晶化浆液进行过滤和洗涤,得到NaY分子筛滤饼;将所得NaY分子筛滤饼与适量去离子水混合打浆,均质后升温至35℃并在剧烈搅拌下以并流方式同时将AlCl3溶液(浓度60gAl2O3/L)和NaAlO2溶液(浓度180gAl2O3/L)加入其中,控制混合过程中浆液体系的pH值为10.2,混合一定时间后,再于65℃恒温处理4小时,过滤,洗涤,干燥,得到本发明提供的含Y型分子筛的复合材料,记为AFCY-3。
AFCY-3的扫描电镜SEM照片具有图1所示特征,可见褶皱状结构包覆于分子筛晶粒表面。透射电镜照片具有图2所示特征,可见规整有序的衍射条纹和没有固定晶面走向的无序结构,无序结构从有序衍射条纹的边缘衍生生长,两种结构搭建在一起。
AFCY-3的XRD谱图具有图3所示特征,同时存在FAU晶相结构和拟薄水铝石结构;其化学组成,以氧化物重量计,为10.0Na2O·48.5SiO2·41.1Al2O3;其总比表面积为611m2/g,总孔体积为0.397cm3/g;其BJH孔径分布曲线具有图4所示特征,可见分别在约3.8nm和8.1nm左右双峰分布;激光粒度仪测得的其D(V,0.5)=2.21,D(V,0.9)=5.48。
实施例4
本实施例说明本发明的含Y型分子筛的复合材料及其制备过程。
按照实施例1中的摩尔配比制备NaY分子筛凝胶,在100℃下静态晶化26小时,晶化结束后冷却并对晶化浆液进行过滤和洗涤,得到NaY分子筛滤饼;将所得NaY分子筛滤饼与适量去离子水混合打浆,均质后升温至45℃并在剧烈搅拌下以并流方式同时将Al2(SO4)3溶液(浓度90gAl2O3/L)和氨水(质量分数8%)加入其中,控制混合过程中浆液体系的pH值为9.8,混合一定时间后,再于55℃恒温处理8小时,过滤,洗涤,干燥,得到本发明提供的含Y型分子筛的复合材料,记为AFCY-4。
AFCY-4的扫描电镜SEM照片具有图1所示特征,可见褶皱状结构包覆于分子筛晶粒表面。透射电镜照片具有图2所示特征,可见规整有序的衍射条纹和没有固定晶面走向的无序结构,无序结构从有序衍射条纹的边缘衍生生长,两种结构搭建在一起。
AFCY-4的XRD谱图具有图3所示特征,同时存在FAU晶相结构和拟薄水铝石结构;其化学组成,以氧化物重量计,为5.8Na2O·31.4SiO2·62.3Al2O3;其总比表面积为498m2/g,总孔体积为0.432cm3/g;其BJH孔径分布曲线具有图4所示特征,可见分别在约3.8nm和7.4nm左右双峰分布;激光粒度仪测得的其D(V,0.5)=2.34、D(V,0.9)=6.72。
实施例5
本实施例说明本发明的含Y型分子筛的复合材料及其制备过程。
按照7.5SiO2:Al2O3:2.15Na2O:190H2O的摩尔配比制备NaY分子筛凝胶,在100℃下静态晶化40小时,晶化结束后冷却并对晶化浆液进行过滤和洗涤,得到NaY分子筛滤饼;将所得NaY分子筛滤饼与适量去离子水混合打浆,均质后升温至55℃并在剧烈搅拌下以并流方式同时将Al2(SO4)3溶液(浓度90gAl2O3/L)和NaAlO2溶液(浓度102gAl2O3/L)加入其中,控制混合过程中浆液体系的pH值为9.0,混合一定时间后,再于60℃恒温处理2小时,过滤,洗涤,干燥,得到本发明提供的含Y型分子筛的复合材料,记为AFCY-5。
AFCY-5的扫描电镜SEM照片具有图1所示特征,可见褶皱状结构包覆于分子筛晶粒表面。透射电镜照片具有图2所示特征,可见规整有序的衍射条纹和没有固定晶面走向的无序结构,无序结构从有序衍射条纹的边缘衍生生长,两种结构搭建在一起。
AFCY-5的XRD谱图具有图3所示特征,同时存在FAU晶相结构和拟薄水铝石结构;其化学组成,以氧化物重量计,为10.8Na2O·53.8SiO2·35.0Al2O3;其总比表面积为647m2/g,总孔体积为0.377cm3/g;其BJH孔径分布曲线具有图4所示特征,可见分别在约3.8nm和9.0nm左右双峰分布;激光粒度仪测得的其D(V,0.5)=2.13,D(V,0.9)=5.02。
实施例6
本实施例说明本发明的含Y型分子筛的复合材料及其制备过程。
按照实施例5的摩尔配比制备NaY分子筛凝胶,在100℃下静态晶化32小时,晶化结束后冷却并对晶化浆液进行过滤和洗涤,得到NaY分子筛滤饼;将所得NaY分子筛滤饼与适量去离子水混合打浆,均质后升温至40℃并在剧烈搅拌下以并流方式同时将Al2(SO4)3溶液(浓度90gAl2O3/L)和NaOH溶液(浓度1M)加入其中,控制混合过程中浆液体系的pH值为10.5,混合一定时间后,再于75℃恒温处理3小时,过滤,洗涤,干燥,得到本发明提供的含Y型分子筛的复合材料,记为AFCY-6。
AFCY-6的扫描电镜SEM照片具有图1所示特征,可见褶皱状结构包覆于分子筛晶粒表面。透射电镜照片具有图2所示特征,可见规整有序的衍射条纹和没有固定晶面走向的无序结构,无序结构从有序衍射条纹的边缘衍生生长,两种结构搭建在一起。
AFCY-6的XRD谱图具有图3所示特征,同时存在FAU晶相结构和拟薄水铝石结构;其化学组成,以氧化物重量计,为10.5Na2O·58.4SiO2·30.4Al2O3;其总比表面积为670m2/g,总孔体积为0.334cm3/g;其BJH孔径分布曲线具有图4所示特征,可见分别在约3.8nm和6.6nm左右双峰分布;激光粒度仪测得的其D(V,0.5)=1.92,D(V,0.9)=4.01。
实施例7
本实施例说明本发明的含Y型分子筛的复合材料及其制备过程。
按照实施例1的摩尔配比制备NaY分子筛凝胶,在100℃下静态晶化20小时,晶化结束后冷却并对晶化浆液进行过滤和洗涤,得到NaY分子筛滤饼;将所得NaY分子筛滤饼与适量去离子水混合打浆,均质后在30℃及剧烈搅拌下以并流方式同时将Al(NO3)3溶液(浓度60gAl2O3/L)和NaAlO2溶液(浓度102gAl2O3/L)加入其中,控制混合过程中浆液体系的pH值为10.0,混合一定时间后,再于70℃恒温处理1小时,过滤,洗涤,干燥,得到本发明提供的含Y型分子筛的复合材料,记为AFCY-7。
AFCY-7的扫描电镜SEM照片具有图1所示特征,可见褶皱状结构包覆于分子筛晶粒表面。透射电镜照片具有图2所示特征,可见规整有序的衍射条纹和没有固定晶面走向的无序结构,无序结构从有序衍射条纹的边缘衍生生长,两种结构搭建在一起。
AFCY-7的XRD谱图具有图3所示特征,同时存在FAU晶相结构和拟薄水铝石结构;其化学组成,以氧化物重量计,为8.6Na2O·39.4SiO2·51.5Al2O3;其总比表面积为558m2/g,总孔体积为0.426cm3/g;其BJH孔径分布曲线具有图4所示特征,可见分别在约3.8nm和7.4nm左右双峰分布;激光粒度仪测得的其D(V,0.5)=2.29,D(V,0.9)=6.17。
实施例8
本实施例说明本发明的含Y型分子筛的复合材料及其制备过程。
按照实施例1的摩尔配比制备NaY分子筛凝胶,在100℃下静态晶化30小时,晶化结束后冷却并对晶化浆液进行过滤和洗涤,得到NaY分子筛滤饼;将所得NaY分子筛滤饼与适量去离子水混合打浆,均质后在35℃及剧烈搅拌下以并流方式同时将Al(NO3)3溶液(浓度60gAl2O3/L)和氨水(质量分数8%)加入其中,控制混合过程中浆液体系的pH值为9.6,混合一定时间后,再于60℃恒温处理7小时,过滤,洗涤,干燥,得到本发明提供的含Y型分子筛的复合材料,记为AFCY-8。
AFCY-8的扫描电镜SEM照片具有图1所示特征,可见褶皱状结构包覆于分子筛晶粒表面。透射电镜照片具有图2所示特征,可见规整有序的衍射条纹和没有固定晶面走向的无序结构,无序结构从有序衍射条纹的边缘衍生生长,两种结构搭建在一起。
AFCY-8的XRD谱图具有图3所示特征,同时存在FAU晶相结构和拟薄水铝石结构;其化学组成,以氧化物重量计,为6.0Na2O·25.6SiO2·67.8Al2O3;其总比表面积为451m2/g,总孔体积为0.428cm3/g;其BJH孔径分布曲线具有图4所示特征,可见分别在约3.8nm和8.1nm左右双峰分布;激光粒度仪测得的其D(V,0.5)=2.42,D(V,0.9)=7.25。

Claims (9)

1.一种含Y型分子筛的复合材料,其特征在于该复合材料还含有拟薄水铝石结构的介孔氧化铝层,且介孔氧化铝层生长于Y型分子筛的晶粒表面并将分子筛晶粒包覆其中,介孔氧化铝层的无序结构从Y型分子筛的FAU晶相结构的有序衍射条纹边缘延伸生长,两种结构搭建在一起;以氧化物重量计,该复合材料的化学组成为(4~12)Na2O·(20~60)SiO2·(30~75)Al2O3;该复合材料的粒度参数D(V,0.5)=1.8~2.5、D(V,0.9)=4.0~8.0;该复合材料具有梯度孔分布特征,且分别在3~4nm和6~9nm出现可几孔分布。
2.按照权利要求1的复合材料,其特征在于其总比表面积为380~700m2/g。
3.按照权利要求1的复合材料,其特征在于其总孔体积为0.32~0.48cm3/g。
4.权利要求1~3之一的含Y型分子筛的复合材料的制备方法,其特征在于包括以下步骤:(1)配置可合成NaY分子筛的原料,混合均匀后于95~105℃温度下静态晶化;(2)将上述静态晶化后的浆液过滤、洗涤,得到NaY分子筛滤饼;(3)将步骤(2)得到的NaY分子筛滤饼与去离子水混合打浆均质后,在室温至85℃、剧烈搅拌下以并流方式同时将铝源和碱溶液加入其中,控制混合过程中浆液体系的pH值为9~11;(4)再于室温至90℃温度下恒温处理1~10小时并回收产物。
5.按照权利要求4的制备方法,其中,步骤(1)中所说的静态晶化,时间为8~50小时。
6.按照权利要求4的制备方法,其中,步骤(3)中的铝源选自硝酸铝、硫酸铝和氯化铝中的一种或多种;所说的碱溶液选自氨水、氢氧化钾、氢氧化钠和偏铝酸钠中的一种或多种。
7.按照权利要求4的制备方法,其中,步骤(3)中当以偏铝酸钠为碱溶液时,其氧化铝含量计入总的氧化铝含量中。
8.按照权利要求4的制备方法,其中,步骤(3)中所述的铝源和碱溶液加入的混合过程的温度为30~70℃。
9.按照权利要求4的制备方法,其中,步骤(4)中的恒温处理温度为40~80℃,处理时间为2~8小时。
CN201810088997.9A 2018-01-30 2018-01-30 一种含y型分子筛的复合材料及其制备方法 Active CN110090660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810088997.9A CN110090660B (zh) 2018-01-30 2018-01-30 一种含y型分子筛的复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810088997.9A CN110090660B (zh) 2018-01-30 2018-01-30 一种含y型分子筛的复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110090660A CN110090660A (zh) 2019-08-06
CN110090660B true CN110090660B (zh) 2022-01-04

Family

ID=67441938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810088997.9A Active CN110090660B (zh) 2018-01-30 2018-01-30 一种含y型分子筛的复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110090660B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2079737A (en) * 1980-07-10 1982-01-27 Grace W R & Co Zeolite-containing catalyst preparation
JPS58112051A (ja) * 1981-12-25 1983-07-04 Shokubai Kasei Kogyo Kk 炭化水素の流動接触分解用触媒組成物
CN1625439A (zh) * 2001-04-13 2005-06-08 格雷斯公司 三羟铝石氧化铝覆盖的沸石和包含该沸石的裂化催化剂
CN1781600A (zh) * 2004-11-30 2006-06-07 中国石油化工股份有限公司 一种含有y型分子筛复合材料的制备方法
WO2008001709A1 (fr) * 2006-06-28 2008-01-03 Idemitsu Kosan Co., Ltd. Catalyseur pour craquage catalytique fluide ayant des fonctions de désulfuration, processus de production de celui-ci, et processus de production d'essence à faible teneur en soufre craqué catalytiquement au moyen de ce catalyseur
CN102909048A (zh) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法和应用
CN104646047A (zh) * 2013-11-22 2015-05-27 中国石油天然气股份有限公司 一种多级孔复合分子筛及其制备和应用
CN105983429A (zh) * 2015-01-28 2016-10-05 中国石油天然气股份有限公司 一种重油催化裂化催化剂及其制备方法
CN106513035A (zh) * 2016-11-16 2017-03-22 中国海洋石油总公司 一种介孔‑微孔复合加氢异构脱蜡催化剂的制备方法
CN106809856A (zh) * 2015-12-01 2017-06-09 中国石油天然气股份有限公司 一种重油催化裂化催化剂及其制备方法
CN106809853A (zh) * 2015-11-30 2017-06-09 中国石油化工股份有限公司 一种活性多孔催化材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305182B1 (ko) * 2010-11-30 2013-09-12 현대자동차주식회사 귀금속을 활용한 고성능 촉매

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2079737A (en) * 1980-07-10 1982-01-27 Grace W R & Co Zeolite-containing catalyst preparation
US4332699A (en) * 1980-07-10 1982-06-01 W. R. Grace & Co. Catalyst preparation
JPS58112051A (ja) * 1981-12-25 1983-07-04 Shokubai Kasei Kogyo Kk 炭化水素の流動接触分解用触媒組成物
CN1625439A (zh) * 2001-04-13 2005-06-08 格雷斯公司 三羟铝石氧化铝覆盖的沸石和包含该沸石的裂化催化剂
CN1781600A (zh) * 2004-11-30 2006-06-07 中国石油化工股份有限公司 一种含有y型分子筛复合材料的制备方法
WO2008001709A1 (fr) * 2006-06-28 2008-01-03 Idemitsu Kosan Co., Ltd. Catalyseur pour craquage catalytique fluide ayant des fonctions de désulfuration, processus de production de celui-ci, et processus de production d'essence à faible teneur en soufre craqué catalytiquement au moyen de ce catalyseur
CN102909048A (zh) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法和应用
CN104646047A (zh) * 2013-11-22 2015-05-27 中国石油天然气股份有限公司 一种多级孔复合分子筛及其制备和应用
CN105983429A (zh) * 2015-01-28 2016-10-05 中国石油天然气股份有限公司 一种重油催化裂化催化剂及其制备方法
CN106809853A (zh) * 2015-11-30 2017-06-09 中国石油化工股份有限公司 一种活性多孔催化材料及其制备方法
CN106809856A (zh) * 2015-12-01 2017-06-09 中国石油天然气股份有限公司 一种重油催化裂化催化剂及其制备方法
CN106513035A (zh) * 2016-11-16 2017-03-22 中国海洋石油总公司 一种介孔‑微孔复合加氢异构脱蜡催化剂的制备方法

Also Published As

Publication number Publication date
CN110090660A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
CN108927207B (zh) 一种表面富铝的多孔催化材料及其制备方法
CN109967117B (zh) 一种改性y型分子筛的制备方法
CN1781600A (zh) 一种含有y型分子筛复合材料的制备方法
CN110090660B (zh) 一种含y型分子筛的复合材料及其制备方法
CN108927123B (zh) 一种多孔催化材料及其制备方法
CN108499554B (zh) 一种硅铝材料、制备方法及其应用
CN110092392B (zh) 一种复合材料的制备方法
CN109569697B (zh) 一种硅铝催化材料及其制备方法
CN110871102B (zh) 一种含y型分子筛的微介孔复合材料的制备方法
CN109833899B (zh) 一种硅铝复合材料及其制备方法
CN109833900B (zh) 一种微介孔复合材料的制备方法
WO2022103468A1 (en) Method of synthesizing aluminum-rich molecular sieve of *mre framework type
CN111744528B (zh) 一种多金属修饰的复合材料的制备方法
CN110871103B (zh) 一种含γ-氧化铝结构的复合材料及其制备方法
CN111744531B (zh) 一种多级孔材料的制备方法
CN111620350B (zh) 一种微介孔复合材料及其制备方法
CN109569713B (zh) 一种催化材料及其制备方法
CN110871104B (zh) 一种多孔催化材料及其制备方法
CN111085244A (zh) 一种多级孔复合材料的制备方法
CN108940247B (zh) 一种高活性催化材料及其制备方法
CN111085246B (zh) 一种复合催化材料及其制备方法
CN110871108B (zh) 一种含y型分子筛的多孔催化材料的制备方法
CN109970076B (zh) 一种表面包覆硅铝介孔层的y型分子筛及其制备方法
CN111744533A (zh) 一种稀土型多级孔材料的制备方法
CN111744530A (zh) 一种含磷和稀土的复合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant