CN110005399A - 一种含过量水凝析气反凝析油体积测量的实验方法 - Google Patents

一种含过量水凝析气反凝析油体积测量的实验方法 Download PDF

Info

Publication number
CN110005399A
CN110005399A CN201910302479.7A CN201910302479A CN110005399A CN 110005399 A CN110005399 A CN 110005399A CN 201910302479 A CN201910302479 A CN 201910302479A CN 110005399 A CN110005399 A CN 110005399A
Authority
CN
China
Prior art keywords
condensate
gas
pvt
volume
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910302479.7A
Other languages
English (en)
Other versions
CN110005399B (zh
Inventor
韩晓冰
严文德
袁迎中
何昱樟
李继强
黄小亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN201910302479.7A priority Critical patent/CN110005399B/zh
Publication of CN110005399A publication Critical patent/CN110005399A/zh
Application granted granted Critical
Publication of CN110005399B publication Critical patent/CN110005399B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Business, Economics & Management (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Human Resources & Organizations (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种含过量水凝析气反凝析油体积测量的实验方法,实验结果可靠性高。步骤:在压力P1、温度T下,配置饱和的凝析气,并测得其含水量xi%;取PVT高压物性分析仪,先在其PVT主筒中加体积为Viw的水,再将已配置的凝析气加入PVT主筒中,保证凝析气的温度、压力不变,从而使凝析气中含有过量水;充分搅拌PVT主筒中的凝析气,通过PVT高压物性分析仪,测得PVT主筒中气体的体积Vgw;释放凝析气,直至PVT主筒降到压力设定值P2,读出PVT主筒中液相的体积Vwt,并测得凝析气的含水量x%;查得地层水压缩系数的值Cw,并计算出液相中水的体积Vw;用PVT主筒中液相的体积减去液相中水的体积Vw,得到反凝析出的油的体积Vo

Description

一种含过量水凝析气反凝析油体积测量的实验方法
技术领域
本发明涉及油气田开发技术领域,特别是涉及一种含过量水凝析气反凝析油体积测量的实验方法。
背景技术
凝析气从地下到地面采出的过程中,伴随有凝析油从气体中分离和溶解的相态变化等现象,凝析油纯度较高,从地下开采出来可经简单提炼乃至不用提炼便可投入使用,是一种非常值得研究的类别;同时,研究凝析气的反凝析现象,对油气田的开发也会产生指导意义。目前,研究学者们通过诸多的研究结果总结得出含地层水凝析气藏相态变化规律及影响因素。2006年,石德佩、孙雷等学者研究发现:富含水态的凝析气样反凝析液量大于无水凝析气样,含气态水的凝析气中凝析液的采出程度低于不含水的情况,并随压力降低,两组样品的反凝析液量和凝析液采出程度的差别越来越大。2014年,汤勇、杜志敏等学者发现:温度越高气中凝析水含量越高,而且随压力降低呈指数增加。地层水存在使凝析气藏露点压力和最大反凝析液量均增加,这说明地层水存在加剧了反凝析。由此可见,高温高压凝析气藏必须考虑地层水存在对相态及开发过程可能带来的影响。然而,研究含地层水凝析气藏的相态特征变化的规律,分析凝析油的含量比例变化时,需对油气藏中典型的流体组成以及流体之间相互关系进行模拟,并且实验证明凝析气中凝析油含量少,测出其含量比较困难,导致整个实验增加难度,即使能成功得出实验结果,但对其准确性、可靠性难以评定。当我们做到精确的测出凝析气中析出的凝析油的量时,我们就能通过实验准确的得到地层水的含量是如何具体影响凝析气的开发的,从而我们能够对凝析气原始地质储量、天然气及凝析油采收率有更加精准的预算,在油气田开发的过程中对地层中的储油、储气量有更明晰的预算估计,这将会减少因预算误差而产生的人力浪费与经济损失。
发明内容
本发明的目的在于克服现有技术的不足,提供一种含过量水凝析气反凝析油体积测量的实验方法,实验结果可靠性高。
本发明的目的是这样实现的:
一种含过量水凝析气反凝析油体积测量的实验方法,包括以下步骤:
S1、在压力P1、温度T下,配置饱和的凝析气,并测得其含水量xi%;
S2、取PVT高压物性分析仪,先在其PVT主筒中加水,加入水的体积为Viw,再将已配置的凝析气加入PVT主筒中,凝析气的体积为Vg,从而使凝析气中含有过量水,加入凝析气的过程中保证凝析气的温度、压力不变;
S3、在压力P1、温度T下,充分搅拌PVT主筒中的凝析气,通过PVT高压物性分析仪,测得PVT主筒中气体的体积Vgw
S4、保持PVT主筒的体积不变,释放出凝析气,直至PVT主筒降到压力设定值P2,读出PVT主筒中液相的体积Vwt,并测得凝析气的含水量x%;
S5、根据地层水压缩系数随压力、温度的变化曲线,得到地层水压缩系数的值Cw,并计算出液相中水的体积Vw,计算方式如下:
Vgw=Vg×(x%-xi%)
解得:Vw=[1-Cw(P1-P2)]×{Viw-Vg(x%-xi%)];
S6、用PVT主筒中液相的体积减去液相中水的体积Vw,得到反凝析出的油的体积V0,计算公式为:
V0=Vwt-Vw
优选地,S1中,在高温高压配样器中加入足量的水、凝析气,配置实验所需饱和凝析气。
优选地,S4中,通过色谱分析测得PVT主筒中凝析气的含水量。
优选地,温度T为凝析气藏的温度。
由于采用了上述技术方案,本发明解决了凝析油液量少,油水界面不明显,析出的凝析油的体积难以测量的问题,并且考虑到了水的压缩性以及挥发性,尽可能的保证了实验测试的可靠性。
具体实施方式
一种含过量水凝析气反凝析油体积测量的实验方法,包括以下步骤:
S1、在压力P1、温度T下,温度T为凝析气藏的温度。在高温高压配样器中加入足量的水、凝析气,配置实验所需饱和凝析气,并测得其含水量xi%;
S2、取PVT高压物性分析仪,先在其PVT主筒中加水,加入水的体积为Viw,再将已配置的凝析气加入PVT主筒中,凝析气的体积为Vg,从而使凝析气中含有过量水,加入凝析气的过程中保证凝析气的温度、压力不变;
S3、在压力P1、温度T下,充分搅拌PVT主筒中的凝析气,通过PVT高压物性分析仪,测得PVT主筒中气体的体积Vgw
S4、保持PVT主筒的体积不变,释放出凝析气,直至PVT主筒降到压力设定值P2,读出PVT主筒中液相的体积Vwt,通过色谱分析测得PVT主筒中凝析气的含水量x%;
S5、根据地层水压缩系数随压力、温度的变化曲线,得到地层水压缩系数的值Cw,并计算出液相中水的体积Vw,计算方式如下:
Vgw=Vg×(x%-xi%)
解得:Vw=[1-Cw(P1-P2)]×[Viw-Vg(x%-xi%)];
S6、用PVT主筒中液相的体积减去液相中水的体积Vw,得到反凝析出的油的体积V0,计算公式为:
V0=Vwt-Vw
实施例:
Q67-2井富含饱和气态水体系相态特征实验,PVT主筒总体积(定容体积)200ml,实验温度396.25k,有以下实验数据:
初始压力P1=47.8MPa,pvt主筒中加入的水的体积Viw=60.52ml,气体的体积Vg=139.48ml,含水率xi%=1.69994%,
当释放气体,压力降至P2=36Mpa时,气体的含水率x%=1.83321%,测得液相总体积Vwt=63.148ml,查得Cw=4.49×10-4
根据以上数据,计算
凝析油的体积V0=Vwt-Vw=63.148-60.014=3.134ml
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (4)

1.一种含过量水凝析气反凝析油体积测量的实验方法,其特征在于,包括以下步骤:
S1、在压力P1、温度T下,配置饱和的凝析气,并测得其含水量xi%;
S2、取PVT高压物性分析仪,先在其PVT主筒中加水,加入水的体积为Viw,再将已配置的凝析气加入PVT主筒中,凝析气的体积为Vg,从而使凝析气中含有过量水,加入凝析气的过程中保证凝析气的温度、压力不变;
S3、在压力P1、温度T下,充分搅拌PVT主筒中的凝析气,通过PVT高压物性分析仪,测得PVT主筒中气体的体积Vgw
S4、保持PVT主筒的体积不变,释放出凝析气,直至PVT主筒降到压力设定值P2,读出PVT主筒中液相的体积Vwt,并测得凝析气的含水量x%;
S5、根据地层水压缩系数随压力、温度的变化曲线,得到地层水压缩系数的值Cw,并计算出液相中水的体积Vw,计算方式如下:
Vgw=Vg×(x%-xi%)
解得:Vw=[1-Cw(P1-P2)]×[Viw-Vg(x%-xi%)];
S6、用PVT主筒中液相的体积减去液相中水的体积Vw,得到反凝析出的油的体积V0,计算公式为:
V0=Vwt-Vw
2.根据权利要求1所述的一种含过量水凝析气反凝析油体积测量的实验方法,其特征在于,S1中,在高温高压配样器中加入足量的水、凝析气,配置实验所需饱和凝析气。
3.根据权利要求1所述的一种含过量水凝析气反凝析油体积测量的实验方法,其特征在于,S4中,通过色谱分析测得PVT主筒中凝析气的含水量。
4.根据权利要求1所述的一种含过量水凝析气反凝析油体积测量的实验方法,其特征在于,温度T为凝析气藏的温度。
CN201910302479.7A 2019-04-16 2019-04-16 一种含过量水凝析气反凝析油体积测量的实验方法 Active CN110005399B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910302479.7A CN110005399B (zh) 2019-04-16 2019-04-16 一种含过量水凝析气反凝析油体积测量的实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910302479.7A CN110005399B (zh) 2019-04-16 2019-04-16 一种含过量水凝析气反凝析油体积测量的实验方法

Publications (2)

Publication Number Publication Date
CN110005399A true CN110005399A (zh) 2019-07-12
CN110005399B CN110005399B (zh) 2022-05-31

Family

ID=67172063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910302479.7A Active CN110005399B (zh) 2019-04-16 2019-04-16 一种含过量水凝析气反凝析油体积测量的实验方法

Country Status (1)

Country Link
CN (1) CN110005399B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118559A1 (en) * 1998-12-21 2004-06-24 Bayliss Geoffrey Stanley Method for placement of blocking gels or polymers at multiple specific depths of penetration into oil and gas, and water producing formations
CN101338664A (zh) * 2008-05-23 2009-01-07 安东石油技术(集团)有限公司 凝析气流量测量***
CN201196079Y (zh) * 2008-05-23 2009-02-18 安东石油技术(集团)有限公司 凝析气流量测量***
CN101831285A (zh) * 2010-05-24 2010-09-15 中国石油集团川庆钻探工程有限公司 一种压裂用耐高温高盐抗凝析油起泡剂及其制备方法
CN102518414A (zh) * 2011-12-28 2012-06-27 西南石油大学 缝洞型碳酸盐凝析气藏注水替气实验测试方法
WO2012116072A2 (en) * 2011-02-23 2012-08-30 Schlumberger Canada Limited Multi-phase region analysis method and apparatus
WO2015000066A1 (en) * 2013-07-05 2015-01-08 Nexen Energy Ulc Solvent addition to improve efficiency of hydrocarbon production
US20150240608A1 (en) * 2012-09-27 2015-08-27 Wintershall Holding GmbH Process For Producing Natural Gas And Natural Gas Condensate From Underground Gas Condensate Deposits
CN105547961A (zh) * 2016-01-05 2016-05-04 西南石油大学 衰竭式开发砂岩凝析气藏储层中反凝析油饱和度确定方法
CN106501300A (zh) * 2016-10-09 2017-03-15 中国石油天然气股份有限公司 一种高含水致密凝析气藏非平衡相变的测试方法
CN107045671A (zh) * 2017-03-22 2017-08-15 重庆科技学院 产水气井积液风险预测方法
CN206818382U (zh) * 2017-06-24 2017-12-29 西南石油大学 一种模拟开采凝析气藏析出凝析油后油管流动变化规律实验装置
CN207908312U (zh) * 2018-01-18 2018-09-25 西南石油大学 一种凝析气藏循环注气反凝析油饱和度实验装置
CN108959767A (zh) * 2018-07-02 2018-12-07 中国地质大学(北京) 一种窄河道型气藏不同井型凝析油伤害数值模拟方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118559A1 (en) * 1998-12-21 2004-06-24 Bayliss Geoffrey Stanley Method for placement of blocking gels or polymers at multiple specific depths of penetration into oil and gas, and water producing formations
CN101338664A (zh) * 2008-05-23 2009-01-07 安东石油技术(集团)有限公司 凝析气流量测量***
CN201196079Y (zh) * 2008-05-23 2009-02-18 安东石油技术(集团)有限公司 凝析气流量测量***
CN101831285A (zh) * 2010-05-24 2010-09-15 中国石油集团川庆钻探工程有限公司 一种压裂用耐高温高盐抗凝析油起泡剂及其制备方法
WO2012116072A2 (en) * 2011-02-23 2012-08-30 Schlumberger Canada Limited Multi-phase region analysis method and apparatus
CN102518414A (zh) * 2011-12-28 2012-06-27 西南石油大学 缝洞型碳酸盐凝析气藏注水替气实验测试方法
US20150240608A1 (en) * 2012-09-27 2015-08-27 Wintershall Holding GmbH Process For Producing Natural Gas And Natural Gas Condensate From Underground Gas Condensate Deposits
WO2015000066A1 (en) * 2013-07-05 2015-01-08 Nexen Energy Ulc Solvent addition to improve efficiency of hydrocarbon production
CN105547961A (zh) * 2016-01-05 2016-05-04 西南石油大学 衰竭式开发砂岩凝析气藏储层中反凝析油饱和度确定方法
CN106501300A (zh) * 2016-10-09 2017-03-15 中国石油天然气股份有限公司 一种高含水致密凝析气藏非平衡相变的测试方法
CN107045671A (zh) * 2017-03-22 2017-08-15 重庆科技学院 产水气井积液风险预测方法
CN206818382U (zh) * 2017-06-24 2017-12-29 西南石油大学 一种模拟开采凝析气藏析出凝析油后油管流动变化规律实验装置
CN207908312U (zh) * 2018-01-18 2018-09-25 西南石油大学 一种凝析气藏循环注气反凝析油饱和度实验装置
CN108959767A (zh) * 2018-07-02 2018-12-07 中国地质大学(北京) 一种窄河道型气藏不同井型凝析油伤害数值模拟方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
李继强等: "硚口凝析气藏流体相态特征", 《内蒙古石油化工》 *
李继强等: "硚口凝析气藏流体相态特征", 《内蒙古石油化工》, vol. 35, no. 17, 30 September 2009 (2009-09-30), pages 58 - 59 *
郭平等: "多孔介质对凝析气露点的影响讨论", 《中国海上油气地质》 *
郭平等: "多孔介质对凝析气露点的影响讨论", 《中国海上油气地质》, vol. 3, 30 June 2001 (2001-06-30), pages 1 - 6 *

Also Published As

Publication number Publication date
CN110005399B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
Somerton Some thermal characteristics of porous rocks
Ayirala et al. Comparative evaluation of a new gas/oil miscibility-determination technique
Lian et al. The characteristics of relative permeability curves in naturally fractured carbonate reservoirs
US7464582B2 (en) Method for determining the inlet capillary pressure of a porous medium
US10591399B2 (en) Methods for analyzing natural gas flow in subterranean reservoirs
Parvazdavani et al. Gas–oil relative permeability at near miscible conditions: An experimental and modeling approach
CN110005399A (zh) 一种含过量水凝析气反凝析油体积测量的实验方法
Kokal et al. Phase behavior of a gas-condensate/water system
Marsden et al. The effect of temperature on electrical resistivity of porous media
CN111208048A (zh) 一种基于相渗测试的贾敏效应动态变化定量表征方法
Cense et al. SCAL for gas reservoirs: a contribution for better experiments
PRASAD et al. DIFFERENT PROPERTIES OF REAL GAS AND SOLUTION-GAS RESERVOIR IN RESERVOIR ENGINEERING
Li et al. Effect of asphaltene on threshold pressure gradient of heavy oil in porous media
Shtepani et al. New approach in gas injection miscible processes modelling in compositional simulation
Vavra et al. Capillary pressure: Part 5. Laboratory Methods
Jin Assessing the Impact on Hydrocarbon Production from Tight and Shale Plays by Depletion and Injection Using Thermodynamic and Transport Properties from Confined Spaces
Bujnowski PVT Data Generation Reporting and General Uses
Muslim et al. FUNDAMENTAL OF MINIMUM MISCIBILITY PRESSURE DETERMINATION METHODS
Luo et al. Application of the Gas-Oil Interfacial Tension to Determine Minimum Miscibility Pressure
Arnórsson et al. Wet-steam well discharges. II. Assessment of aquifer fluid compositions
Randall et al. Laboratory factors influencing slim tube test results
Hassn et al. New Correlation for Oil Formation Volume Factor at and Below Bubble Point Pressure
Saini et al. Experimental Approaches
Li et al. Phase Behavior of Shale Oil and Gas
CN117074253A (zh) 一种页岩油储层毛细压力和饱和度评价实验装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant