CN109987585A - 一种电解水产氧的超薄氢氧化物纳米片的制备方法 - Google Patents

一种电解水产氧的超薄氢氧化物纳米片的制备方法 Download PDF

Info

Publication number
CN109987585A
CN109987585A CN201910347549.0A CN201910347549A CN109987585A CN 109987585 A CN109987585 A CN 109987585A CN 201910347549 A CN201910347549 A CN 201910347549A CN 109987585 A CN109987585 A CN 109987585A
Authority
CN
China
Prior art keywords
ultra
nano piece
hydroxide nano
preparation
aquatic products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910347549.0A
Other languages
English (en)
Other versions
CN109987585B (zh
Inventor
顾志国
张文达
郝思嘉
胡青桃
刘勇
符秋婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201910347549.0A priority Critical patent/CN109987585B/zh
Publication of CN109987585A publication Critical patent/CN109987585A/zh
Application granted granted Critical
Publication of CN109987585B publication Critical patent/CN109987585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种电解水产氧的超薄氢氧化物纳米片的制备方法,步骤为:(1)在K2[M(CN)4]·3H2O的水溶液中加入CH3CH2OH和H2O的混合液以形成分层,再缓慢加入金属氯化物和烷基溴化铵盐的乙醇溶液,经静置扩散获得晶体,其中M为Ni、Pt或Pd;(2)将获得的晶体分散至乙醇中,充分搅拌使晶体的金属有机框架层发生剥离,过滤收集滤液;(3)将收集的滤液离心,获得纳米片;(4)将获得的纳米片分散至水中,经超声分散后,滴入碱性溶液,待溶液由无色变为深黑色后离心,产物分别经水、乙醇洗涤数次后,干燥即得到所述的氢氧化物纳米片。本发明制备的氢氧化物纳米片拥有优异的电催化性能,可降低使用贵金属导致成本高的问题。

Description

一种电解水产氧的超薄氢氧化物纳米片的制备方法
技术领域
本发明属于纳米材料领域,具体涉及一种电解水产氧的超薄氢氧化物纳米片的制备方法。
技术背景
电解水产氧在水分解和金属空气电池中起着很重要的作用,但是电解水产氧由于其四电子传输过程导致其动力学反应很缓慢。这就需要更大的过电势才能达到生产要求的电流密度。目前很多研究已经从贵金属催化剂转向过渡金属催化剂。例如:金属氧化物、金属氢氧化物及其衍生物。尽管在金属氢氧化物这方面已经取得了很大的进步,但是设计具有大量活性位点的超薄结构仍然是目前研究的热点。
二维石墨结构转化成石墨烯片层结构已成为研究的热点话题,而类似的二维结构有很多,比如金属有机框架、共价有机框架、无机金属氢氧化物层等等。然而将他们剥离成纳米片仍存在着很大的困难。唐志勇团队利用超声的方法制备了大量的尺寸在几十纳米的纳米片,但是超声过程在很大程度上破坏了纳米片的形貌,进而不能提供足够多的活性位点。
发明内容
针对现有技术存在的上述不足,本发明的目的是提供一种电解水产氧的超薄氢氧化物纳米片的制备方法,该方法将大的有机配体***金属有机框架层与层之间的间隙,进而扩大层与层之间的间隔,使得层间的作用力减弱,进而可以顺利剥离得到纳米片。
为实现上述目的,本发明采用如下技术方案:
一种电解水产氧的超薄氢氧化物纳米片的制备方法,包括以下步骤:
(1)在K2[M(CN)4]·3H2O的水溶液中加入CH3CH2OH和H2O的混合液以形成分层,再缓慢加入金属氯化物和烷基溴化铵盐的乙醇混合溶液,经静置扩散获得晶体,其中M为Ni、Pt或Pd;
(2)将获得的晶体分散至乙醇中,充分搅拌使晶体的金属有机框架层发生剥离,过滤收集滤液;
(3)将收集的滤液离心,获得纳米片;
(4)将获得的纳米片分散至水中,经超声分散后,滴入碱性溶液,待溶液由无色变为深黑色后离心,产物分别经水、乙醇洗涤数次后,干燥即得到所述的氢氧化物纳米片。
其中,上述步骤(1)静置扩散过程中,三种溶液会随着密度的作用相互进入到彼此溶液体系,期间反应物便会相互接触发生反应,从而得到晶体产物。静置扩散的时间可优选为2~4周。金属氯化物可为氯化锰、氯化亚铁、氯化钴、氯化镍或氯化铜等。
上述步骤(2)中,不宜采用高速搅拌,因为高速搅拌会破坏纳米片的整体形貌,搅拌速度可优选为50~250r/min。搅拌时间可根据需要设定,以使金属有机框架层发生剥离为准,搅拌时间宜在6h以上,可优选为6~12h。
上述步骤(4)中,洗涤后的产物,室温干燥即可。
本发明对温度未做特别说明的,均为室温下操作,即20~30℃。
作为优选,所述K2[M(CN)4]·3H2O水溶液、CH3CH2OH和H2O的混合液、金属氯化物和烷基溴化铵盐的乙醇混合溶液三者的体积比为1:2~6:1。
作为优选,所述K2[M(CN)4]·3H2O水溶液的浓度为0.04~0.16mol/L。
作为优选,所述CH3CH2OH和H2O的混合液中CH3CH2OH和H2O的体积比为1:1~3。
作为优选,所述金属氯化物和烷基溴化铵盐的乙醇混合溶液中,金属氯化物的浓度为0.04~0.12mol/L,烷基溴化铵盐的浓度为0.04~0.12mol/L。
作为优选,所述烷基溴化铵盐为四正丁基溴化铵、四癸基溴化铵或四正辛基溴化铵。
作为优选,步骤(2)中过滤后的晶体继续分散至乙醇中,充分搅拌后过滤,收集滤液,过滤后的晶体重复前述操作,优选地,获得的晶体前后共进行4~6次所述操作。
作为优选,步骤(3)中滤液先以低速离心除去大颗粒固体,再以高速离心获得纳米片。本发明中低速指在2000r/min以下,高速指在6000r/min以上。
作为优选,步骤(2)中晶体与乙醇的质量体积比为1g:5~10mL。
本发明方法制备的超薄氢氧化物纳米片可应用于电解水产氧。
相比现有技术,本发明具有如下有益效果:本发明将不同的烷基溴化铵盐***金属有机框架层与层之间的间隙,扩大了层与层之间的距离,弱化了层与层之间的作用力,实现了剥离大片的纳米片,再多次更换母液获得超薄的纳米片,将获得的超薄纳米片在碱性溶液中转化成超薄的金属氢氧化物纳米片,从而拥有优异的电催化性能;本发明所提供的氢氧化物纳米片电催化性能已经和商用的IrO2相媲美,可减少贵金属在电催化中的使用,实现了很好的降低成本的作用。
附图说明
图1为实施例1制备的晶体扫描电镜图;
图2为实施例1制备的纳米片透射电镜图;
图3为实施例1制备的超薄氢氧化物纳米片扫描电镜图;
图4为实施例1制备的超薄氢氧化物纳米片原子力电镜图;
图5为实施例1制备的超薄氢氧化物纳米片电化学性能图。
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步详细说明。
实施例1
本实施例超薄氢氧化物纳米片的制备方法如下:
(1)在含有5mL K2[M(CN)4]·3H2O水溶液的试管中加入CH3CH2OH和H2O的混合液以形成分层,再缓慢加入金属氯化物和烷基溴化铵盐的乙醇混合溶液,静置扩散三周获得晶体;
其中,金属氯化物为二氯化亚铁,M为Ni,烷基溴化铵盐为四正丁基溴化铵。
K2[M(CN)4]·3H2O的水溶液的浓度为0.06mol/L,CH3CH2OH和H2O的混合液中CH3CH2OH、H2O的体积为1:1,金属氯化物和烷基溴化铵盐的乙醇混合溶液中,金属氯化物的浓度为0.06mol/L,烷基溴化铵盐的浓度为0.06mol/L。
K2[M(CN)4]·3H2O的水溶液、CH3CH2OH和H2O的混合液、金属氯化物和烷基溴化铵盐的乙醇混合溶液三者的体积比为1:2:1。
(2)将获得的晶体分散至乙醇中,室温缓慢搅拌(80r/min)6h,过滤收集滤液,过滤后的晶体继续分散至乙醇中缓慢搅拌6h,然后过滤收集滤液,过滤后的晶体继续分散至乙醇中重复前述操作,步骤(1)中获得的晶体前后共重复所述操作5次;
其中,晶体与乙醇的质量体积比为1mg:6mL。
(3)将收集的滤液离心,获得纳米片。
其中,滤液先以2000r/min离心除去大颗粒后,再以8000r/min离心。
(4)将得到的纳米片分散至水中,经超声分散后,滴入0.1M KOH溶液,待溶液颜色无色变为深黑色后离心,产物先用水洗涤,再用乙醇洗涤三次后,室温干燥得到所述的超薄氢氧化物纳米片。
图1为本实施例步骤1得到的晶体扫描电镜图像,图2为本实施例步骤2得到的纳米片透射电镜图像,图3为本实施例步骤4得到的超薄氢氧化物纳米片扫描电镜图像,图4为本实施例步骤4得到的超薄氢氧化物纳米片原子力显微镜图像。
由图1~4可观察到,图1是砖块晶体的扫描电镜图,可以看出它的层状结构;图2是剥离纳米片的透射电镜图,可以看出它的片层结构和清晰的边缘;图3可以看出氢氧化物的纳米片结构,结合图4原子力显微镜可以看出该氢氧化物纳米片厚度约为0.9nm。
电解水产氧实验
将本实施例制备的3mg超薄氢氧化物纳米片,配合80μL的5%Nifion粘胶剂和1mL乙醇,取100uL涂覆在电极上,用于电解水产氧实验。
电解水实验是在辰华760E电化学工作中测试,测试采用三电极***。他们是由参比电极Hg/HgO、对电极Pt电极和工作电极组成的。电解液是氧气饱和的1M KOH溶液,工作电极是泡沫镍,且它的面积是1cm2
极化曲线(图5)是通过线性扫描伏安法以5mV/s的扫描速率获得的。如图5所示,Fe-NS在10mA/cm2电流密度下的电压仅1.49V,与理论电压1.23V相比,过电势仅260mV,同时它与商用IrO2拥有相当的电解水产氧性能。
实施例2
本实施例超薄氢氧化物纳米片的制备方法如下:
(1)在含有8mL K2[M(CN)4]·3H2O水溶液的试管中加入CH3CH2OH和H2O的混合液以形成分层,再缓慢加入金属氯化物和烷基溴化铵盐的乙醇混合溶液,静置扩散三周获得晶体;
其中,金属氯化物为二氯化锰,M为Pd,烷基溴化铵盐为四癸基溴化铵。
K2[M(CN)4]·3H2O的水溶液的浓度为0.08mol/L,CH3CH2OH和H2O的混合液中CH3CH2OH、H2O的体积为1:2,金属氯化物和烷基溴化铵盐的乙醇混合溶液中,金属氯化物的浓度为0.08mol/L,烷基溴化铵盐的浓度为0.08mol/L。
K2[M(CN)4]·3H2O的水溶液、CH3CH2OH和H2O的混合液、金属氯化物和烷基溴化铵盐的乙醇混合溶液三者的体积比为1:3:1。
(2)将获得的晶体分散至乙醇中,室温缓慢搅拌(80r/min)6h,过滤收集滤液,过滤后的晶体继续分散至乙醇中缓慢搅拌6h,然后过滤收集滤液,过滤后的晶体继续分散至乙醇中重复前述操作,步骤(1)中获得的晶体前后共重复所述操作5次;
其中,晶体与乙醇的质量体积比为1mg:7mL。
(3)将收集的滤液离心,获得纳米片。
其中,滤液先以2000r/min离心除去大颗粒后,再以8000r/min离心。
(4)将得到的纳米片分散至水中,经超声分散后,滴入0.1M KOH溶液,待溶液颜色无色变为深黑色后离心,产物先用水洗涤,再用乙醇洗涤三次后,室温干燥得到所述的超薄氢氧化物纳米片。
经测试,本实施例制备的超薄氢氧化物纳米片厚度约为0.9nm,与实施例1制备的超薄氢氧化物纳米片具有相同的电催化性能。
实施例3
本实施例超薄氢氧化物纳米片的制备方法如下:
(1)在含有10mL K2[M(CN)4]·3H2O水溶液的试管中加入CH3CH2OH和H2O的混合液以形成分层,再缓慢加入金属氯化物和烷基溴化铵盐的乙醇混合溶液,静置扩散三周获得晶体;
其中,金属氯化物为二氯化钴,M为Pt,烷基溴化铵盐为四正辛基溴化铵。
K2[M(CN)4]·3H2O的水溶液的浓度为0.12mol/L,CH3CH2OH和H2O的混合液中CH3CH2OH、H2O的体积为1:3,金属氯化物和烷基溴化铵盐的乙醇混合溶液中,金属氯化物的浓度为0.12mol/L,烷基溴化铵盐的浓度为0.12mol/L。
K2[M(CN)4]·3H2O的水溶液、CH3CH2OH和H2O的混合液、金属氯化物和烷基溴化铵盐的乙醇混合溶液三者的体积比为1:4:1。
(2)将获得的晶体分散至乙醇中,室温缓慢搅拌(100r/min)6h,过滤收集滤液,过滤后的晶体继续分散至乙醇中缓慢搅拌6h,然后过滤收集滤液,过滤后的晶体继续分散至乙醇中重复前述操作,步骤(1)中获得的晶体前后共重复所述操作5次;
其中,晶体与乙醇的质量体积比为1mg:8mL。
(3)将收集的滤液离心,获得纳米片。
其中,滤液先以2000r/min离心除去大颗粒后,再以8000r/min离心。
(4)将得到的纳米片分散至水中,经超声分散后,滴入0.1M KOH溶液,待溶液颜色无色变为深黑色后后离心,产物先用水洗涤,再用乙醇洗涤三次后,室温干燥得到所述的超薄氢氧化物纳米片。
经测试,本实施例制备的超薄氢氧化物纳米片厚度约为0.9nm,与实施例1制备的超薄氢氧化物纳米片具有相同的电催化性能。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种电解水产氧的超薄氢氧化物纳米片的制备方法,其特征在于,包括以下步骤:
(1)在K2[M(CN)4]·3H2O的水溶液中加入CH3CH2OH和H2O的混合液以形成分层,再缓慢加入金属氯化物和烷基溴化铵盐的乙醇混合溶液,静置扩散获得晶体,其中M为Ni、Pt或Pd;
(2)将获得的晶体分散至乙醇中,充分搅拌使晶体的金属有机框架层发生剥离,过滤收集滤液;
(3)将收集的滤液离心,获得纳米片;
(4)将获得的纳米片分散至水中,经超声分散后,滴入碱性溶液,待溶液由无色变为深黑色后离心,产物分别经水、乙醇洗涤数次后,干燥即得到所述的氢氧化物纳米片。
2.根据权利要求1所述的电解水产氧的超薄氢氧化物纳米片的制备方法,其特征在于,所述K2[M(CN)4]·3H2O水溶液、CH3CH2OH和H2O的混合液、金属氯化物和烷基溴化铵盐的乙醇混合溶液三者的体积比为1:2~6:1。
3.根据权利要求2所述的电解水产氧的超薄氢氧化物纳米片的制备方法,其特征在于,所述K2[M(CN)4]·3H2O水溶液的浓度为0.04~0.16mol/L。
4.根据权利要求2所述的电解水产氧的超薄氢氧化物纳米片的制备方法,其特征在于,所述CH3CH2OH和H2O的混合液中CH3CH2OH和H2O的体积比为1:1~3。
5.根据权利要求2所述的电解水产氧的超薄氢氧化物纳米片的制备方法,其特征在于,所述金属氯化物和烷基溴化铵盐的乙醇混合溶液中,金属氯化物的浓度为0.04~0.12mol/L,烷基溴化铵盐的浓度为0.04~0.12mol/L。
6.根据权利要求1所述的电解水产氧的超薄氢氧化物纳米片的制备方法,其特征在于,所述烷基溴化铵盐为四正丁基溴化铵、四癸基溴化铵或四正辛基溴化铵。
7.根据权利要求1所述的电解水产氧的超薄氢氧化物纳米片的制备方法,其特征在于,步骤(2)中过滤后的晶体继续分散至乙醇中,充分搅拌后过滤,收集滤液,过滤后的晶体重复前述操作,优选地,获得的晶体前后共进行4~6次所述操作。
8.根据权利要求1所述的电解水产氧的超薄氢氧化物纳米片的制备方法,其特征在于,步骤(3)中滤液先以低速离心除去大颗粒固体,再以高速离心获得纳米片。
9.根据权利要求1所述的电解水产氧的超薄氢氧化物纳米片的制备方法,其特征在于,步骤(2)中晶体与乙醇的质量体积比为1mg:5~10mL。
10.权利要求1~9任一项所述方法制备的超薄氢氧化物纳米片在电解水产氧中的应用。
CN201910347549.0A 2019-04-28 2019-04-28 一种电解水产氧的超薄氢氧化物纳米片的制备方法 Active CN109987585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910347549.0A CN109987585B (zh) 2019-04-28 2019-04-28 一种电解水产氧的超薄氢氧化物纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910347549.0A CN109987585B (zh) 2019-04-28 2019-04-28 一种电解水产氧的超薄氢氧化物纳米片的制备方法

Publications (2)

Publication Number Publication Date
CN109987585A true CN109987585A (zh) 2019-07-09
CN109987585B CN109987585B (zh) 2022-04-22

Family

ID=67133059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910347549.0A Active CN109987585B (zh) 2019-04-28 2019-04-28 一种电解水产氧的超薄氢氧化物纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN109987585B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981429A (zh) * 2021-02-24 2021-06-18 江南大学 一种金属有机框架与氢氧化物异质结电催化剂及其原位制备法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007118843A1 (de) * 2006-04-18 2007-10-25 Basf Se Metalloxide aus metallorganischen gerüstmaterialien
CN101421183A (zh) * 2006-04-18 2009-04-29 巴斯夫欧洲公司 由金属有机骨架材料制备的金属氧化物
US20110144365A1 (en) * 2009-12-15 2011-06-16 Samsung Electronics Co., Ltd. Hybrid porous material and methods of preparing the same
CN103692763A (zh) * 2013-12-06 2014-04-02 深圳先进技术研究院 一种二维层状纳米材料的剥离方法
CN106745325A (zh) * 2016-11-21 2017-05-31 天津理工大学 一种钴‑铁氢氧化物纳米片层组装团簇材料的制备方法
CN109205567A (zh) * 2018-08-13 2019-01-15 浙江工业大学 一种利用mof衍生双金属氧化物模板制备金属氧化物多级结构的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007118843A1 (de) * 2006-04-18 2007-10-25 Basf Se Metalloxide aus metallorganischen gerüstmaterialien
CN101421183A (zh) * 2006-04-18 2009-04-29 巴斯夫欧洲公司 由金属有机骨架材料制备的金属氧化物
US20110144365A1 (en) * 2009-12-15 2011-06-16 Samsung Electronics Co., Ltd. Hybrid porous material and methods of preparing the same
CN103692763A (zh) * 2013-12-06 2014-04-02 深圳先进技术研究院 一种二维层状纳米材料的剥离方法
CN106745325A (zh) * 2016-11-21 2017-05-31 天津理工大学 一种钴‑铁氢氧化物纳米片层组装团簇材料的制备方法
CN109205567A (zh) * 2018-08-13 2019-01-15 浙江工业大学 一种利用mof衍生双金属氧化物模板制备金属氧化物多级结构的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIN ZHANG ET AL.: ""Highly Effective Removal of Metal Cyanide Complexes and Recovery of Palladium Using Quaternary-Ammonium-Functionalized MOFs"", 《MOLECULES》 *
YANYI ZHAO ET AL.: ""Coordination Polymer Nanoglue: Robust Adhesion Based on Collective Lamellar Stacking of Nanoplates"", 《ACS NANO》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981429A (zh) * 2021-02-24 2021-06-18 江南大学 一种金属有机框架与氢氧化物异质结电催化剂及其原位制备法与应用

Also Published As

Publication number Publication date
CN109987585B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
Luo et al. Trimetallic metal–organic frameworks and derived materials for environmental remediation and electrochemical energy storage and conversion
Guo et al. Amorphous cobalt–iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process
Tian et al. Nanosheet-assembled LaMnO3@ NiCo2O4 nanoarchitecture growth on Ni foam for high power density supercapacitors
Lin et al. In situ growth of single-layered α-Ni (OH) 2 nanosheets on a carbon cloth for highly efficient electrocatalytic oxidation of urea
Zhang et al. Fabrication of Cu2O‐based materials for lithium‐ion batteries
Xu et al. A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction
Rong et al. Self-directed hierarchical Cu3 (PO4) 2/Cu-BDC nanosheets array based on copper foam as an efficient and durable electrocatalyst for overall water splitting
Li et al. Fe–Co–Ni trimetallic organic framework chrysanthemum-like nanoflowers: efficient and durable oxygen evolution electrocatalysts
CN104477878A (zh) 一种石墨烯基多级孔炭材料及制法和应用
CN105719850B (zh) 石墨烯@聚吡咯/双金属氢氧化物纳米线三元复合材料及其制备方法和应用
CN107299362B (zh) 一种活性炭负载钴镍合金材料的制备方法及其电化学应用
CN106784881B (zh) 一种贵金属/竖直生长水滑石纳米片甲醇燃料电池催化剂及其制备方法
CN105016399A (zh) 由纳米薄片组装的镍铁氢氧化物多级微球及其制备方法
CN109267047A (zh) 一种基于镍锰氢氧化物的柔性布电极的制备方法
CN113292733B (zh) 一种导电金属有机框架纳米棒阵列复合材料及制备和应用
CN113258083B (zh) 一种CoXP纳米颗粒嵌入氮和磷掺杂碳的双功能催化剂及其制备方法和应用
CN106450507A (zh) 一种氯氧化铋/氢氧化镍二次碱性电池及其制备方法
Dong et al. The in situ derivation of a NiFe-LDH ultra-thin layer on Ni-BDC nanosheets as a boosted electrocatalyst for the oxygen evolution reaction
CN108435157A (zh) 一种基于秸秆芯制备的片状金属氧化物纳米材料
Zou et al. Co3O4 anchored on meshy biomass carbon derived from kelp for high‐performance ultracapacitor electrode
Liu et al. The rational design of Cu 2− x Se@(Co, Cu) Se 2 core–shell structures as bifunctional electrocatalysts for neutral-pH overall water splitting
Tang et al. FeOOH/Ni heterojunction nanoarrays on carbon cloth as a robust catalyst for efficient oxygen evolution reaction
Sun et al. In situ growth of an Fe-doped NiCo-MOF electrocatalyst from layered double hydroxide effectively enhances electrocatalytic oxygen evolution performance
Yang et al. One-dimensional Ni2P/Mn2O3 nanostructures with enhanced oxygen evolution reaction activity
CN105776195B (zh) 一种超级电容器用富含微纳孔超结构多孔石墨烯的制备方法及产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant