CN110054497A - 一种致密的纳米增韧碳化硅复相陶瓷的制备方法 - Google Patents

一种致密的纳米增韧碳化硅复相陶瓷的制备方法 Download PDF

Info

Publication number
CN110054497A
CN110054497A CN201910441535.5A CN201910441535A CN110054497A CN 110054497 A CN110054497 A CN 110054497A CN 201910441535 A CN201910441535 A CN 201910441535A CN 110054497 A CN110054497 A CN 110054497A
Authority
CN
China
Prior art keywords
nanometer
silicon carbide
complex phase
preparation
phase ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910441535.5A
Other languages
English (en)
Inventor
王志江
李冠姝
姜兆华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910441535.5A priority Critical patent/CN110054497A/zh
Publication of CN110054497A publication Critical patent/CN110054497A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种致密的纳米增韧碳化硅复相陶瓷的制备方法,所述方法包括如下步骤:步骤一、以α‑SiC粒子为原料,纳米β‑SiC粒子为增韧相,添加烧结助剂和粘结剂,配好原料后投入到氧化铝质球磨罐中,加入蒸馏水,投入研磨球进行研磨,获得组分均匀分散的浆料;步骤二、采用喷雾造粒工艺进行造粒;步骤三、将造粒粉干压成型,得到素坯;步骤四、将素坯放置于真空烧结炉中进行常压烧结,得到致密的纳米增韧碳化硅复相陶瓷。本发明解决了陶瓷的脆性问题,提高了强度和韧性,且操作简单,安全可靠,成本低廉,具有良好的推广应用前景。

Description

一种致密的纳米增韧碳化硅复相陶瓷的制备方法
技术领域
本发明属于陶瓷材料制备技术领域,涉及一种制备碳化硅复相陶瓷的方法。
背景技术
SiC陶瓷具有很多优良的性能,例如高硬度、高强度、低热膨胀系数等特点,已经广泛的应用于石油化学工业、汽车制造、半导体材料等诸多领域。其中,SiC陶瓷除了具有密度小、热导率高的特点外,更具有硬度高、耐高温及化学性质稳定的特点。因此,SiC陶瓷的应用也越来越广泛,由SiC陶瓷制成的轴承、发动机部件和耐火材料等在汽车、航空航天、空间技术等多个行业得到了广泛的应用。
SiC陶瓷具有高硬度、高强度、低热膨胀系数等优点,广泛应用于严苛的环境下服役,展现出较高的稳定性和良好的机械性能。但由于陶瓷的脆性,即在外载荷的作用下,陶瓷材料会发生突然的断裂,表现为冲击阻力低、损伤容限低等。为解决SiC陶瓷这一缺陷,可通过将陶瓷材料制备成陶瓷基复合材料来提高性能。纳米技术的出现,在改善陶瓷材料性能的方面显示出极大的优势,加入纳米相可提高材料的韧性。
现阶段,SiC陶瓷制备的原料主要采用α-SiC粉体,与常见的α-SiC相比,β-SiC属于低温晶型,超过1800℃时可转化为α-SiC,在转化过程中体积发生变化,其组织更加致密,从而提高了SiC陶瓷的强度和韧性。
发明内容
为了解决现有技术中存在的制备SiC陶瓷强度和韧性较低的问题,本发明提供了一种成本低廉、操作简单的致密的纳米增韧碳化硅复相陶瓷的制备方法。该方法以α-SiC为主,加入纳米β-SiC作为增韧相,β-SiC粒子在1800℃以上的高温下会发生相变产生长轴状晶体,会产生裂纹偏转及桥连的作用,起到增韧的作用。本发明解决了陶瓷的脆性问题,提高了强度和韧性,且操作简单,安全可靠,成本低廉,具有良好的推广应用前景。
本发明的目的是通过以下技术方案实现的:
一种致密的纳米增韧碳化硅复相陶瓷的制备方法,以α-SiC粒子为原料,纳米β-SiC粒子为增韧相,加入一定的烧结助剂和粘结剂,进行高温烧结,最终形成纳米增韧碳化硅复相陶瓷。具体包括如下步骤:
步骤一、纳米β-SiC粒子的制备:将碳粉、硅粉和二氧化硅粉混合均匀,在高温下烧结,得到纳米β-SiC粒子,其中:碳粉、硅粉和二氧化硅粉的摩尔比为1:3~7:1;混合时间为30~90min;烧结温度为1200~1900℃,烧结时间为2~6h;
步骤二、混料:采用湿混工艺,以α-SiC粒子为原料,纳米β-SiC粒子为增韧相,添加烧结助剂和粘结剂,配好原料后投入到氧化铝质球磨罐中,加入蒸馏水,投入研磨球进行研磨,获得组分均匀分散的浆料,其中:α-SiC粒子与增韧相纳米β-SiC粒子的质量比为1:0.05~1;原料、研磨球与蒸馏水的质量比为3:6~9:1;烧结助剂为B4C,添加量为原料总质量的1~5%;粘结剂为酚醛树脂,添加量为原料总质量的10~15%;研磨的转速为300~390r/min;时间为8~12h;
步骤三、造粒:采用喷雾造粒工艺,首先用蠕动泵通入清水,待整个体系得到润湿后,通入混合均匀的浆料,在喷雾干燥机喷头的一定转速下进行造粒,收集造粒粉,其中:喷雾干燥机的喷头转速为20000~24000r/min;
步骤四、成型:将造粒粉干压成型,得到素坯,其中:成型压力为100~600MPa;
步骤五、烧结:将素坯放置于真空烧结炉中进行常压烧结,得到致密的纳米增韧碳化硅复相陶瓷,其中:烧结气氛为惰性气体,烧结温度为1900~2100℃,时间为0.5~2h。
上述方法在β-SiC粒子生成的过程中体系中会发生如下化学反应:
一、固-气反应:
C(s)+ Si(s) = SiC(s) (1);
SiO(g) + 2C(s) = SiC(s) + CO(g) (2);
二、气相反应:
SiO2(s)+ Si(s) = 2SiO(g) (3);
SiO2(s)+ C(s) = SiO(g) + CO(g) (4);
C(s)+ CO2(g) = 2CO(g) (5);
SiO(g)+3CO(g) = SiC(s) + 2CO2(g) (6)。
相比于现有技术,本发明具有如下优点:
1、本发明提供了一种简便、易于放大的制备致密的纳米碳化硅复相陶瓷的方法,该方法改善了陶瓷的脆性,起到了强化和增韧的效果,制备的陶瓷耐高温、力学性能优异。
2、本发明通过改变纳米β-SiC粒子的用量来调节碳化硅复相陶瓷的微观形貌和力学性能。
3、本发明使用纳米β-SiC粒子作为增韧相,纳米粒子周围的局部拉伸应力诱发穿晶断裂,并由于硬粒子对裂纹尖端的反射作用而产生韧化。
4、本发明使用的粘结剂是酚醛树脂,在高温下,酚醛树脂会发生碳化并产生65%的残炭,为烧结提供了少量碳源,有利于烧结致密化的进行。
5、本发明在高温烧结时,通过改变烧结温度和保温时间,可以调节碳化硅复相陶瓷的致密度和机械性能。
附图说明
图1为实施例1制备的纳米增韧碳化硅复相陶瓷的样品图;
图2为实施例1制备的纳米增韧碳化硅复相陶瓷的SEM照片;
图3为实施例1制备的纳米增韧碳化硅复相陶瓷的XRD图;
图4为实施例2制备的纳米增韧碳化硅复相陶瓷的SEM照片;
图5为实施例2制备的纳米增韧碳化硅复相陶瓷的XRD照片;
图6为实施例3制备的纳米增韧碳化硅复相陶瓷的SEM照片;
图7为实施例3制备的纳米增韧碳化硅复相陶瓷的XRD图;
图8为实施例1~5制备的纳米增韧碳化硅复相陶瓷的压缩强度。
具体实施方式
下面结合实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例1:
本实施例提供了一种致密的纳米增韧碳化硅复相陶瓷的制备方法,所述方法是按以下步骤完成的:
一、纳米β-SiC粒子的制备:将碳粉、硅粉和二氧化硅粉以1:4:1的摩尔比在高速混合机中混合60min,在1600℃下烧结;
二、混料:采用湿混工艺,以α-SiC粒子为原料,纳米β-SiC粒子为增韧相,添加B4C和酚醛树脂,其中:α-SiC粒子与增韧相纳米β-SiC粒子的质量比为1:0.05,B4C的添加量为原料总质量的3%;酚醛树脂的添加量为原料总质量的10%,按设计的配方配好原料后,投入到氧化铝质球磨罐中,加入蒸馏水,投入研磨球,其中:原料、研磨球、蒸馏水的质量比为3:8:1,以380r/min的转速研磨9h,获得组分均匀分散的实验浆料;
三、造粒:采用喷雾造粒工艺,首先用蠕动泵通入清水,待整个体系得到润湿后,通入混合均匀的浆料,在喷雾干燥机喷头的19000r/min转速下,造粒完成,然后在喷雾干燥机的下方收集造粒粉;
四、成型:将造粒粉在500MPa的压力下干压成型,得到素坯;
五、烧结:将压制的素坯置于石墨坩埚中,以惰性气体作为保护气,在高温烧结炉中于2000℃下烧结1.5h,冷却至室温,得到致密的纳米增韧碳化硅复相陶瓷。
图1为本实施例制备的复相SiC陶瓷的样品图,由图中可以看到:表面无裂纹,无明显宏观缺陷,并出现了一定程度的体积收缩。
图2为本实施例制备的复相SiC陶瓷的SEM图,由图中可以看到:添加了β-SiC的样品断面,晶界模糊,呈凹凸新装,它的断裂模式为沿晶/穿晶混合断裂模式,在裂纹产生的过程中,晶界对其扩展产生了阻碍,从而提高了材料的强度。
图3为本实施例制备的复相SiC陶瓷的XRD图,由图中可以看到:烧结后的材料的主要晶相为6H-SiC相,添加的β-SiC已经全部转化为α-SiC。
实施例2:
本实施例与实施例1不同点是:α-SiC粒子与增韧相纳米β-SiC粒子的比例为1:0.1。
图4为本实施例制备的复相SiC陶瓷的SEM图,由图中可以看到:β-SiC含量提高以后,制得的材料样品致密度提高。
图5为本实施例制备的复相SiC陶瓷的XRD图,由图中可以看到:烧结后的材料的主要晶相为6H-SiC相,添加的β-SiC已经全部转化为α-SiC。
实施例3:
本实施例与实施例1不同点是:α-SiC粒子与增韧相纳米β-SiC粒子的比例为1:0.2。
图6为本实施例制备的复相SiC陶瓷的SEM图,由图中可以看到:β-SiC含量继续提高,制得的材料样品致密度提高。
图7为本实施例制备的复相SiC陶瓷的XRD图,由图中可以看到:烧结后的材料的主要晶相为6H-SiC相,添加的β-SiC已经全部转化为α-SiC。
实施例4:
本实施例与实施例1不同点是:α-SiC粒子与增韧相纳米β-SiC粒子的比例为1:0.3。
实施例5:
本实施例与实施例1不同点是:α-SiC粒子与增韧相纳米β-SiC粒子的比例为1:0.4。
图8为实施例1~5制备的复相SiC陶瓷的压缩强度,由图中可以看到:当:α-SiC粒子与增韧相纳米β-SiC粒子的比例为1:0.2时,复相SiC陶瓷的压缩强度最大,为411MPa。

Claims (10)

1.一种致密的纳米增韧碳化硅复相陶瓷的制备方法,其特征在于所述方法包括如下步骤:
步骤一、混料:以α-SiC粒子为原料,纳米β-SiC粒子为增韧相,添加烧结助剂和粘结剂,配好原料后投入到氧化铝质球磨罐中,加入蒸馏水,投入研磨球进行研磨,获得组分均匀分散的浆料,其中:α-SiC粒子与增韧相纳米β-SiC粒子的质量比为1:0.05~1;烧结助剂的添加量为原料总质量的1~5%;粘结剂为的添加量为原料总质量的10~15%;原料、研磨球与蒸馏水的质量比为3:6~9:1;
步骤二、造粒:采用喷雾造粒工艺进行造粒;
步骤三、成型:将造粒粉干压成型,得到素坯;
步骤四、烧结:将素坯放置于真空烧结炉中进行常压烧结,得到致密的纳米增韧碳化硅复相陶瓷。
2.根据权利要求1所述的致密的纳米增韧碳化硅复相陶瓷的制备方法,其特征在于所述纳米β-SiC粒子的制备方法如下:将碳粉、硅粉和二氧化硅粉混合均匀,在高温下烧结,得到纳米β-SiC粒子,其中:碳粉、硅粉和二氧化硅粉的摩尔比为1:3~7:1。
3.根据权利要求2所述的致密的纳米增韧碳化硅复相陶瓷的制备方法,其特征在于所述混合时间为30~90min;烧结温度为1200~1900℃,烧结时间为2~6h。
4.根据权利要求1所述的致密的纳米增韧碳化硅复相陶瓷的制备方法,其特征在于所述烧结助剂为B4C,粘结剂为酚醛树脂。
5.根据权利要求1所述的致密的纳米增韧碳化硅复相陶瓷的制备方法,其特征在于所述研磨的转速为300~390r/min,时间为8~12h。
6.根据权利要求1所述的致密的纳米增韧碳化硅复相陶瓷的制备方法,其特征在于所述步骤三的具体步骤如下:首先用蠕动泵通入清水,待整个体系得到润湿后,通入混合均匀的浆料,在喷雾干燥机喷头的一定转速下进行造粒,收集造粒粉。
7.根据权利要求6所述的致密的纳米增韧碳化硅复相陶瓷的制备方法,其特征在于所述喷雾干燥机的喷头转速为20000~24000r/min。
8.根据权利要求1所述的致密的纳米增韧碳化硅复相陶瓷的制备方法,其特征在于所述成型压力为100~600MPa。
9.根据权利要求1所述的致密的纳米增韧碳化硅复相陶瓷的制备方法,其特征在于所述烧结气氛为惰性气体。
10.根据权利要求1所述的致密的纳米增韧碳化硅复相陶瓷的制备方法,其特征在于所述烧结温度为1900~2100℃,时间为0.5~2h。
CN201910441535.5A 2019-05-24 2019-05-24 一种致密的纳米增韧碳化硅复相陶瓷的制备方法 Pending CN110054497A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910441535.5A CN110054497A (zh) 2019-05-24 2019-05-24 一种致密的纳米增韧碳化硅复相陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910441535.5A CN110054497A (zh) 2019-05-24 2019-05-24 一种致密的纳米增韧碳化硅复相陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN110054497A true CN110054497A (zh) 2019-07-26

Family

ID=67324484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910441535.5A Pending CN110054497A (zh) 2019-05-24 2019-05-24 一种致密的纳米增韧碳化硅复相陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN110054497A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266252A (zh) * 2020-11-04 2021-01-26 黑龙江冠瓷科技有限公司 一种无压烧结微纳混合碳化硅造粒粉的制备方法
CN112321310A (zh) * 2020-11-04 2021-02-05 黑龙江冠瓷科技有限公司 一种纳米颗粒增韧的高韧性SiC制件的制备方法
CN113072383A (zh) * 2021-05-20 2021-07-06 郑州海赛高技术陶瓷有限责任公司 耐腐蚀碳化硅陶瓷制备方法及其应用
CN114591086A (zh) * 2022-03-31 2022-06-07 中国兵器工业第五二研究所烟台分所有限责任公司 一种纳米粉体改性碳化硅-碳化硼复相陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101560105A (zh) * 2009-06-01 2009-10-21 浙江大学 二元纳米协同强化增韧碳化硅陶瓷及其制备方法
CN102482102A (zh) * 2009-08-13 2012-05-30 信越化学工业株式会社 碳化硅的制造方法
CN107459357A (zh) * 2017-09-06 2017-12-12 西安博尔新材料有限责任公司 碳化硅复合粉体及其制备方法和应用
CN108558405A (zh) * 2017-03-10 2018-09-21 成都超纯应用材料有限责任公司 一种高致密度高纯度碳化硅衬底材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101560105A (zh) * 2009-06-01 2009-10-21 浙江大学 二元纳米协同强化增韧碳化硅陶瓷及其制备方法
CN102482102A (zh) * 2009-08-13 2012-05-30 信越化学工业株式会社 碳化硅的制造方法
CN108558405A (zh) * 2017-03-10 2018-09-21 成都超纯应用材料有限责任公司 一种高致密度高纯度碳化硅衬底材料的制备方法
CN107459357A (zh) * 2017-09-06 2017-12-12 西安博尔新材料有限责任公司 碳化硅复合粉体及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266252A (zh) * 2020-11-04 2021-01-26 黑龙江冠瓷科技有限公司 一种无压烧结微纳混合碳化硅造粒粉的制备方法
CN112321310A (zh) * 2020-11-04 2021-02-05 黑龙江冠瓷科技有限公司 一种纳米颗粒增韧的高韧性SiC制件的制备方法
CN113072383A (zh) * 2021-05-20 2021-07-06 郑州海赛高技术陶瓷有限责任公司 耐腐蚀碳化硅陶瓷制备方法及其应用
CN114591086A (zh) * 2022-03-31 2022-06-07 中国兵器工业第五二研究所烟台分所有限责任公司 一种纳米粉体改性碳化硅-碳化硼复相陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN110054497A (zh) 一种致密的纳米增韧碳化硅复相陶瓷的制备方法
Vasylkiv et al. Low‐temperature processing and mechanical properties of zirconia and zirconia–alumina nanoceramics
Rambo et al. Novel synthetic route to biomorphic Al2O3 ceramics
KR101160140B1 (ko) 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
CN108484171A (zh) 一种碳化硼-硼化钛复相陶瓷材料及其无压烧结制备方法
Li et al. Effect of carbon particle and carbon fiber on the microstructure and mechanical properties of short fiber reinforced reaction bonded silicon carbide composite
CN103524142B (zh) 一种氮化硅-碳化硅-碳化钛微纳米复合材料的制备方法
CN1239468A (zh) 碳化硅增强的碳化硅复合物
EP2636659B1 (en) High rigidity ceramic material and method for producing same
JP2005523225A (ja) 炭化ケイ素とバインダーレス炭素との複合体ならびに製造方法
Yao et al. Porous Si3N4 ceramics prepared via slip casting of Si and reaction bonded silicon nitride
CN111892415A (zh) 一种碳化硅晶须/氧化铝陶瓷复合材料及其制备方法
CN104140265B (zh) 采用液相烧结制备以氧化锆为增韧相的碳化硅陶瓷的方法
Zhuang et al. Fabrication of gel cast BN/Si3N4 composite ceramics from surface-coated BN powder
Duan et al. Effect of solid contents on the mechanical properties of SiC–10 wt.% AlN ceramic composites prepared by gelcasting
Huang et al. Surface oxidation to improve water-based gelcasting of silicon nitride
CN109320257A (zh) 一种高强度高孔隙率多孔氮化硅陶瓷的制备方法
CN107089833B (zh) 一种造纸脱水面板用耐磨氮化硅材料及其制备方法
CN106316398A (zh) 一种添加立方氮化硼的碳化钨钛基陶瓷刀具材料及其制备方法
Santos et al. α-SiAlON–SiC composites obtained by gas-pressure sintering and hot-pressing
CN110282980A (zh) 碳化硅陶瓷浆料及其制备方法与应用
Liu et al. Fabrication and mechanical properties of Al2O3/Ti (C0. 7N0. 3) nanocomposites
Liu et al. In-situ fabricated TiB2 particle-whisker synergistically toughened Ti (C, N)-based ceramic cutting tool material
KR101033868B1 (ko) 하소하여 제조한 Al-B-C계 소결조제를 이용한 탄화규소 복합체의 제조방법
KR20120027803A (ko) 탄소원이 코팅된 탄화규소 복합 분말 및 반응소결 탄화규소 소결체의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190726