CN109991636A - 基于gps、imu以及双目视觉的地图构建方法及*** - Google Patents

基于gps、imu以及双目视觉的地图构建方法及*** Download PDF

Info

Publication number
CN109991636A
CN109991636A CN201910225839.8A CN201910225839A CN109991636A CN 109991636 A CN109991636 A CN 109991636A CN 201910225839 A CN201910225839 A CN 201910225839A CN 109991636 A CN109991636 A CN 109991636A
Authority
CN
China
Prior art keywords
imu
coordinate system
acceleration
vision
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910225839.8A
Other languages
English (en)
Inventor
孙静
拱印生
朱庆林
张延坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QIMING INFORMATION TECHNOLOGY Co Ltd
Original Assignee
QIMING INFORMATION TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QIMING INFORMATION TECHNOLOGY Co Ltd filed Critical QIMING INFORMATION TECHNOLOGY Co Ltd
Priority to CN201910225839.8A priority Critical patent/CN109991636A/zh
Publication of CN109991636A publication Critical patent/CN109991636A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

本发明公开一种基于GPS、IMU以及双目视觉的地图构建方法及***,利用IMU以及双目视觉对其进行校正并在隧道等无GPS信号或信号弱的地方使用视觉导航。能够很好的解决视觉SLAM中的问题,并提高SLAM***的鲁棒性。采用了视觉信息和IMU信息融合的方法,将多种传感器数据进行融合,提供了新的算法结构,构建稳定有效的框架,对无人驾驶汽车或机器人进行稳定有效的自主定位与地图构建,实现GPS的定位信息进行校正及补充,应用到无人驾驶汽车和机器人***,进行大规模应用。

Description

基于GPS、IMU以及双目视觉的地图构建方法及***
技术领域:
本发明公开一种基于GPS、IMU以及双目视觉的地图构建方法及***,涉及到一种基于视觉特征和IMU信息的自主定位与地图构建***,属于机器人及控制技术领域。
背景技术:
近年来,互联网技术的迅速发展给汽车制造工业带来了革命性变化的机会。与此同时,汽车智能化技术正逐步得到广泛应用,这项技术简化了汽车的驾驶操作并提高了行驶安全性。而其中最典型也是最热门的未来应用就是无人驾驶汽车。在人工智能技术的加持下,无人驾驶高速发展,正在改变人类的出行方式,进而会大规模改变相关行业格局。
对于行驶在未知区域中的无人驾驶汽车而言,由于楼宇、树木遮挡等原因,汽车常常处于无信号或弱信号的状态,无法提供有效定位;在环境恶劣的地方,因天气等原因GPS或北斗导航***信号微弱,无法对无人驾驶汽车进行有效的定位。为此,无人驾驶汽车必须具有自主定位与地图构建的能力。通过实时的自主定位与地图构建,获取周围环境信息,确定无人驾驶汽车所处的位置,为路径规划提供重要的依据。
同时定位与地图构建(simultaneous localization an mapping,SLAM)技术是机器人领域一个重要的问题,SLAM问题可以描述为:配备传感器的机器人在空间中自由的移动,利用采集到的传感器信息,对自身位置进行定位,同时在自身定位的基础上增量式的构建地图,实现机器人的同时定位和制图。影响SLAM问题解决的两个重要因素分别为传感器的数据特征和观测数据相关性,如果能够高效的利用传感器数据并提高数据关联的准确性和鲁棒性,将能够影响到机器人的定位和地图的构建。
然而如今的无人驾驶技术大多仍处于辅助驾驶阶段,缺乏自主定位与地图构建的能力。同时较少的无人驾驶汽车采用单一传感器进行自主定位与地图构建,定位与地图构建精度较低,不能有效的将多种传感器进行融合,或者能够将多种传感器数据进行融合,但是不能对无人驾驶汽车进行稳定有效的自主定位与地图构建,并且不能大规模普及。
发明内容:
本发明提供一种基于GPS、IMU以及双目视觉的地图构建方法及***,利用IMU以及双目视觉对其进行校正并在隧道等无GPS信号或信号弱的地方使用视觉导航。能够很好的解决视觉SLAM中的问题,并提高SLAM***的鲁棒性。
本发明所述的一种基于GPS、IMU以及双目视觉的地图构建方法及***,采用的技术方案为:
本发明所述的一种基于GPS、IMU以及双目视觉的地图构建方法,其特征在于,包括以下步骤:
步骤一、初始化无人驾驶汽车或机器人的位姿,确定无人驾驶汽车行驶或机器人运动的轨迹,校正IMU惯性测量单元、双目摄像头等数据保持时间一致性;
步骤二、进行IMU惯性测量单元和双目摄像头以及基于RTK解算的GNSS接收器的信息采集与提取,从而进行视觉特征跟踪;
步骤三、基于流型的IMU预积分,包括:IMU预积分计算、计算预计分雅可比和协方差矩阵、计算残差雅可比;
步骤四、IMU初始化(视觉惯性联合初始化),这是视觉和惯性数据融合的第一步,是一段松耦合过程,将视觉数据和快速的IMU数据相结合,包括:陀螺仪偏置标定(零偏)、尺度恢复和重力加速度预估计、加速度计偏置标定和尺度重力加速度优化;
步骤五、使用紧耦合优化模型进行优化,包括:视觉惯性相邻帧紧耦合优化、视觉惯性局部地图紧耦合优化;
步骤六、估计无人驾驶汽车或机器人轨迹和周围环境三维地图的相似程度,得出实时位姿;
步骤七、构建地图并利用词袋模型进行闭环检测,对已有地图进行校正,进一步提高三维地图的精度。
1、在步骤2)信息采集与提取中:
在每次双目摄像机采集到图像后,对图像进行ORB特征的提取,提取ORB特征后,将提取的结果存储;
对无人驾驶汽车或机器人内部的IMU数据进行实时采集,并送入基于流型的IMU预积分中进行处理。
2.在步骤3)基于流型的IMU预积分中:
所述的IMU预积分计算中,世界坐标系、IMU坐标系以及相机坐标系通常用W、B、C来表示,以一定的时间间隔Δt来采样,测量IMU的加速度aB和角速度ωB。IMU测量模型:
其中,表示坐标系B下IMU测量模型的角速度和加速度,BωWB(t)∈R3表示在坐标系B下IMU中心B相对于世界坐标系W的瞬时角速度,RWB表示IMU中心B相对于世界坐标系W的旋转矩阵,为RWB的转置,Wa(t)∈R3表示在W坐标下IMU的瞬时加速度,Wg表示在W坐标系下重力矢量,b表示零偏,η表示高斯随机噪声,ba、bg分别表示加速度和重力矢量零偏,ηa、ηg分别表示加速度和重力矢量高斯随机噪声;
旋转R、平移p和速度v的导数可以表示为:
其中,Wv表示在W坐标系下IMU的瞬时速度,表示B相对于W的瞬时角速度,RWB表示IMU中心B相对于世界坐标系W的旋转矩阵,Wp表示W坐标系下的瞬时平移,为其导数;
世界坐标系下的旋转R、平移p和速度v可由一般的积分公式求得,离散时间下采用欧拉积分可以将上面连续时间积分改写并联立可得:
Δt为一定的时间间隔,ηgd(t)、ηad(t)表示离散时间下加速度和重力矢量高斯随机噪声,ba、bg分别表示加速度和重力矢量零偏,ηad、ηgd分别表示加速度和重力矢量高斯随机噪声,为IMU测量模型的角速度和加速度,这时候的状态量是世界坐标系下的;
设现在有i和j两个相邻关键帧,需要已知i时刻对应的IMU状态量,求解离散时间下j时刻关键帧对应的IMU预积分值:
Δt为一定的时间间隔,Δtij为i、j时刻之间的时间差,g为重力矢量,分别表示随时间变化的重力矢量和加速度零偏,表示随时间变化的IMU测量模型角速度,表示随时间变化的IMU测量模型速度,Rj、Ri、vj、vi、pj、pi分别为j时刻和i时刻的旋转、速度和平移,Rk为随时间变化的旋转矩阵,为随时间变化的离散加速度和重力矢量高斯随机噪声;
为了避免重复积分采用IMU预积分方法计算i、j时刻的状态量的相对变化,也就是将参考坐标系由世界坐标系转换到IMU的i时刻坐标系下,计算得到IMU状态量在i和j时刻之间的相对量:
Rj、Ri、vj、vi、pj、pi分别为j时刻和i时刻的旋转、速度和平移,
别为随时间变化的加速度和重力矢量零偏,表示随时间变化的IMU测量模型角速度,表示随时间变化的IMU测量模型速度,为随时间变化的离散加速度和重力矢量高斯随机噪声,ΔRij、Δvij、Δpij为i、j之间的旋转、速度和平移差,为ΔRi的转置,Δtij为i、j时刻之间的时间差,Δt为一定的时间间隔,ΔRik、Δvik为i、k时刻的旋转和速度差;
从上面的公式可以看出,整个预积分公式和偏置,噪声都有关系,需要分别分析偏置和噪声对***的影响,噪声服从高斯正态分布,偏执服从随机游走模型;
在初始化使用的IMU预积分是没有偏置的一阶项,雅可比矩阵是在初始化完成之后进行优化之前才计算而来的,得到IMU准确的预积分值(真值),和估计值从而得到IMU的残差;
***是服从高斯分布的,协方差矩阵是按照高斯分布计算得到,是个9*9的矩阵;
所述计算残差雅可比:
残差:
待估计的参数:
ΔRij、Δvij、Δpij为i、j时刻的旋转、速度和平移差,为器平均值, 为i时刻的加速度和重力矢量零偏,为其平均值,δba、δbg为其更新量,φ为旋转,Δtij帧间时间差,Ri、Rj、vi、vj、pi、pj表示i、j时刻的旋转矩阵、速度和平移,为其转置;
位移残差对应的雅可比如上,j时刻相应的雅可比也可如此推导,速度残差和旋转的雅可比公式与平移相似。至此IMU预积分完成。
3.在步骤4)IMU初始化(视觉惯性联合初始化)中:
利用两个联系关键帧的旋转量来估计陀螺仪的偏置,在一个常量bg的基础上加上一个微小的改变,通过最小化旋转误差来计算出陀螺仪偏置的更新量:
其中,N是关键帧的个数,ΔRi,i+1是两个连续关键帧预积分旋转测量量,J为协方差矩阵,分别为i+1时刻的B坐标系相对于W坐标系和i时刻的W坐标系相对于B坐标系的旋转矩阵;给以零初始值,上述函数通过G2O优化,求解最小目标函数对应的即为陀螺仪的初始偏置;
当求出零偏后将其代入预积分公式会重新计算一遍预积分值,使预积分数值更加准确;
要进行尺度恢复和重力加速度预估计,首先需要建立预估计状态向量X=[s,gW],其中,s是尺度,gW是世界坐标系下的重力加速度;
这里使用了三个关键帧(用1、2、3来表示)联立视觉和IMU预积分数据构建一个AX=B的最小二乘超定方程,至少需要四个关键帧,采用奇异值分解求最小二乘问题,速度较慢但是精度高;
I为单位矩阵,WPC为W坐标系下相机中心C的位移,RWB、RWC为W坐标系相对于B坐标系和C坐标系的旋转矩阵,Δtnm为两帧之间的时间差(n,m=1,2,3);
由于尺度恢复和重力加速度预估计的计算过程没有考虑到加速度计偏置的影响,使得重力加速度和加速度计偏置难以区分,很可能导致***病态性问题,所以进行加速度计偏置标定和尺度重力加速度优化;
设惯性坐标系I的重力加速度方向gW的归一化单位矢量θ为角度。然后计算世界坐标系W和惯性坐标系I之间的旋转矩阵:
然后把重力加速度表示成:
由于RWI是绕Z轴的旋转,所以只受X,Y方向的影响:
包含加速度的偏置:
采用三个连续的关键帧来消除速度量:
其中[](:,1:2)表示矩阵的前两列,加速度偏置更新量δθ为微小角度变量,WPC为W坐标系下相机中心C的位移,CPB为IMU中心B在C坐标系下的平移,s是尺度,Δtnm、Δpnm、Δvnm分别是两帧之间的时间、位移和速度差(n,m=1,2,3),RWB、RWC、RWI为W坐标系相对于B坐标系、C坐标系和I坐标系的旋转矩阵,为I坐标系下gI的归一化单位矢量,J为协方差矩阵;只优化重力加速度的方向,每次优化得到的数据都会被重新代入计算出最新的gW继续优化,直达变量收敛。
在步骤5)使用紧耦合优化模型进行优化中:
视觉惯性相邻帧紧耦合优化存在两种优化方式:(1)出现地图更新:
首先构建整体优化状态向量,包含当前时刻j的旋转平移速度位移加速度计偏置和陀螺仪偏置整体误差方程包含视觉重投影误差Eproj和IMU测量误差EIMU
视觉重投影方程就是简单的针孔相机重投影方程,并没有什么特别其残差,雅可比计算和信息矩阵与一般视觉无异;
IMU测量误差方程包含两部分,分别是P,V,R和ba,bg偏置;其残差,残差雅可比矩阵和信息矩阵在IMU预积分过程已经结算完成,直接带入即可:
eb=bj-bj
(40)
eR、ep、ev、eb为旋转、平移、速度和偏置误差,RWB、RWC、RWI为W坐标系相对于B坐标系、C坐标系和I坐标系的旋转矩阵,b为偏置;
(2)没出现地图更新:
如上所述,首先构建整体优化状态向量,包括当前时刻j+1和上一时刻j的旋转 平移速度位移加速度计偏置和陀螺仪偏置整体误差方程包含视觉重投影误差Eproj、IMU测量误差EIMU和先验误差Eprior
视觉和IMU的误差方程和前面相同,先验误差是j时刻的状态量;
eR、ep、ev、eb为旋转、平移、速度和偏置误差,为其转置,RWB为W坐标系相对于B坐标系旋转矩阵,RBW为B坐标系相对于W坐标系旋转矩阵,b为偏置,ρ为系数,WpBWvB为IMU中心B在W坐标系下的平移和速度;
视觉惯性局部地图紧耦合优化时,需要优化的关键帧包含有视觉重投影误差和IMU测量误差。
在步骤7)的闭环检测中,构建地图并利用词袋模型进行闭环检测,对已有地图进行校正,进一步提高三维地图的精度:
本发明所述的一种基于GPS、IMU以及双目视觉的地图构建***,该***包括车载运算中心、双目摄像头、IMU惯性测量单元、基于RTK解算的GNSS接收器电连接而成;
所述车载运算中心将ROS框架将双目摄像头、IMU惯性测量单元和基于RTK解算的GNSS接收器采集到的数据进行存储以及处理;
所述基于RTK解算的GNSS接收器接收GPS定位信息;
所述双目摄像机采集周围图像信息进行点云建模;
所述IMU惯性测量单元采集测量汽车三轴姿态角以及加速度;
首先初始化无人驾驶汽车或机器人的位姿,确定无人驾驶汽车行驶或机器人运动的轨迹,校正IMU惯性测量单元、双目摄像头等数据保持时间一致性;之后进行IMU惯性测量单元和双目摄像头以及基于RTK解算的GNSS接收器的信息采集与提取,送入车载运算中心;其次在车载运算中心中进行基于流型的IMU预积分、IMU初始化(视觉惯性联合初始化)、使用紧耦合优化模型优化计算;估计无人驾驶汽车或机器人轨迹和周围环境三维地图的相似程度,得出实时位姿;构建地图并利用词袋模型进行闭环检测,对已有地图进行校正,进一步提高三维地图的精度。
本发明的积极效果在于:
采用了视觉信息和IMU信息融合的方法,将多种传感器数据进行融合,提供了新的算法结构,构建稳定有效的框架,对无人驾驶汽车或机器人进行稳定有效的自主定位与地图构建,实现GPS的定位信息进行校正及补充,应用到无人驾驶汽车和机器人***,进行大规模应用。
附图说明:
图1是本发明的***结构图示;
图2、图3为实施例2在成都电子科技大学校园内测试时双目摄像头所拍摄图片。
具体实施方法:
下面将结合附图,对本发明的优选实施进行详细的描述。应当理解,优选实施仅为了说明本发明,而不是为了限制本发明的保护范围。
实施例1
本发明基于GPS、IMU以及双目视觉的自主定位与地图构建方法及***,包括以下步骤:
1、初始化无人驾驶汽车或机器人的位姿,确定无人驾驶汽车行驶或机器人运动的轨迹,校正IMU惯性测量单元、双目摄像头的数据保持时间一致性,保证其在同一局域网下;
2、进行IMU惯性测量单元和双目摄像头以及基于RTK解算的GNSS接收器的信息采集与提取,从而进行视觉特征跟踪;
3、基于流型的IMU预积分,包括:IMU预积分计算、计算预计分雅可比和协方差矩阵、计算残差雅可比;
4、IMU初始化(视觉惯性联合初始化),这是视觉和惯性数据融合的第一步,是一
段松耦合过程,将视觉数据和快速的IMU数据相结合,包括:陀螺仪偏置标定(零
偏)、尺度恢复和重力加速度预估计、加速度计偏置标定和尺度重力加速度优化;
5、使用紧耦合优化模型进行优化,包括:视觉惯性相邻帧紧耦合优化、视觉惯性局部地图紧耦合优化;
紧耦合需要把图像特征加入到特征向量中,得到最终的位姿信息。最后输出双目摄像头采集到的图像以及IMU、时间以及GPS坐标的文档。
6、估计无人驾驶汽车或机器人轨迹和周围环境三维地图的相似程度得出实时位姿;
7、构建地图并利用词袋模型进行闭环检测,对已有地图进行校正,进一步提高三维地图的精度。
首先通过将IMU估计得位姿序列和相机估计的位姿序列对齐可以估计出相机轨迹的真实尺度,而且IMU可以很好地预测出图像帧的位姿以及上一时刻特征点在下帧图像的位置,提高特征跟踪算法匹配速度和应对快速旋转的算法鲁棒性,最后IMU中加速度计提供的重力向量可以将估计的位置转为实际导航需要的世界坐标系中。同时,智能手机等移动终端对摄像头的大量需求大大降低了传感器的价格成本。综合以上,是一种低成本高性能的导航方案。
实施例2
如图1所示,基于GPS、IMU以及双目视觉的地图构建***,包括车载运算中心、双目摄像头、IMU惯性测量单元、基于RTK解算的GNSS接收器等。
硬件层面融合可以将双目摄像头和IMU集成在整个电路板上,全部信号传输都是在电路板板内完成,直接在控制视觉***的微处理器以及控制IMU的微处理器之间进行数据的交换,通过视觉处理把环境或是目标信息更细节的东西提升给相关算法之后,可以提升整个***的性能。也可以采用纯数据的交互和融合,通过数据总线进行传感器间数据的交换。双目摄像头、IMU惯性测量单元、基于RTK解算的GNSS接收器的数据输出端口通过数据总线将采集到的数据输入到车载运算中心中,在车载运算中心中进行数据的存储以及通过算法对双目摄像头、IMU惯性测量单元数据进行融合并对基于RTK解算的GNSS接收器得到的GPS信号进行校正。
所述车载运算中心为整个***的核心部件,使用ROS框架将双目摄像头、IMU惯性测量单元和基于RTK解算的GNSS接收器采集到的数据进行存储以及处理。所述基于RTK解算的GNSS接收器接收GPS定位信息;所述双目摄像机采集周围图像信息进行点云建模;所述IMU惯性测量单元采集测量汽车三轴姿态角以及加速度。
首先初始化无人驾驶汽车或机器人的位姿,确定无人驾驶汽车行驶或机器人运动的轨迹,校正IMU惯性测量单元、双目摄像头等数据保持时间一致性;之后进行IMU惯性测量单元和双目摄像头以及基于RTK解算的GNSS接收器的信息采集与提取,送入车载运算中心;其次在车载运算中心中进行基于流型的IMU预积分、IMU初始化(视觉惯性联合初始化)、使用紧耦合优化模型优化计算;估计无人驾驶汽车或机器人轨迹和周围环境三维地图的相似程度,得出实时位姿;构建地图并利用词袋模型进行闭环检测,对已有地图进行校正,进一步提高三维地图的精度。
图2、图3为在成都电子科技大学校园内测试时双目摄像头所拍摄图片,我们可以看出由于采用了双目摄像头,由于知道双目摄像头的焦距和二者之间的距离以及角度,在图中取一固定标志物,通过计算我们可以更加准确的判断标志物与观测点之间的距离,提高了检测精度。
以上所述仅为本发明的优选实施例,并不用于限制本发明。显然,本领域的技术人员,可以对本发明进行各种改动和变形而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变形属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变形在内。

Claims (7)

1.一种基于GPS、IMU以及双目视觉的地图构建方法,其特征在于,包括以下步骤:
步骤一、初始化无人驾驶汽车或机器人的位姿,确定无人驾驶汽车行驶或机器人运动的轨迹,校正IMU惯性测量单元、双目摄像头等数据保持时间一致性;
步骤二、进行IMU惯性测量单元和双目摄像头以及基于RTK解算的GNSS接收器的信息采集与提取,从而进行视觉特征跟踪;
步骤三、基于流型的IMU预积分,包括:IMU预积分计算、计算预计分雅可比和协方差矩阵、计算残差雅可比;
步骤四、IMU初始化(视觉惯性联合初始化),这是视觉和惯性数据融合的第一步,是一段松耦合过程,将视觉数据和快速的IMU数据相结合,包括:陀螺仪偏置标定(零偏)、尺度恢复和重力加速度预估计、加速度计偏置标定和尺度重力加速度优化;
步骤五、使用紧耦合优化模型进行优化,包括:视觉惯性相邻帧紧耦合优化、视觉惯性局部地图紧耦合优化;
步骤六、估计无人驾驶汽车或机器人轨迹和周围环境三维地图的相似程度,得出实时位姿;
步骤七、构建地图并利用词袋模型进行闭环检测,对已有地图进行校正,进一步提高三维地图的精度。
2.根据权利要求1所述的基于GPS、IMU以及双目视觉的地图构建方法,其特征在于,在步骤2)信息采集与提取中:
在每次双目摄像机采集到图像后,对图像进行ORB特征的提取,提取ORB特征后,将提取的结果存储;
对无人驾驶汽车或机器人内部的IMU数据进行实时采集,并送入基于流型的IMU预积分中进行处理。
3.根据权利要求1所述的基于GPS、IMU以及双目视觉的地图构建方法及***,其特征在于,在步骤3)基于流型的IMU预积分中:
所述的IMU预积分计算中,世界坐标系、IMU坐标系以及相机坐标系通常用W、B、C来表示,以一定的时间间隔Δt来采样,测量IMU的加速度aB和角速度ωB。IMU测量模型:
其中,表示坐标系B下IMU测量模型的角速度和加速度,BωWB(t)∈R3表示在坐标系B下IMU中心B相对于世界坐标系W的瞬时角速度,RWB表示IMU中心B相对于世界坐标系W的旋转矩阵,为RWB的转置,Wa(t)∈R3表示在W坐标下IMU的瞬时加速度,Wg表示在W坐标系下重力矢量,b表示零偏,η表示高斯随机噪声,ba、bg分别表示加速度和重力矢量零偏,ηa、ηg分别表示加速度和重力矢量高斯随机噪声;
旋转R、平移p和速度v的导数可以表示为:
其中,Wv表示在W坐标系下IMU的瞬时速度,表示B相对于W的瞬时角速度,RWB表示IMU中心B相对于世界坐标系W的旋转矩阵,Wp表示W坐标系下的瞬时平移,为其导数;
世界坐标系下的旋转R、平移p和速度v可由一般的积分公式求得,离散时间下采用欧拉积分可以将上面连续时间积分改写并联立可得:
Δt为一定的时间间隔,ηgd(t)、ηad(t)表示离散时间下加速度和重力矢量高斯随机噪声,ba、bg分别表示加速度和重力矢量零偏,ηad、ηgd分别表示加速度和重力矢量高斯随机噪声,为IMU测量模型的角速度和加速度,这时候的状态量是世界坐标系下的;
设现在有i和j两个相邻关键帧,需要已知i时刻对应的IMU状态量,求解离散时间下j时刻关键帧对应的IMU预积分值:
Δt为一定的时间间隔,Δtij为i、j时刻之间的时间差,g为重力矢量,分别表示随时间变化的重力矢量和加速度零偏,表示随时间变化的IMU测量模型角速度,表示随时间变化的IMU测量模型速度,Rj、Ri、vj、vi、pj、pi分别为j时刻和i时刻的旋转、速度和平移,Rk为随时间变化的旋转矩阵,为随时间变化的离散加速度和重力矢量高斯随机噪声;
为了避免重复积分采用IMU预积分方法计算i、j时刻的状态量的相对变化,也就是将参考坐标系由世界坐标系转换到IMU的i时刻坐标系下,计算得到IMU状态量在i和j时刻之间的相对量:
Rj、Ri、vj、vi、pj、pi分别为j时刻和i时刻的旋转、速度和平移,分别为随时间变化的加速度和重力矢量零偏,表示随时间变化的IMU测量模型角速度,表示随时间变化的IMU测量模型速度,为随时间变化的离散加速度和重力矢量高斯随机噪声,ΔRij、Δvij、Δpij为i、j之间的旋转、速度和平移差,为ΔRi的转置,Δtij为i、j时刻之间的时间差,Δt为一定的时间间隔,ΔRik、Δvik为i、k时刻的旋转和速度差;
从上面的公式可以看出,整个预积分公式和偏置,噪声都有关系,需要分别分析偏置和噪声对***的影响,噪声服从高斯正态分布,偏执服从随机游走模型;
在初始化使用的IMU预积分是没有偏置的一阶项,雅可比矩阵是在初始化完成之后进行优化之前才计算而来的,得到IMU准确的预积分值(真值),和估计值从而得到IMU的残差;
***是服从高斯分布的,协方差矩阵是按照高斯分布计算得到,是个9*9的矩阵;
所述计算残差雅可比:
残差:
待估计的参数:
ΔRij、Δvij、Δpij为i、j时刻的旋转、速度和平移差,为器平均值, 为i时刻的加速度和重力矢量零偏,为其平均值,δba、δbg为其更新量,φ为旋转,Δtij帧间时间差,Ri、Rj、vi、vj、pi、pj表示i、j时刻的旋转矩阵、速度和平移,为其转置;
位移残差对应的雅可比如上,j时刻相应的雅可比也可如此推导,速度残差和旋转的雅可比公式与平移相似。至此IMU预积分完成。
4.根据权利要求1所述的基于GPS、IMU以及双目视觉的地图构建方法,其特征在于,在步骤4)IMU初始化(视觉惯性联合初始化)中:
利用两个联系关键帧的旋转量来估计陀螺仪的偏置,在一个常量bg的基础上加上一个微小的改变,通过最小化旋转误差来计算出陀螺仪偏置的更新量:
其中,N是关键帧的个数,ΔRi,i+1是两个连续关键帧预积分旋转测量量,J为协方差矩阵,分别为i+1时刻的B坐标系相对于W坐标系和i时刻的W坐标系相对于B坐标系的旋转矩阵;给以零初始值,上述函数通过G2O优化,求解最小目标函数对应的即为陀螺仪的初始偏置;
当求出零偏后将其代入预积分公式会重新计算一遍预积分值,使预积分数值更加准确;
要进行尺度恢复和重力加速度预估计,首先需要建立预估计状态向量X=[s,gW],其中,s是尺度,gW是世界坐标系下的重力加速度;
这里使用了三个关键帧(用1、2、3来表示)联立视觉和IMU预积分数据构建一个AX=B的最小二乘超定方程,至少需要四个关键帧,采用奇异值分解求最小二乘问题,速度较慢但是精度高;
I为单位矩阵,WPC为W坐标系下相机中心C的位移,RWB、RWC为W坐标系相对于B坐标系和C坐标系的旋转矩阵,Δtnm为两帧之间的时间差(n,m=1,2,3);
由于尺度恢复和重力加速度预估计的计算过程没有考虑到加速度计偏置的影响,使得重力加速度和加速度计偏置难以区分,很可能导致***病态性问题,所以进行加速度计偏置标定和尺度重力加速度优化;
设惯性坐标系I的重力加速度方向gW的归一化单位矢量θ为角度。然后计算世界坐标系W和惯性坐标系I之间的旋转矩阵:
然后把重力加速度表示成:
由于RWI是绕Z轴的旋转,所以只受X,Y方向的影响:
包含加速度的偏置:
采用三个连续的关键帧来消除速度量:
其中[](:,1:2)表示矩阵的前两列,加速度偏置更新量δθ为微小角度变量,WPC为W坐标系下相机中心C的位移,CPB为IMU中心B在C坐标系下的平移,s是尺度,Δtnm、Δpnm、Δvnm分别是两帧之间的时间、位移和速度差(n,m=1,2,3),RWB、RWC、RWI为W坐标系相对于B坐标系、C坐标系和I坐标系的旋转矩阵,为I坐标系下gI的归一化单位矢量,J为协方差矩阵;只优化重力加速度的方向,每次优化得到的数据都会被重新代入计算出最新的gW继续优化,直达变量收敛。
5.根据权利要求1所述的基于GPS、IMU以及双目视觉的地图构建方法,其特征在于,在步骤5)使用紧耦合优化模型进行优化中:
视觉惯性相邻帧紧耦合优化存在两种优化方式:(1)出现地图更新:
首先构建整体优化状态向量,包含当前时刻j的旋转平移速度位移加速度计偏置和陀螺仪偏置整体误差方程包含视觉重投影误差Eproj和IMU测量误差EIMU
视觉重投影方程就是简单的针孔相机重投影方程,并没有什么特别其残差,雅可比计算和信息矩阵与一般视觉无异;
IMU测量误差方程包含两部分,分别是P,V,R和ba,bg偏置;其残差,残差雅可比矩阵和信息矩阵在IMU预积分过程已经结算完成,直接带入即可:
eb=bj-bj (40)
eR、ep、ev、eb为旋转、平移、速度和偏置误差,RWB、RWC、RWI为W坐标系相对于B坐标系、C坐标系和I坐标系的旋转矩阵,b为偏置;
(2)没出现地图更新:
如上所述,首先构建整体优化状态向量,包括当前时刻j+1和上一时刻j的旋转 平移速度位移加速度计偏置和陀螺仪偏置整体误差方程包含视觉重投影误差Eproj、IMU测量误差EIMU和先验误差Eprior
视觉和IMU的误差方程和前面相同,先验误差是j时刻的状态量;
eR、ep、ev、eb为旋转、平移、速度和偏置误差,为其转置,RWB为W坐标系相对于B坐标系旋转矩阵,RBW为B坐标系相对于W坐标系旋转矩阵,b为偏置,ρ为系数,WpBWvB为IMU中心B在W坐标系下的平移和速度;
视觉惯性局部地图紧耦合优化时,需要优化的关键帧包含有视觉重投影误差和IMU测量误差。
6.根据权利要求1所述的基于GPS、IMU以及双目视觉的地图构建方法,其特征在于,在步骤7)的闭环检测中,构建地图并利用词袋模型进行闭环检测,对已有地图进行校正,进一步提高三维地图的精度。
7.一种基于GPS、IMU以及双目视觉的地图构建***,其特征在于:
该***包括车载运算中心、双目摄像头、IMU惯性测量单元、基于RTK解算的GNSS接收器;
所述车载运算中心将ROS框架将双目摄像头、IMU惯性测量单元和基于RTK解算的GNSS接收器采集到的数据进行存储以及处理;
所述基于RTK解算的GNSS接收器接收GPS定位信息;
所述双目摄像机采集周围图像信息进行点云建模;
所述IMU惯性测量单元采集测量汽车三轴姿态角以及加速度;
硬件层面融合可以将双目摄像头和IMU集成在整个电路板上,全部信号传输都是在电路板板内完成,直接在控制视觉***的微处理器以及控制IMU的微处理器之间进行数据的交换,通过视觉处理把环境或是目标信息更细节的东西提升给相关算法之后,可以提升整个***的性能。也可以采用纯数据的交互和融合,通过数据总线进行传感器间数据的交换。双目摄像头、IMU惯性测量单元、基于RTK解算的GNSS接收器的数据输出端口通过数据总线将采集到的数据输入到车载运算中心中,在车载运算中心中进行数据的存储以及通过算法对双目摄像头、IMU惯性测量单元数据进行融合并对基于RTK解算的GNSS接收器得到的GPS信号进行校正。
CN201910225839.8A 2019-03-25 2019-03-25 基于gps、imu以及双目视觉的地图构建方法及*** Pending CN109991636A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910225839.8A CN109991636A (zh) 2019-03-25 2019-03-25 基于gps、imu以及双目视觉的地图构建方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910225839.8A CN109991636A (zh) 2019-03-25 2019-03-25 基于gps、imu以及双目视觉的地图构建方法及***

Publications (1)

Publication Number Publication Date
CN109991636A true CN109991636A (zh) 2019-07-09

Family

ID=67131077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910225839.8A Pending CN109991636A (zh) 2019-03-25 2019-03-25 基于gps、imu以及双目视觉的地图构建方法及***

Country Status (1)

Country Link
CN (1) CN109991636A (zh)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412635A (zh) * 2019-07-22 2019-11-05 武汉大学 一种环境信标支持下的gnss/sins/视觉紧组合方法
CN110455301A (zh) * 2019-08-01 2019-11-15 河北工业大学 一种基于惯性测量单元的动态场景slam方法
CN110487267A (zh) * 2019-07-10 2019-11-22 湖南交工智能技术有限公司 一种基于vio&uwb松组合的无人机导航***及方法
CN110542916A (zh) * 2019-09-18 2019-12-06 上海交通大学 卫星与视觉紧耦合定位方法、***及介质
CN110703754A (zh) * 2019-10-17 2020-01-17 南京航空航天大学 一种自动驾驶车辆路径与速度高度耦合的轨迹规划方法
CN110702107A (zh) * 2019-10-22 2020-01-17 北京维盛泰科科技有限公司 一种单目视觉惯性组合的定位导航方法
CN110930506A (zh) * 2019-10-11 2020-03-27 深圳市道通智能航空技术有限公司 三维地图生成方法、移动装置和计算机可读存储介质
CN111141295A (zh) * 2019-12-20 2020-05-12 南京航空航天大学 一种基于单目orb-slam的自动化地图恢复方法
CN111337037A (zh) * 2020-05-19 2020-06-26 北京数字绿土科技有限公司 移动激光雷达slam制图装置及数据处理方法
CN111596665A (zh) * 2020-05-29 2020-08-28 浙江大学 一种适用于腿足机器人规划的稠密高度地图构建方法
CN111623773A (zh) * 2020-07-17 2020-09-04 国汽(北京)智能网联汽车研究院有限公司 一种基于鱼眼视觉和惯性测量的目标定位方法及装置
CN111862150A (zh) * 2020-06-19 2020-10-30 杭州易现先进科技有限公司 图像跟踪的方法、装置、ar设备和计算机设备
CN112033422A (zh) * 2020-08-28 2020-12-04 的卢技术有限公司 一种多传感器融合的slam方法
CN112082545A (zh) * 2020-07-29 2020-12-15 武汉威图传视科技有限公司 一种基于imu和激光雷达的地图生成方法、装置及***
CN112240768A (zh) * 2020-09-10 2021-01-19 西安电子科技大学 基于Runge-Kutta4改进预积分的视觉惯导融合SLAM方法
CN112256001A (zh) * 2020-09-29 2021-01-22 华南理工大学 一种视角约束下的移动机器人视觉伺服控制方法
CN112284396A (zh) * 2020-10-29 2021-01-29 的卢技术有限公司 一种适用于地下停车场的车辆定位方法
CN112762929A (zh) * 2020-12-24 2021-05-07 华中科技大学 一种智能导航方法、装置和设备
CN112789655A (zh) * 2019-09-23 2021-05-11 北京航迹科技有限公司 用于标定惯性测试单元和相机的***和方法
CN112904883A (zh) * 2021-01-26 2021-06-04 德鲁动力科技(成都)有限公司 四足机器人地形感知方法、运动控制方法及***
CN113155121A (zh) * 2021-03-22 2021-07-23 珠海深圳清华大学研究院创新中心 一种车辆定位方法、装置及电子设备
WO2021147391A1 (zh) * 2020-01-21 2021-07-29 魔门塔(苏州)科技有限公司 一种基于vio和卫星导航***融合的地图生成方法及装置
CN113190639A (zh) * 2021-05-13 2021-07-30 重庆市勘测院 居民地制图综合方法
CN113325454A (zh) * 2021-05-18 2021-08-31 武汉大学 一种基于ArduRover无人车的组合定位方法
CN113375665A (zh) * 2021-06-18 2021-09-10 西安电子科技大学 基于多传感器松紧耦合的无人机位姿估计方法
CN113378607A (zh) * 2020-03-10 2021-09-10 顺丰科技有限公司 过激驾驶行为管理方法、装置及计算机可读存储介质
CN113465608A (zh) * 2021-07-22 2021-10-01 清华大学苏州汽车研究院(吴江) 一种路侧传感器标定方法及***
WO2021218620A1 (zh) * 2020-04-30 2021-11-04 上海商汤临港智能科技有限公司 地图构建方法、装置、设备及存储介质
CN113701750A (zh) * 2021-08-23 2021-11-26 长安大学 一种井下多传感器的融合定位***
WO2021248636A1 (zh) * 2020-06-12 2021-12-16 东莞市普灵思智能电子有限公司 一种自动驾驶对象探测和定位***及方法
CN114088087A (zh) * 2022-01-21 2022-02-25 深圳大学 无人机gps-denied下高可靠高精度导航定位方法和***
CN114252099A (zh) * 2021-12-03 2022-03-29 武汉科技大学 一种智能车辆多传感器融合自标定方法及***
CN114579679A (zh) * 2020-12-01 2022-06-03 中移(成都)信息通信科技有限公司 空间定位数据融合方法、***、设备及计算机存储介质
CN115201873A (zh) * 2022-09-06 2022-10-18 中冶智诚(武汉)工程技术有限公司 多体制协同室内外精密定位***架构及其运行方法
CN115307626A (zh) * 2021-05-06 2022-11-08 北京航通云科技有限公司 一种应用于小型无人机的冗余定位方法
WO2024045632A1 (zh) * 2022-08-31 2024-03-07 华南理工大学 基于双目视觉和imu的水下场景三维重建方法及设备
CN113296133B (zh) * 2020-04-01 2024-03-15 易通共享技术(广州)有限公司 一种基于双目视觉测量与高精度定位融合技术实现位置标定的装置及方法

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487267A (zh) * 2019-07-10 2019-11-22 湖南交工智能技术有限公司 一种基于vio&uwb松组合的无人机导航***及方法
CN110487267B (zh) * 2019-07-10 2021-06-04 湖南交工智能技术有限公司 一种基于vio&uwb松组合的无人机导航***及方法
CN110412635A (zh) * 2019-07-22 2019-11-05 武汉大学 一种环境信标支持下的gnss/sins/视觉紧组合方法
CN110412635B (zh) * 2019-07-22 2023-11-24 武汉大学 一种环境信标支持下的gnss/sins/视觉紧组合方法
CN110455301A (zh) * 2019-08-01 2019-11-15 河北工业大学 一种基于惯性测量单元的动态场景slam方法
CN110542916A (zh) * 2019-09-18 2019-12-06 上海交通大学 卫星与视觉紧耦合定位方法、***及介质
CN112789655A (zh) * 2019-09-23 2021-05-11 北京航迹科技有限公司 用于标定惯性测试单元和相机的***和方法
CN110930506A (zh) * 2019-10-11 2020-03-27 深圳市道通智能航空技术有限公司 三维地图生成方法、移动装置和计算机可读存储介质
CN110930506B (zh) * 2019-10-11 2022-09-09 深圳市道通智能航空技术股份有限公司 三维地图生成方法、移动装置和计算机可读存储介质
CN110703754A (zh) * 2019-10-17 2020-01-17 南京航空航天大学 一种自动驾驶车辆路径与速度高度耦合的轨迹规划方法
CN110702107A (zh) * 2019-10-22 2020-01-17 北京维盛泰科科技有限公司 一种单目视觉惯性组合的定位导航方法
CN111141295A (zh) * 2019-12-20 2020-05-12 南京航空航天大学 一种基于单目orb-slam的自动化地图恢复方法
WO2021147391A1 (zh) * 2020-01-21 2021-07-29 魔门塔(苏州)科技有限公司 一种基于vio和卫星导航***融合的地图生成方法及装置
CN113378607A (zh) * 2020-03-10 2021-09-10 顺丰科技有限公司 过激驾驶行为管理方法、装置及计算机可读存储介质
CN113296133B (zh) * 2020-04-01 2024-03-15 易通共享技术(广州)有限公司 一种基于双目视觉测量与高精度定位融合技术实现位置标定的装置及方法
WO2021218620A1 (zh) * 2020-04-30 2021-11-04 上海商汤临港智能科技有限公司 地图构建方法、装置、设备及存储介质
CN111337037A (zh) * 2020-05-19 2020-06-26 北京数字绿土科技有限公司 移动激光雷达slam制图装置及数据处理方法
CN111337037B (zh) * 2020-05-19 2020-09-29 北京数字绿土科技有限公司 移动激光雷达slam制图装置及数据处理方法
CN111596665A (zh) * 2020-05-29 2020-08-28 浙江大学 一种适用于腿足机器人规划的稠密高度地图构建方法
WO2021248636A1 (zh) * 2020-06-12 2021-12-16 东莞市普灵思智能电子有限公司 一种自动驾驶对象探测和定位***及方法
CN111862150A (zh) * 2020-06-19 2020-10-30 杭州易现先进科技有限公司 图像跟踪的方法、装置、ar设备和计算机设备
CN111623773A (zh) * 2020-07-17 2020-09-04 国汽(北京)智能网联汽车研究院有限公司 一种基于鱼眼视觉和惯性测量的目标定位方法及装置
CN112082545A (zh) * 2020-07-29 2020-12-15 武汉威图传视科技有限公司 一种基于imu和激光雷达的地图生成方法、装置及***
CN112082545B (zh) * 2020-07-29 2022-06-21 武汉威图传视科技有限公司 一种基于imu和激光雷达的地图生成方法、装置及***
CN112033422B (zh) * 2020-08-28 2023-11-21 的卢技术有限公司 一种多传感器融合的slam方法
CN112033422A (zh) * 2020-08-28 2020-12-04 的卢技术有限公司 一种多传感器融合的slam方法
CN112240768A (zh) * 2020-09-10 2021-01-19 西安电子科技大学 基于Runge-Kutta4改进预积分的视觉惯导融合SLAM方法
CN112256001A (zh) * 2020-09-29 2021-01-22 华南理工大学 一种视角约束下的移动机器人视觉伺服控制方法
CN112284396B (zh) * 2020-10-29 2023-01-03 的卢技术有限公司 一种适用于地下停车场的车辆定位方法
CN112284396A (zh) * 2020-10-29 2021-01-29 的卢技术有限公司 一种适用于地下停车场的车辆定位方法
CN114579679A (zh) * 2020-12-01 2022-06-03 中移(成都)信息通信科技有限公司 空间定位数据融合方法、***、设备及计算机存储介质
CN112762929B (zh) * 2020-12-24 2022-08-02 华中科技大学 一种智能导航方法、装置和设备
CN112762929A (zh) * 2020-12-24 2021-05-07 华中科技大学 一种智能导航方法、装置和设备
CN112904883B (zh) * 2021-01-26 2022-08-05 德鲁动力科技(成都)有限公司 四足机器人地形感知方法、运动控制方法及***
CN112904883A (zh) * 2021-01-26 2021-06-04 德鲁动力科技(成都)有限公司 四足机器人地形感知方法、运动控制方法及***
CN113155121B (zh) * 2021-03-22 2024-04-02 珠海深圳清华大学研究院创新中心 一种车辆定位方法、装置及电子设备
CN113155121A (zh) * 2021-03-22 2021-07-23 珠海深圳清华大学研究院创新中心 一种车辆定位方法、装置及电子设备
CN115307626A (zh) * 2021-05-06 2022-11-08 北京航通云科技有限公司 一种应用于小型无人机的冗余定位方法
CN113190639B (zh) * 2021-05-13 2022-12-13 重庆市勘测院 居民地制图综合方法
CN113190639A (zh) * 2021-05-13 2021-07-30 重庆市勘测院 居民地制图综合方法
CN113325454B (zh) * 2021-05-18 2022-06-14 武汉大学 一种基于ArduRover无人车的组合定位方法
CN113325454A (zh) * 2021-05-18 2021-08-31 武汉大学 一种基于ArduRover无人车的组合定位方法
CN113375665B (zh) * 2021-06-18 2022-12-02 西安电子科技大学 基于多传感器松紧耦合的无人机位姿估计方法
CN113375665A (zh) * 2021-06-18 2021-09-10 西安电子科技大学 基于多传感器松紧耦合的无人机位姿估计方法
CN113465608B (zh) * 2021-07-22 2024-05-03 清华大学苏州汽车研究院(吴江) 一种路侧传感器标定方法及***
CN113465608A (zh) * 2021-07-22 2021-10-01 清华大学苏州汽车研究院(吴江) 一种路侧传感器标定方法及***
CN113701750A (zh) * 2021-08-23 2021-11-26 长安大学 一种井下多传感器的融合定位***
CN114252099A (zh) * 2021-12-03 2022-03-29 武汉科技大学 一种智能车辆多传感器融合自标定方法及***
CN114252099B (zh) * 2021-12-03 2024-02-23 武汉科技大学 一种智能车辆多传感器融合自标定方法及***
CN114088087A (zh) * 2022-01-21 2022-02-25 深圳大学 无人机gps-denied下高可靠高精度导航定位方法和***
CN114088087B (zh) * 2022-01-21 2022-04-15 深圳大学 无人机gps-denied下高可靠高精度导航定位方法和***
WO2024045632A1 (zh) * 2022-08-31 2024-03-07 华南理工大学 基于双目视觉和imu的水下场景三维重建方法及设备
CN115201873B (zh) * 2022-09-06 2023-07-28 中冶智诚(武汉)工程技术有限公司 多体制协同室内外精密定位***架构及其运行方法
CN115201873A (zh) * 2022-09-06 2022-10-18 中冶智诚(武汉)工程技术有限公司 多体制协同室内外精密定位***架构及其运行方法

Similar Documents

Publication Publication Date Title
CN109991636A (zh) 基于gps、imu以及双目视觉的地图构建方法及***
CN109631887B (zh) 基于双目、加速度与陀螺仪的惯性导航高精度定位方法
CN108731670A (zh) 基于量测模型优化的惯性/视觉里程计组合导航定位方法
Panahandeh et al. Vision-aided inertial navigation based on ground plane feature detection
CN102538781B (zh) 基于机器视觉和惯导融合的移动机器人运动姿态估计方法
CN110487267B (zh) 一种基于vio&uwb松组合的无人机导航***及方法
CN105953796A (zh) 智能手机单目和imu融合的稳定运动跟踪方法和装置
CN106780699A (zh) 一种基于sins/gps和里程计辅助的视觉slam方法
CN110146909A (zh) 一种定位数据处理方法
CN110221328A (zh) 一种组合导航方法和装置
CN111426320B (zh) 一种基于图像匹配/惯导/里程计的车辆自主导航方法
CN105509739A (zh) 采用固定区间crts平滑的ins/uwb紧组合导航***及方法
CN107728182A (zh) 基于相机辅助的柔性多基线测量方法和装置
CN112697138B (zh) 一种基于因子图优化的仿生偏振同步定位与构图的方法
CN109443348A (zh) 一种基于环视视觉和惯导融合的地下车库库位跟踪方法
CN105953795B (zh) 一种用于航天器表面巡视的导航装置及方法
CN103776446A (zh) 一种基于双mems-imu的行人自主导航解算算法
CN112967392A (zh) 一种基于多传感器触合的大规模园区建图定位方法
CN109931955A (zh) 基于状态相关李群滤波的捷联惯性导航***初始对准方法
CN115574816B (zh) 仿生视觉多源信息智能感知无人平台
CN109764870A (zh) 基于变换估计量建模方案的载体初始航向估算方法
CN115930977A (zh) 特征退化场景的定位方法、***、电子设备和可读存介质
Klein et al. LiDAR and INS fusion in periods of GPS outages for mobile laser scanning mapping systems
Gupta et al. Terrain‐based vehicle orientation estimation combining vision and inertial measurements
CN105115507B (zh) 一种基于双imu的双模式室内个人导航***及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination