CN110042460A - The device of high pressure oriented growth high strength alumin ium alloy - Google Patents

The device of high pressure oriented growth high strength alumin ium alloy Download PDF

Info

Publication number
CN110042460A
CN110042460A CN201910454358.4A CN201910454358A CN110042460A CN 110042460 A CN110042460 A CN 110042460A CN 201910454358 A CN201910454358 A CN 201910454358A CN 110042460 A CN110042460 A CN 110042460A
Authority
CN
China
Prior art keywords
cushion block
heat conduction
ring
conduction ring
trapezoidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910454358.4A
Other languages
Chinese (zh)
Inventor
王书杰
孟静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910454358.4A priority Critical patent/CN110042460A/en
Publication of CN110042460A publication Critical patent/CN110042460A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention discloses a kind of devices of high pressure oriented growth high strength alumin ium alloy, are related to the preparation facilities technical field of aluminium alloy.Described device carries out reinforcement cooling by the lower cushion block to cubic press, the induction coil group being arranged outside upper cushion block, front pods, rear cushion block, left cushion block and right cushion block by high-pressure space induction heater come to becket carry out ultra-high voltage environment under subregion induction heating, and the thermally conductive ring structure of multi-gradient is being set close to outside melt come the temperature gradient of melt under improving high pressure conditions, to realize the directional solidification of high strength alumin ium alloy under ultra-high voltage environment.

Description

The device of high pressure oriented growth high strength alumin ium alloy
Technical field
The present invention relates to the preparation method technical field of new material more particularly to a kind of high pressure oriented growth high strength alumin ium alloys Device.
Background technique
High pressure high temperature technology is used to prepare the materials such as diamond earliest.It develops using high pressure high temperature and changes later Phase transition process, physicochemical characteristics in material prepare various Nonequilibrium Materials to realize.Therefore, superhigh pressure technique can be used to Prepare superhard material, superconductor, non-crystalline material and nano material.Super-pressure is introduced during liquid phase-change can influence material Solid solubility, liquidus curve meter solidus temperature, diffusion diabatic process of material etc..To obtain special performance.The orientation of melt is raw Length can be used to carry out the mutually selection of material, prepare monocrystalline, improve mechanical property.It is difficult arrangement heating dress under ultra-high voltage environment It sets and attemperator, therefore is difficult to obtain temperature gradient effect, isothermal solidification can only be carried out.Therefore it is highly desirable to realize superelevation Super pressure-high temperature oriented growth expands the approach of new material preparation.
Summary of the invention
The technical problem to be solved by the present invention is to how provide one kind to can be realized high strength alumin ium alloy under ultra-high voltage environment Directional solidification growth device.
In order to solve the above technical problems, the technical solution used in the present invention is: a kind of high-strength aluminium of high pressure oriented growth closes The device of gold, it is characterised in that: including cubic press, the pyrophillite being in contact with it is provided in the cubic press and is held Device, the cubic press are used to carry out induction heating for the device in the pyrophillite container, under the pyrophillite container End has opening, is closed the lower ending opening of the pyrophillite container by thin layer composite pyrophyllite plate, the pyrophillite The first trapezoidal heat conduction ring, the second trapezoidal heat conduction ring, the trapezoidal heat conduction ring of third and the 4th are disposed in container from top to bottom Trapezoidal heat conduction ring, and the first trapezoidal heat conduction ring, the second trapezoidal heat conduction ring, the trapezoidal heat conduction ring of third and the 4th trapezoidal heat conduction ring Internal diameter is sequentially reduced from top to bottom, and the upper end opening of the first trapezoidal heat conduction ring is closed by upper heat-conducting layer, and described Seed crystal is provided in the lower ending opening of four trapezoidal heat conduction rings, the first trapezoidal heat conduction ring, the second trapezoidal heat conduction ring, third are trapezoidal The space enclosed between heat conduction ring, the 4th trapezoidal heat conduction ring, seed crystal and upper heat-conducting layer constitutes the oriented growth dress of aluminium alloy It sets, is provided with sample to be grown in the oriented growth device;The pyrophillite container and the described first trapezoidal heat conduction ring, the First annular heater, are respectively arranged between two trapezoidal heat conduction rings, the trapezoidal heat conduction ring of third and the 4th trapezoidal heat conduction ring Second ring heater, third ring heater and fourth annular heater, and the ring heater between upper and lower sides is logical Cross heat-insulated carbon fiber ring to be separated, be provided with upper heater plate on the outside of the upper heat-conducting layer, the oriented growth device with Gap between the pyrophillite container and thin layer composite pyrophyllite plate is filled by boron nitride powder.
A further technical solution lies in: the cubic press includes top a cushion block, bottom cushion block, a foremast Block, rear cushion block, left cushion block and right cushion block, each cushion block are provided with a top on the inside of the pyrophillite container Hammer, one side of the top hammer close to inside are directly contacted with the pyrophillite container, and the top cushion block peripheral hardware is equipped with top sense Coil group is answered, is provided with side induction coil group outside the front pods, rear cushion block, left cushion block and right cushion block, gives each line of induction Circle group, which is passed through after alternating current, generates induction field, induction field pass through after the cushion block and top hammer to upper heater plate, First annular heater, the second ring heater, third ring heater and fourth annular heater carry out induction heating.
A further technical solution lies in: the pyrophillite container includes side pyrophillite cylinder and top pyrophillite lid, institute State separable between side pyrophillite cylinder and top pyrophillite lid be fixedly attached together.
A further technical solution lies in: one liquid metal cooling tank of each side setting of the lower cushion block, and The liquid metal cooling tank of left and right ends is interconnected by the lower top hammer circulation path inside lower cushion block, and the institute of side State and be provided with inlet tube on liquid metal cooling tank, sealing ring is set between metal cooling tank and lower cushion block, the other side it is described It is provided with outlet tube on liquid metal cooling tank, is provided with liquid in the liquid metal cooling tank and lower top hammer circulation path Metal, liquid metal inside the liquid metal cooling tank quick motion cycle under the pressure of 50-100MPa go out lower top hammer circulation Access, then external realize is quickly cooled down again, enters back into lower top hammer circulation path circulation, then quickly to take away melt under Heat on cushion block.
A further technical solution lies in: the inlet tube is set to the bottom of the left side liquid metal cooling tank, institute State the top that outlet tube is set to the right side liquid metal cooling tank.
A further technical solution lies in: the first trapezoidal heat conduction ring, the second trapezoidal heat conduction ring, the trapezoidal heat conduction ring of third And the 4th trapezoidal heat conduction ring be successively vertically connected with, and the size shape of joint face is identical, and the heat conduction ring is using ceramics or nitrogen Change boron material to prepare by high temperature sintering.
A further technical solution lies in: the first annular heater, the second ring heater, third annular-heating Device, fourth annular heater and upper heater plate are prepared using high temperature high-ductility metal material.
A further technical solution lies in: the thin layer composite pyrophyllite plates using pyrophyllite in powder and graphite powder sintering and At.
A further technical solution lies in: it is set in the top cushion block, front pods, rear cushion block, left cushion block and right cushion block It is equipped with water-cooling channel, cushion block water inlet pipe and cushion block outlet pipe, the water-cooling channel are respectively arranged on the outside of the water-cooling channel Inside it is connected with cooling water.
The beneficial effects of adopting the technical scheme are that device of the present invention passes through to cubic press Lower cushion block carries out reinforcement cooling, the induction coil being arranged outside upper cushion block, front pods, rear cushion block, left cushion block and right cushion block Group is by carrying out the subregion induction heating under ultra-high voltage environment to becket in high-pressure space induction heater, and close to molten Multi-gradient thermally conductive ring structure is set outside body to improve the temperature gradient of melt under high pressure conditions, to realize ultra-high voltage environment The directional solidification growth of lower high strength alumin ium alloy.
Detailed description of the invention
The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
Fig. 1 is the structural schematic diagram of described device of the embodiment of the present invention (after removing front pods);
Wherein: 1: upper cushion block, 1-1: cushion block water inlet pipe, 1-2: cushion block outlet pipe, 2: top hammer, 3: top induction coils group, 3-1: Induction coil, 4: pyrophyllite container, 5: upper heater plate, 6: boron nitride powder, 7: first annular heater, 8: heat-insulated carbon fiber Ring;9: the second ring heaters, 10: third ring heater, 11: fourth annular heater;12: liquid metal cooling tank, 12- 1: outlet tube, 12-2: sealing ring, 12-3: inlet tube, 13: liquid metal, 14: lower cushion block, 14-1: lower top hammer circulation path, 15: seed crystal, 16: thin layer composite pyrophyllite, 17: the first trapezoidal heat conduction rings;18: the second trapezoidal heat conduction rings, 19: third is trapezoidal thermally conductive Ring, 20: the four trapezoidal heat conduction rings;21: upper heat-conducting layer, 22: melt, 23: side induction coil group.
Specific embodiment
With reference to the attached drawing in the embodiment of the present invention, technical solution in the embodiment of the present invention carries out clear, complete Ground description, it is clear that described embodiment is only a part of the embodiments of the present invention, instead of all the embodiments.It is based on Embodiment in the present invention, it is obtained by those of ordinary skill in the art without making creative efforts every other Embodiment shall fall within the protection scope of the present invention.
In the following description, numerous specific details are set forth in order to facilitate a full understanding of the present invention, but the present invention can be with Implemented using other than the one described here other way, those skilled in the art can be without prejudice to intension of the present invention In the case of do similar popularization, therefore the present invention is not limited by the specific embodiments disclosed below.
As shown in Figure 1, the embodiment of the invention discloses a kind of device of high pressure oriented growth high strength alumin ium alloy, including six faces Ejection device, the pyrophillite container 4 being in contact with it is provided in the cubic press, and the cubic press is used to be the leaf Device in cured stone container carries out induction heating, and the lower end of the pyrophillite container 4 has opening, passes through thin layer composite pyrophyllite Plate 16 closes the lower ending opening of the pyrophillite container 4;Is disposed in the pyrophillite container 4 from top to bottom One trapezoidal heat conduction ring 17, the second trapezoidal heat conduction ring 18, the trapezoidal heat conduction ring 19 of third and the 4th trapezoidal heat conduction ring 20, and the first ladder Shape heat conduction ring 17, the second trapezoidal heat conduction ring 18, the trapezoidal heat conduction ring 19 of third and the 4th trapezoidal heat conduction ring 20 internal diameter on to Under be sequentially reduced;The upper end opening of the first trapezoidal heat conduction ring 17 is closed by upper heat-conducting layer 21, and the described 4th is trapezoidal Seed crystal 15, the first trapezoidal heat conduction ring 17, the second trapezoidal heat conduction ring 18, third ladder are provided in the lower ending opening of heat conduction ring 20 The space enclosed between shape heat conduction ring 19, the 4th trapezoidal heat conduction ring 20, seed crystal 15 and upper heat-conducting layer 21 constitutes aluminium alloy Oriented growth device is provided with sample to be grown in the oriented growth device;The pyrophillite container 4 and first ladder It is respectively set between shape heat conduction ring 17, the second trapezoidal heat conduction ring 18, the trapezoidal heat conduction ring 19 of third and the 4th trapezoidal heat conduction ring 20 There are first annular heater 7, the second ring heater 9, third ring heater 10 and fourth annular heater 11, and up and down The ring heater between side is separated by heat-insulated carbon fiber ring 8, and the outside of the upper heat-conducting layer 21 is provided with Heater plates 5, the gap between the oriented growth device and the pyrophillite container 4 and thin layer composite pyrophyllite plate 16 are logical Boron nitride powder 6 is crossed to be filled.
As shown in Figure 1, the cubic press includes top 1, bottom cushion block 14 of cushion block, front pods, rear pad Block, left cushion block and right cushion block, each cushion block is provided with a top hammer 2 close to the inside of the pyrophillite container 4, described One side of the top hammer 2 close to inside is directly contacted with the pyrophillite container 4, and the top line of induction is provided with outside the top cushion block 1 Circle group 3, the front pods, rear cushion block, left cushion block and right cushion block are provided with side induction coil group 23 outside, give each induction coil Group, which is passed through after alternating current, generates induction field, and induction field passes through after the cushion block and top hammer to upper heater plate 5, the One ring heater 7, the second ring heater 9, third ring heater 10 and fourth annular heater 11 carry out induction heating. Be provided with water-cooling channel in the top cushion block 1, front pods, rear cushion block, left cushion block and right cushion block, the water-cooling channel it is outer Side is respectively arranged with cushion block water inlet pipe 1-1 and cushion block outlet pipe 1-2, is connected with cooling water in the water-cooling channel.
Generate induction field after being passed through alternating current to each induction coil group, electromagnetic field pass through the cushion block, top hammer 2 and It is heated to upper heater plate 5, first annular heater 7, the second ring heater 9, third ring heater 10 and fourth annular Device 11 carries out induction heating.Heat by the first trapezoidal heat conduction ring 17, the second trapezoidal heat conduction ring 18, the trapezoidal heat conduction ring 19 of third and 4th 20 groups of trapezoidal heat conduction ring circlewise trapezoidal conductive structure, and heated with upper heater plate 5 to melt 22, and form height Temperature gradient.Therefore, which can realize oriented growth of the aluminium alloy under hyperpressure.Solid sample is processed as cylinder early period Trapezium structure, under it is narrow it is it is wide place, seed crystal 15 is bonded with leptoprosopy.
The pyrophillite container 4 includes side pyrophillite cylinder and top pyrophillite lid, the side pyrophillite cylinder and top It is separable between pyrophillite lid to be fixedly attached together.As shown in Figure 1, each side setting of the lower cushion block 14 one Liquid metal cooling tank 12, and the liquid metal cooling tank 12 of left and right ends passes through the lower top hammer circulation inside lower cushion block 14 Access 14-1 is interconnected, and inlet tube 12-3, metal cooling tank 12 are provided on the liquid metal cooling tank 12 of side Sealing ring 12-2 is set between lower cushion block 14, is provided with outlet tube 12-1 on the liquid metal cooling tank 12 of the other side, Liquid metal 13, liquid metal cooling tank 12 are provided in the liquid metal cooling tank 12 and lower top hammer circulation path 14-1 Internal liquid metal 13 quick motion cycle under the pressure of 50-100MPa goes out lower top hammer circulation path 14-1, then outer again Portion, which realizes, to be quickly cooled down, and enters back into lower top hammer circulation path 14-1 circulation, then quickly to take away melt 22 in lower cushion block 14 On heat.
As shown in Figure 1, the inlet tube 12-3 is set to the bottom of the left side liquid metal cooling tank 12, the liquid out Pipe 12-1 is set to the top of the right side liquid metal cooling tank 12.The first trapezoidal heat conduction ring 17, second is trapezoidal thermally conductive The trapezoidal heat conduction ring 19 of ring 18, third and the 4th trapezoidal heat conduction ring 20 are successively vertically connected with, and the size shape of joint face is identical, institute It states heat conduction ring and is prepared using ceramics or boron nitride material by high temperature sintering.Preferably, the first annular heater 7, Second ring heater 9, third ring heater 10, fourth annular heater 11 and upper heater plate 5 are using high temperature high-ductility gold Belong to material preparation, such as molybdenum, tantalum, tungsten alloy.The thin layer composite pyrophyllite plate 16 using pyrophyllite in powder and graphite powder sintering and At.
The embodiment of the invention also discloses a kind of method of high pressure oriented growth high strength alumin ium alloy, described in the method use The device of high pressure oriented growth high strength alumin ium alloy, includes the following steps:
Sample is processed as cylinder trapezium structure, peripheral shape and the first trapezoidal heat conduction ring 17, the second trapezoidal heat conduction ring first 18, the trapezoidal inner cavity of ring-type that the trapezoidal heat conduction ring 19 of third and the 4th trapezoidal heat conduction ring 20 are constituted is identical;
By the periphery arrangement of sample, once the trapezoidal heat conduction ring 19, second of the 4th trapezoidal heat conduction ring 20 of arrangement, third is terraced from top to bottom Shape heat conduction ring 18 and the first trapezoidal heat conduction ring 17, and upper heat-conducting layer 21 is arranged in the upper end of the described first trapezoidal heat conduction ring 17 In opening, the 4th trapezoidal heat conduction ring 20 that seed crystal 15 is placed on sample bottom is open interior;
The lower ending opening of pyrophillite container is closed using thin layer composite pyrophyllite plate 16, then at the bottom of the pyrophillite container Portion is laid with one layer of boron nitride powder, then above-mentioned sample, the heat conduction ring and seed crystal 15 is put into pyrophyllite container 4, each First annular heater 7, the second ring heater 9, third ring heater 10 are sequentially arranged outside a heat conduction ring from top to bottom And fourth annular heater 11, between first annular heater 7 and the second ring heater 9, the second ring heater 9 and third Between ring heater 10, separated between third ring heater 10 and fourth annular heater 11 using heat-insulated carbon fiber ring 8 And the heat-insulated carbon fiber ring 8 is not contacted with each ring heater;Successively when placing ring heater and heat-insulated carbon fiber ring It is put into boron nitride powder 6 between 4 wall of pyrophyllite container and each heat conduction ring, arranges upper heater plate 5 on upper 21 top of heat-conducting layer, and Boron nitride powder 6 was not had into upper heater plate 5, thermocouple is placed on to the pyrophyllite container of thin layer composite pyrophyllite 16 He its opposite On 4 walls, and the upper end opening of side pyrophillite cylinder is closed by top pyrophillite lid;
Then above-mentioned pyrophyllite container is put into the cubic press of high-tension apparatus, equipment is adjusted under initial preset pressure, Cushion block 1, front pods, rear cushion block, left cushion block and recirculated water and lower cushion block side liquid metal cooling tank in right cushion block in unlatching Circulation liquid metal 13 inside 12;
Top induction coils group 3 and front pods, rear cushion block, left cushion block in adjusting in cushion block 1 and the side sense in right cushion block The power of coil group 23 is answered, first annular heater 7, the second ring heater 9, third ring heater 10, fourth annular are given Heater 11 and upper heater plate 5 are heated, while gradually pressure in cubic press being adjusted under design pressure, are finally adjusted The power of section top induction coils group 3 and side induction coil group 23 establishes suitable temperature in pyrophyllite container in melt 22 Then gradient gradually decreases determining for aluminium alloy in 23 power control melt 22 of top induction coils group 3 and side induction coil group To growth.
Device and method of the present invention carry out reinforcement cooling by the lower cushion block to cubic press, in upper cushion block, preceding Cushion block, rear cushion block, the induction coil group that is arranged outside left cushion block and right cushion block by high-pressure space induction heater come to Becket carries out the subregion induction heating under ultra-high voltage environment, and comes close to the setting thermally conductive ring structure of multi-gradient outside melt The temperature gradient for improving melt under high pressure conditions, to realize the directional solidification growth of high strength alumin ium alloy under ultra-high voltage environment.

Claims (9)

1. a kind of device of high pressure oriented growth high strength alumin ium alloy, it is characterised in that: including cubic press, the cubic apparatus dress The pyrophillite container (4) being in contact with it is provided in setting, the cubic press is used for as the device in the pyrophillite container Induction heating is carried out, the lower end of the pyrophillite container (4) has opening, by thin layer composite pyrophyllite plate (16) by the leaf The lower ending opening of cured stone container (4) is closed, and is disposed with first in the pyrophillite container (4) from top to bottom and trapezoidal is led Hot ring (17), the second trapezoidal heat conduction ring (18), the trapezoidal heat conduction ring of third (19) and the 4th trapezoidal heat conduction ring (20), and the first ladder Shape heat conduction ring (17), the second trapezoidal heat conduction ring (18), the trapezoidal heat conduction ring of third (19) and the 4th trapezoidal heat conduction ring (20) it is interior Diameter is sequentially reduced from top to bottom, and the upper end opening of the first trapezoidal heat conduction ring (17) is closed by upper heat-conducting layer (21), It is provided with seed crystal (15) in the lower ending opening of the 4th trapezoidal heat conduction ring (20), the first trapezoidal heat conduction ring (17), second Trapezoidal heat conduction ring (18), the trapezoidal heat conduction ring of third (19), the 4th trapezoidal heat conduction ring (20), seed crystal (15) and upper heat-conducting layer (21) Between the space that encloses constitute the oriented growth device of aluminium alloy, be provided with examination to be grown in the oriented growth device Sample;The pyrophillite container (4) and the described first trapezoidal heat conduction ring (17), the second trapezoidal heat conduction ring (18), third are trapezoidal thermally conductive First annular heater (7), the second ring heater are respectively arranged between ring (19) and the 4th trapezoidal heat conduction ring (20) (9), third ring heater (10) and fourth annular heater (11), and the ring heater between upper and lower sides passes through Heat-insulated carbon fiber ring (8) is separated, and is provided with upper heater plate (5) on the outside of the upper heat-conducting layer (21), the orientation life Gap between growth device and the pyrophillite container (4) and thin layer composite pyrophyllite plate (16) by boron nitride powder (6) into Row filling.
2. the device of high pressure oriented growth high strength alumin ium alloy as described in claim 1, it is characterised in that: the cubic press It is each described including a top cushion block (1), a bottom cushion block (14), front pods, rear cushion block, left cushion block and right cushion block Cushion block is provided with a top hammer (2) on the inside of the pyrophillite container (4), the top hammer (2) close to inside one side with The pyrophillite container (4) directly contacts, and top induction coils group (3), the foremast are provided with outside the top cushion block (1) It is provided with side induction coil group (23) outside block, rear cushion block, left cushion block and right cushion block, is passed through alternating current to each induction coil group After generate induction field, induction field passes through after the cushion block and top hammer to upper heater plate (5), first annular heating Device (7), the second ring heater (9), third ring heater (10) and fourth annular heater (11) carry out induction heating.
3. the device of high pressure oriented growth high strength alumin ium alloy as described in claim 1, it is characterised in that: the pyrophillite container It (4) include side pyrophillite cylinder and top pyrophillite lid, it is separable between the side pyrophillite cylinder and top pyrophillite lid It is fixedly attached together.
4. the device of high pressure oriented growth high strength alumin ium alloy as described in claim 1, it is characterised in that: the lower cushion block (14) One liquid metal cooling tank (12) of each side setting, and the liquid metal cooling tank (12) of left and right ends passes through The internal lower top hammer circulation path (14-1) of lower cushion block (14) is interconnected, and on the liquid metal cooling tank (12) of side It is provided with inlet tube (12-3), sealing ring (12-2) is set between metal cooling tank (12) and lower cushion block (14), the institute of the other side It states and is provided on liquid metal cooling tank (12) outlet tube (12-1), the liquid metal cooling tank (12) and lower top hammer circulation It is provided with liquid metal (13) in access (14-1), the internal liquid metal (13) of liquid metal cooling tank (12) is in 50- Quick motion cycle goes out lower top hammer circulation path (14-1) under the pressure of 100MPa, and then external realize is quickly cooled down again, then Lower top hammer circulation path (14-1) circulation is entered back into, quickly to take away heat of the melt (22) on lower cushion block (14).
5. determining the device of high pressure oriented growth high strength alumin ium alloy as claimed in claim 4, it is characterised in that: the inlet tube (12-3) is set to the bottom of the left side liquid metal cooling tank (12), and the outlet tube (12-1) is set to the right side liquid The top of state metal cooling tank (12).
6. the device of high pressure oriented growth high strength alumin ium alloy as described in claim 1, it is characterised in that: described first trapezoidal leads Hot ring (17), the second trapezoidal heat conduction ring (18), the trapezoidal heat conduction ring of third (19) and the 4th trapezoidal heat conduction ring (20) successively connect up and down It connects, and the size shape of joint face is identical, the heat conduction ring is prepared using ceramics or boron nitride material by high temperature sintering.
7. the device of high pressure oriented growth high strength alumin ium alloy as described in claim 1, it is characterised in that: it is described it is first annular plus Hot device (7), the second ring heater (9), third ring heater (10), fourth annular heater (11) and upper heater plate (5) it is prepared using high temperature high-ductility metal material.
8. the device of high pressure oriented growth high strength alumin ium alloy as described in claim 1, it is characterised in that: the thin layer composite leaf Alabaster plate (16) is mixed with graphite powder using pyrophyllite in powder and is suppressed.
9. the device of high pressure oriented growth high strength alumin ium alloy as claimed in claim 2, it is characterised in that: the top cushion block (1), it is provided with water-cooling channel in front pods, rear cushion block, left cushion block and right cushion block, is respectively set on the outside of the water-cooling channel There are cushion block water inlet pipe (1-1) and cushion block outlet pipe (1-2), is connected with cooling water in the water-cooling channel.
CN201910454358.4A 2019-05-29 2019-05-29 The device of high pressure oriented growth high strength alumin ium alloy Withdrawn CN110042460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910454358.4A CN110042460A (en) 2019-05-29 2019-05-29 The device of high pressure oriented growth high strength alumin ium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910454358.4A CN110042460A (en) 2019-05-29 2019-05-29 The device of high pressure oriented growth high strength alumin ium alloy

Publications (1)

Publication Number Publication Date
CN110042460A true CN110042460A (en) 2019-07-23

Family

ID=67283878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910454358.4A Withdrawn CN110042460A (en) 2019-05-29 2019-05-29 The device of high pressure oriented growth high strength alumin ium alloy

Country Status (1)

Country Link
CN (1) CN110042460A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114054723A (en) * 2021-09-29 2022-02-18 东南大学 Device and method for manufacturing liquid metal coil
CN116020983A (en) * 2022-12-08 2023-04-28 中国原子能科学研究院 Solidification characteristic simulation device for neutron residual stress spectrometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160555A (en) * 1981-03-31 1982-10-02 Sumitomo Light Metal Ind Ltd Mold for casting used for purification of metal
CN101875106A (en) * 2009-11-20 2010-11-03 北京科技大学 Preparation method of directional solidification high-niobium TiAl-base alloy
CN203281286U (en) * 2013-03-15 2013-11-13 郑州新亚复合超硬材料有限公司 Cubic ultrahigh pressure device
CN204261639U (en) * 2014-10-30 2015-04-15 郑州新亚复合超硬材料有限公司 Cubic hinge press pyrophillite assembled block
CN206083784U (en) * 2016-10-18 2017-04-12 福建省瑞奥麦特轻金属有限责任公司 A heat preservation stove that is used for preparing in succession half solid -state thick liquids of aluminum alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160555A (en) * 1981-03-31 1982-10-02 Sumitomo Light Metal Ind Ltd Mold for casting used for purification of metal
CN101875106A (en) * 2009-11-20 2010-11-03 北京科技大学 Preparation method of directional solidification high-niobium TiAl-base alloy
CN203281286U (en) * 2013-03-15 2013-11-13 郑州新亚复合超硬材料有限公司 Cubic ultrahigh pressure device
CN204261639U (en) * 2014-10-30 2015-04-15 郑州新亚复合超硬材料有限公司 Cubic hinge press pyrophillite assembled block
CN206083784U (en) * 2016-10-18 2017-04-12 福建省瑞奥麦特轻金属有限责任公司 A heat preservation stove that is used for preparing in succession half solid -state thick liquids of aluminum alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114054723A (en) * 2021-09-29 2022-02-18 东南大学 Device and method for manufacturing liquid metal coil
CN114054723B (en) * 2021-09-29 2023-02-17 东南大学 Device and method for manufacturing liquid metal coil
CN116020983A (en) * 2022-12-08 2023-04-28 中国原子能科学研究院 Solidification characteristic simulation device for neutron residual stress spectrometer
CN116020983B (en) * 2022-12-08 2023-08-18 中国原子能科学研究院 Solidification characteristic simulation device for neutron residual stress spectrometer

Similar Documents

Publication Publication Date Title
CN110042460A (en) The device of high pressure oriented growth high strength alumin ium alloy
CA1089624A (en) Process and an apparatus for the molding of shaped parts out of a composite metallic refractory material
CN101786161B (en) Microwave irradiation pressurized sintering equipment and use method thereof
CN103834822B (en) Titanium-based amorphous matrix material melting and casting method and casting device
CN103231017A (en) High-temperature alloy complex thin-wall casting precise casting device
CN103192063A (en) Casting mold for producing high-temperature alloy single crystal blades and directional solidification device thereof
RU2560439C1 (en) Fluid-cooled heat exchanger
CN103819202B (en) A kind of stupalith sintering oven and isostatic pressed field control plasma agglomeration method
WO2005067530A2 (en) High pressure crystal growth apparatuses and associated methods
CN101745629A (en) Method for preparing semi-solid alloy rheological slurry or billet through annular-gap type electromagnetic stirring
CN111690832B (en) Cold crucible induction melting-die casting device and method for preparing block amorphous material
CN102398014A (en) Casting device of low tension fine grain and method thereof
CN110039032A (en) The method of high pressure oriented growth high strength alumin ium alloy
CN102392174B (en) Method and device for preparing magnetostrictive material
CN110102220A (en) Permanent magnet mixing plant and melt preparation method suitable for melt preparation
CN106148742A (en) A kind of vacuum high undercooling rapid solidification test device
CN107159861A (en) A kind of semi solid copper alloy continuous casting apparatus and method
CN206058910U (en) Fused mass assay device with lifting chassis
CN203938607U (en) A kind of stupalith sintering oven
CN201983620U (en) Small-sized cold crucible induction melting furnace provided with glove operation device
JPS6199605A (en) Hot hydrostatic compressive calcination method
CN107808702A (en) Fused mass experimental rig with lifting chassis
CN208976814U (en) Aluminium alloy smelting, heat preservation, casting all-in-one oven
CN110195196A (en) One kind [carbon fibre web-Silicon-rich/poor silicon] aluminum laminate base composite phase-change energy storage material and its preparation facilities and method
CN111735306A (en) High-pressure multi-prefabricated-part reaction infiltration device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190723