CN109970752B - 一种手性4-螺环吡唑类化合物的合成方法 - Google Patents

一种手性4-螺环吡唑类化合物的合成方法 Download PDF

Info

Publication number
CN109970752B
CN109970752B CN201910284007.3A CN201910284007A CN109970752B CN 109970752 B CN109970752 B CN 109970752B CN 201910284007 A CN201910284007 A CN 201910284007A CN 109970752 B CN109970752 B CN 109970752B
Authority
CN
China
Prior art keywords
formula
chiral
nmr
cdcl
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910284007.3A
Other languages
English (en)
Other versions
CN109970752A (zh
Inventor
王益锋
储明明
许丹倩
徐振元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910284007.3A priority Critical patent/CN109970752B/zh
Publication of CN109970752A publication Critical patent/CN109970752A/zh
Application granted granted Critical
Publication of CN109970752B publication Critical patent/CN109970752B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种式(3)所示的手性4‑螺环吡唑类化合物的合成方法,所述的合成方法为:水油两相体系中,原料式(1)所示的化合物酚和式(2)所示的化合物在缚酸剂、手性催化剂的作用下进行反应,TLC跟踪监测至反应完全,得到反应液经后处理,得到产物式(3)所示的手性4‑螺环吡唑类化合物手性化合物。本发明的优点在于:所述的手性4‑螺环吡唑结构是一类重要结构单元,广泛存在于农药和医药领域,具有广阔的应用前景。本发明的合成方法条件温和、收率高、不对称选择性好、反应底物范围广泛、反应试剂廉价易得,可操作性强。

Description

一种手性4-螺环吡唑类化合物的合成方法
(一)技术领域
本发明涉及一种手性4-螺环吡唑类化合物的合成方法,尤其是一种在水油两相体系下,原料2-萘酚与2-(芳基(对甲苯磺酰基)甲基)苯酚经手性叔胺-氮方酸催化的不对称多米诺环合合成手性4-螺环吡唑类化合物的方法。
(二)背景技术
现有的小分子新药中有70%至少含有一个手性中心,因此发展高效地构建手性分子的方法一直以来都是合成化学家的重要使命之一。其中有机小分子催化的不对称合成在不对称催化领域是继有机金属催化和酶催化之后发展起来的又一个高效的不对称催化方法而一直备受关注。与有机金属催化相比,有机小分子催化剂一般对水、空气稳定,反应操作简便,易于工业放大,而且更重要的是其不含有毒金属,这在药物合成中尤为重要。与酶催化相比,小分子催化没有酶催化这样强的底物和反应专一性,一种催化剂可以催化几类反应,而且反应底物适应性相对较好。正是由于相对其它催化方式有其独特的优势,基于不同催化机制的有机小分子催化在过去十几年得到了长足发展。作为有机小分子催化的重要分支之一,基于氢键催化的不对称反应也迎来了较大发展,多种结构中包含氢键供体(如脲、硫脲、氮方酸、胍、膦酸等)的催化剂已经被设计出来,并在很多不对称催化反应中显示出优秀的手性诱导效果,已成为构筑碳-碳键和碳-杂原子键的重要合成策略。(A.Berkessel and H.
Figure BDA0002022652850000021
Asymmetric Organocatalysis,Wiley VCH,Weinheim,2005.;P.I.Dalko,Enantioselective Organocatalysis,Wiley-VCH,Weinheim,2007.)。
近年来,水油两相(Water-Oil phases)已经成为有机合成中重要的反应体系,因其能使有机化合物与水溶性离子化合物在反应过程中有效且快速地分离或结合而受到广泛关注。其中,水油两相体系下的不对称催化反应尤其具有重要的研究和实用价值。目前的研究来说,基于水油两相体系的有机反应,主要是季铵盐类、冠醚类相转移催化剂对有机底物与离子型反应物反应的促进作用。对于两相体系下的不对称有机催化,目前仅局限于离子液体。因此,发展更多的基于两相的不对称催化体系,具有重要的实际意义。
(三)发明内容
本发明的目的是提供一种在水油两相中进行的手性4-螺环吡唑类化合物的合成方法。
为实现上述目的,本发明采用如下技术方案:
一种式(3)所示的手性4-螺环吡唑类化合物的合成方法,所述的合成方法按照如下步骤进行:
在水油两相体系中,以式(1)所示的化合物和式(2)所示的化合物为原料,在缚酸剂、手性催化剂的作用下,在20~30℃下进行反应,TLC跟踪监测至反应完全,得到反应液经后处理,得到式(3)所示的手性4-螺环吡唑类化合物;所述的式(1)所示化合物与式(2)所示化合物、缚酸剂的物质的量之比为0.2~5:1:0.5~20;所述的手性催化剂与式(1)所示化合物的物质的量之比为0.01~100:100;所述手性催化剂为双功能叔胺-氮方酸催化剂,其组成含有氢键供体氮方酸基团和Lewis碱功能的叔胺基团;所述的缚酸剂为无机碱;所述的水油两相体系由水与有机溶剂以体积比1:0.05~10混合形成;
反应式如下:
Figure BDA0002022652850000031
式(1)中,Ts表示对甲苯磺酰基;
式(1)或(3)中,
R1为H、甲氧基、乙氧基或卤素;
R2为C1-20的烷基、呋喃基、噻吩基、萘基、苯基或者被一个或多个取代基取代的苯基,所述的取代基各自独立为甲基、甲氧基、三氟甲基或卤素;
式(2)或式(3)中,
R3为C1-20的烷基、萘基、苯基或者被一个或多个取代基取代的苯基,所述的取代基各自独立为甲基、乙基或卤素。
R4为C1-20的烷基或苯基。
再进一步,所述的手性催化剂优选为下列式(4)~(7)所示化合物之一:
Figure BDA0002022652850000041
式(4)或(5)中,标有*的碳原子为手性碳原子;
式(4)、(5)、(6)或(7)中,
R5、R8、R11或R14各自独立为C1~C20的烷基,或者被一个或多个取代基取代的苯基或苄基,所述的取代基各自独立为三氟甲基、硝基或卤素;
R6、R7、R9或R10各自独立为C1~C10的烷基;
R12或R15各自独立为乙基或乙烯基;
R13或R16各自独立为H、羟基或甲氧基。
更进一步,更加优选的,所述的手性催化剂选自下列之一:
Figure BDA0002022652850000042
Figure BDA0002022652850000051
进一步,所述的式(1)所示的化合物与式(2)所示的化合物、缚酸剂的物质的量之比优选为0.5~2:1:1~10。
进一步,所述的水油两相体系中,所述的有机溶剂选自二氯甲烷、氯仿、1,2-二氯乙烷、***、甲苯、乙酸乙酯或乙酸异丙酯。
进一步,所述的缚酸剂为碳酸钠、碳酸钾、碳酸铯、碳酸氢钠、碳酸氢钾、氢氧化钠、氢氧化钾或磷酸氢二钠。
进一步,所述反应液的后处理方法为:反应结束后,将所述的反应液分液,取有机相减压浓缩后进行硅胶柱层析分离,以石油醚/乙酸乙酯体积比1~30:1的混合液为洗脱剂进行梯度洗脱,收集含目标化合物的洗脱液,蒸除溶剂并干燥,得到产物式(3)所示的手性4-螺环吡唑类化合物。
与现有技术相比,本发明的有益效果在于:
本发明所述的合成方法中,以含有至少一个叔胺、氮方酸功能基团的手性催化剂为催化体系,在水油两相中进行反应,后处理分离得到产物手性4-螺环吡唑类化合物,所述的合成方法条件温和、收率高、不对称选择性好、反应底物范围广泛、反应试剂廉价易得,所述的手性4-螺环吡唑结构是一类重要结构单元,广泛存在于农药和医药领域,具有广阔的应用前景。
(四)具体实施方式
下面结合具体实施例对本发明作进一步描述,但本发明的保护范围并不仅限于此。
实施例1:
Figure BDA0002022652850000061
在干燥的10ml反应试管中依次加入催化剂(7)-b(0.01mmol,6.3mg),6-甲氧基-2-(苯基(对甲苯磺酰基)甲基)苯酚(0.1mmol,36.8mg),4-溴吡唑酮(0.13mmol,33.0mg),碳酸钾(0.26mmol,36mg),三氯甲烷(1.5ml),水(0.15ml),投料完毕,将反应试管密闭,用磁力搅拌器在室温下搅拌24h,TLC显示6-甲氧基-2-(苯基(对甲苯磺酰基)甲基)苯酚消耗完毕,反应液用CH2Cl2萃取分液,取有机相减压浓缩,上硅胶层析柱分离,以石油醚和乙酸乙酯的体积比为1~20:1的混合液为洗脱剂进行梯度洗脱,收集含目标化合物的洗脱液,蒸除溶剂并干燥,得到白色固体产物37.0mg(收率95%),1H NMR(500MHz,CDCl3)δ7.34(q,J=1.8Hz,1H),7.33(dd,J=2.1,1.1Hz,1H),7.32-7.27(m,3H),7.27-7.23(m,4H),7.12-7.07(m,1H),7.02(dd,J=8.1,7.5Hz,1H),6.94(dt,J=8.2,1.0Hz,1H),6.79(dt,J=7.5,1.1Hz,1H),5.16(s,1H),3.96(s,3H),2.40(s,3H).13C NMR(126MHz,CDCl3)δ168.04,158.08,148.25,144.83,136.98,133.76,129.10,128.58,128.48,128.47,127.84,125.18,123.00,119.11,117.47,112.66,92.32,56.19,55.34,13.11.通过手性HPLC分析,具体条件为(IA-H,15%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=9.2min,tR(次)=8.4min,90:10,98%ee,。
按照实施例1取相同的反应物,相同的操作步骤下,分别以0.01mmol以下催化剂替代催化剂(7)-b进行反应,结果如下表1所示:
表1中,上标a表示分离收率,b表示通过手性高效液相色谱分析得到非对映选择性c表示通过手性高效液相色谱分析得到对应选择性。
表1
编号 催化剂 反应时间(h) 产率(%)<sup>a</sup> dr值<sup>b</sup> ee值(%)<sup>c</sup>
1 (4)-a 24 92 66:34 -60
2 (5)-a 24 95 70:30 -67
3 (6)-a 24 92 85:15 96
4 (6)-b 24 90 82:18 90
5 (7)-a 24 93 84:14 96
6 (7)-b 24 95 90:10 96
7 (7)-c 24 93 80:20 92
8 (7)-d 24 60 79:21 94
9 (7)-e 24 95 88:12 92
10 (7)-f 24 92 75:25 80
11 (7)-g 24 87 75:25 81
按照实施例1取相同的反应物,相同的操作步骤下,分别以0.26mol以下无机碱替代碳酸钾进行反应,结果如下表2所示:
表2
Figure BDA0002022652850000091
表2中,上标a表示分离收率,b表示通过手性高效液相色谱分析得到非对映选择性c表示通过手性高效液相色谱分析得到对应选择性
按照实施例1取相同的反应物,相同的操作步骤下,分别以1.5ml以下有机溶剂替代氯仿进行反应,结果如下表3所示:
表3
Figure BDA0002022652850000092
上标a表示分离收率,b表示通过手性高效液相色谱分析得到非对映选择性c表示通过手性高效液相色谱分析得到对应选择性,e表示1.5ml氯仿作为唯一溶剂f表示1.5ml水作为唯一溶剂。
实施例2:
Figure BDA0002022652850000101
与实施例1不同之处在于:所用的底物取代苯酚为6-乙氧基-2-苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到白色固体产物37.0mg(收率93%),1H NMR(500MHz,CDCl3)δ7.35–7.32(m,1H),7.32(dd,J=2.1,1.1Hz,1H),7.31–7.29(m,1H),7.29–7.25(m,3H),7.25–7.23(m,3H),7.13–7.06(m,1H),6.99(dd,J=8.2,7.4Hz,1H),6.97–6.90(m,1H),6.77(dt,J=7.4,1.2Hz,1H),5.14(s,1H),4.21(q,J=7.0Hz,2H),2.40(s,3H),1.49(t,J=7.0Hz,3H).13C NMR(126MHz,CDCl3)δ168.18,158.29,148.52,144.14,137.01,133.92,129.13,128.59,128.47,128.45,127.94,125.18,122.93,119.12,117.44,114.13,92.30,64.80,55.41,14.93,13.17.通过手性HPLC分析,具体条件为(ID,15%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=10.5min,tR(次)=9.9min,86:14dr,92%ee。
实施例3:
Figure BDA0002022652850000102
与实施例1不同之处在于:所用的底物取代苯酚为5-甲氧基-2-(苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到白色固体产物36.5mg(收率95%),1H NMR(500MHz,CDCl3)δ7.37–7.30(m,4H),7.30–7.24(m,4H),7.23(dd,J=6.1,1.8Hz,2H),7.12–7.08(m,1H),7.07–7.03(m,1H),6.92(dd,J=1.8,1.1Hz,1H),,5.13(s,1H),3.94(s,3H),2.40(s,3H).13C NMR(126MHz,CDCl3)δ167.63,157.43,147.55,145.20,136.81,132.82,129.50,129.00,128.71,128.62,128.58,125.29,120.26,119.07,116.12,114.42,92.50,56.44,55.05,13.06.通过手性HPLC分析,具体条件为(IC,15%iPrOH inhexane,flow rate 0.7ml/min):tR(主)=10.5min,tR(次)=9.9min,97:3dr,93%ee。
实施例4:
Figure BDA0002022652850000111
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-4-溴-2-(4-甲基苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到白色固体产物44mg(收率95%),1H NMR(500MHz,CDCl3)δ7.37–7.28(m,5H),7.28–7.24(m,2H),7.24–7.21(m,2H),7.12–7.04(m,2H),6.95–6.88(m,1H),,5.13(s,1H),3.94(s,3H),2.39(s,3H).13CNMR(126MHz,CDCl3)δ167.67,157.47,147.59,145.24,136.84,132.85,129.03,128.75,128.66,128.62,128.15,125.32,120.30,119.11,116.15,114.45,92.54,56.47,55.08,13.10.通过手性HPLC分析,具体条件为(OD-H,4%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=17.0min,tR(次)=20min,80:20dr,98%ee。
实施例5:
Figure BDA0002022652850000121
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(4-氟苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到白色固体产物38.1mg(收率95%),1H NMR(500MHz,CDCl3)δ7.41–7.36(m,2H),7.27(dd,J=8.7,7.3Hz,2H),7.21(dd,J=8.5,5.4Hz,2H),7.11(t,J=7.4Hz,1H),7.04–6.92(m,4H),6.74(d,J=7.5Hz,1H),5.13(s,1H),3.95(s,3H),2.38(s,3H).13C NMR(126MHz,CDCl3)δ167.96,δ162.70(d,J=247.6Hz),158.13,148.13,144.87,136.96,130.86(d,J=8.3Hz),129.68(d,J=3.1Hz),128.68,127.79,125.30,123.14,118.97,117.27,115.47(d,J=21.6Hz),112.78,92.13,56.20,54.61,13.07.通过手性HPLC分析,具体条件为(IA,15%iPrOH in hexane,flowrate 0.7ml/min):tR(主)=9.4min,tR(次)=8.5min,82:18dr,98%ee。
实施例6:
Figure BDA0002022652850000131
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(4-氯苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到固体产物38.9mg(收率93%),1H NMR(500MHz,CDCl3)1H NMR(500MHz,CDCl3)δ7.41–7.37(m,2H),7.30–7.27(m,2H),7.27–7.24(m,2H),7.19–7.16(m,2H),7.14–7.10(m,1H),7.04–6.99(m,1H),6.94(d,J=8.2Hz,1H),6.73(dt,J=7.6,1.1Hz,1H),5.11(s,1H),3.96(s,3H),2.37(s,3H).13C NMR(126MHz,CDCl3)δ167.83,158.09,148.15,144.89,136.93,134.41,132.54,130.50,128.68,127.55,125.34,123.18,119.00,117.24,112.85,91.96,56.19,54.65,13.03.通过手性HPLC分析,具体条件为(IA,15%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=10.1min,tR(次)=9.1min,82:18dr,98%ee。
实施例7:
Figure BDA0002022652850000132
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(4-三氟甲基苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到固体产物37.5mg(收率83%),1H NMR(500MHz,CDCl3)δ7.55(d,J=8.1Hz,2H),7.36(d,J=8.1Hz,2H),7.32–7.29(m,2H),7.28–7.23(m,2H),7.14–7.09(m,1H),7.06–7.01(m,1H),6.96(d,J=8.2Hz,1H),6.74(dt,J=7.5,1.1Hz,1H),5.19(s,1H),3.96(s,3H),2.39(s,3H).13C NMR(126MHz,CDCl3)δ167.68,158.05,148.26,144.98,138.25,136.75,130.68(q,J=32.6Hz),129.64,128.69,127.09,125.49,125.41(q,J=3.6Hz),123.86(q,J=272.8Hz),123.32,119.07,117.21,112.97,91.95,56.21,54.98,13.07.通过手性HPLC分析,具体条件为(IC,4%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=24.8min,tR(次)=21.8min,88:12dr,96%ee。
实施例8:
Figure BDA0002022652850000141
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(3-三氟甲基苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到固体产物43.0mg(收率95%),1Hδ7.54–7.49(m,2H),7.44–7.40(m,2H),7.38–7.33(m,2H),7.28–7.23(m,2H),7.12–7.09(m,1H),7.04(dd,J=8.2,7.5Hz,1H),6.96(dt,J=8.2,1.0Hz,1H),6.74(dt,J=7.4,1.1Hz,1H),5.19(s,1H),3.96(s,3H),2.39(s,3H).13C NMR(126MHz,CDCl3)δ167.72,158.06,148.27,144.98,136.83,135.26,132.64,δ130.90(q,J=32.6Hz),128.65,127.02,125.81(q,J=3.7Hz),125.37(q,J=3.5),125.35,123.79(q,J=271),123.38,118.91,117.16,113.01,92.02,56.21,55.05,13.07.通过手性HPLC分析,具体条件为(IC,5%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=14min,tR(次)=11.5min,81:19dr,96%ee。
实施例9:
Figure BDA0002022652850000151
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(2-三氟甲基苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物38mg(收率84%),δ7.62(d,J=7.8Hz,1H),7.59–7.48(m,3H),7.38(t,J=7.6Hz,1H),7.33–7.24(m,3H),7.16–7.11(m,1H),7.04–6.91(m,2H),6.64(d,J=7.5Hz,1H),5.39(s,1H),4.12(s,3H),3.98(s,3H),2.21(s,3H).13C NMR(126MHz,CDCl3)δ166.98,158.36,147.54,144.86,137.30,134.10,133.63,131.52,129.37,128.67,δ128.39(q,J=29.2Hz),128.19,125.43(q,J=5.7Hz),125.24,124.23(q,J=272.08),123.60,119.15,117.30,112.69,90.12,56.19,49.81,12.71.通过手性HPLC分析,具体条件为(ID,15%iPrOH in hexane,flowrate 0.7ml/min):tR(主)=12.3min,tR(次)=8.1min,96:4dr,99%ee。
实施例10:
Figure BDA0002022652850000161
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(4-甲基苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物38.7mg(收率97%),1H NMR(500MHz,CDCl3)δ7.38(ddd,J=8.7,2.0,1.1Hz,2H),7.29–7.24(m,2H),7.15–7.08(m,5H),7.04–6.98(m,1H),6.93(dt,J=8.3,1.0Hz,1H),6.78(dt,J=7.6,1.1Hz,1H),5.13(s,1H),3.96(s,3H),2.39(s,3H),2.29(s,3H).13C NMR(126MHz,CDCl3)δ168.12,158.15,148.16,144.79,138.19,137.09,130.66,129.17,128.98,128.55,128.15,125.12,122.94,119.13,117.46,112.59,92.31,56.18,55.02,21.07,13.09.通过手性HPLC分析,具体条件为(IA,15%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=9.9min,tR(次)=8.8min,85:15dr,94%ee。
实施例11:
Figure BDA0002022652850000162
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(3-甲基苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物38.2mg(收率96%),1H NMR(500MHz,CDCl3)δ7.39–7.34(m,2H),7.28–7.24(m,2H),7.20–7.15(m,1H),7.11–7.00(m,5H),6.93(d,J=7.9Hz,1H),6.79(dd,J=7.3,0.9Hz,1H),5.13(s,1H),3.96(s,3H),2.40(s,3H),2.27(s,3H).13C NMR(126MHz,CDCl3)δ168.11,158.16,148.21,144.80,138.12,137.05,133.71,129.62,129.20,128.56,128.35,127.91,126.16,125.13,122.96,119.08,117.55,112.61,92.34,56.18,55.29,21.26,13.09.通过手性HPLC分析,具体条件为(IA,5%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=12.2min,tR(次)=13.8min,85:15dr,96%ee。
实施例12:
Figure BDA0002022652850000171
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(2-甲基苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物36.6mg(收率92%),1H NMR(500MHz,CDCl3)δ7.40(d,J=7.8Hz,2H),7.30–7.26(m,2H),7.19–7.10(m,5H),7.01(t,J=7.8Hz,1H),6.92(d,J=8.1Hz,1H),6.70(d,J=7.5Hz,1H),5.44(s,1H),3.97(s,3H),2.36(s,3H),2.30(s,3H).13C NMR(126MHz,CDCl3)δ168.00,159.14,148.09,144.77,137.16,136.34,133.25,130.77,130.05,129.09,128.67,128.05,125.98,125.20,123.05,119.13,117.58,112.39,91.09,56.18,51.38,19.45,13.14.通过手性HPLC分析,具体条件为(IA,5%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=13.5min,tR(次)=11.9min,95:5dr,96%ee。
实施例13:
Figure BDA0002022652850000181
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(3-甲氧基苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物40.3mg(收率97%),1H NMR(500MHz,CDCl3)δ7.52(dd,J=8.7,1.2Hz,2H),7.31–7.27(m,2H),7.23(ddd,J=7.7,6.1,1.7Hz,2H),7.11(ddt,J=8.6,7.2,1.2Hz,1H),7.03(t,J=7.8Hz,1H),6.96–6.91(m,2H),6.84–6.74(m,2H),5.53(s,1H),3.95(s,3H),3.65(s,3H),2.33(s,3H).13C NMR(126MHz,CDCl3)δ167.78,158.88,157.26,148.13,144.84,137.51,130.00,129.18,128.60,127.64,124.79,123.43,122.68,120.52,118.71,117.82,112.35,109.53,91.15,56.13,55.08,48.11,12.95.通过手性HPLC分析,具体条件为(IA,7%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=15.5min,tR(次)=17.5min,87:13dr,97%ee。
实施例14:
Figure BDA0002022652850000191
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(2-甲氧基苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物39.8mg(收率96%),1H NMR(500MHz,CDCl3)δ7.52–7.44(m,2H),7.28–7.18(m,4H),7.10–7.06(m,1H),7.00(dd,J=8.1,7.5Hz,1H),6.93–6.88(m,2H),6.79(dt,J=7.6,1.1Hz,1H),6.74(dd,J=8.2,1.1Hz,1H),5.50(s,1H),3.92(s,3H),3.62(s,3H),2.30(s,3H).13C NMR(126MHz,CDCl3)δ167.81,158.92,157.29,148.17,144.87,137.54,130.05,129.22,128.64,127.67,124.83,123.46,122.71,120.56,118.75,117.86,112.37,109.56,91.19,56.16,55.11,48.14,12.99.通过手性HPLC分析,具体条件为(IC,15%iPrOH in hexane,flow rate0.7ml/min):tR(主)=26min,tR(次)=20.2min,95:15dr,98%ee。
实施例15:
Figure BDA0002022652850000192
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(3,4-亚甲氧基苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物41.1mg(收率96%),1H NMR(500MHz,CDCl3)δ7.47(dt,J=8.7,1.6Hz,2H),7.31–7.27(m,2H),7.14–7.10(m,1H),7.01(t,J=7.8Hz,1H),6.92(d,J=8.1Hz,1H),6.79–6.68(m,4H),5.89(dd,J=9.9,1.4Hz,2H),5.07(s,1H),3.95(s,3H),2.36(s,3H).13C NMR(126MHz,CDCl3)δ168.07,158.13,148.04,147.75,147.66,144.80,137.18,128.63,128.03,127.42,125.14,123.02,122.68,118.97,117.42,112.69,109.49,108.13,101.11,92.18,56.16,55.10,13.05.通过手性HPLC分析,具体条件为(IA,4%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=37.0min,tR(次)=39.8min,80:20dr,94%ee。
实施例16:
Figure BDA0002022652850000201
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(1-萘基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物41.7mg(收率96%),1H NMR(500MHz,CDCl3)δ7.83–7.73(m,3H),7.43–7.35(m,3H),7.26–7.22(m,1H),7.14–7.08(m,2H),7.06–6.97(m,4H),6.93(d,J=8.1Hz,1H),6.78(d,J=7.5Hz,1H),5.89(s,1H),3.95(s,3H),2.41(s,3H).13C NMR(125MHz,CDCl3)δ167.46,158.71,148.16,144.95,136.81,133.54,131.88,131.62,129.12,128.72,128.49,128.38,128.18,126.48,125.63,125.25,125.13,123.16,121.40,119.25,118.06,112.51,90.88,56.14,50.36,13.13.通过手性HPLC分析,具体条件为(IA,15%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=15.8min,tR(次)=10.6min,96:4dr,99%ee。
实施例17:
Figure BDA0002022652850000211
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(2-萘基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物32.6mg(收率75%),1H NMR(500MHz,CDCl3)δ7.83–7.73(m,3H),7.43–7.35(m,3H),7.26–7.22(m,1H),7.14–7.08(m,2H),7.06–6.97(m,4H),6.93(d,J=8.1Hz,1H),6.78(d,J=7.5Hz,1H),5.89(s,1H),3.95(s,3H),2.41(s,3H).13C NMR(125MHz,CDCl3)δ171.04,158.41,147.67,145.05,137.65,133.20,132.46,128.95,127.93,127.75,127.39,127.19,126.65,126.55,125.99,125.50,123.19,119.06,117.91,91.82,56.87,56.20,14.57.通过手性HPLC分析,具体条件为(OD-H,50%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=9.5min,tR(次)=35.5min,68:32dr,99%ee。
实施例18:
Figure BDA0002022652850000221
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(2-呋喃基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物34.4mg(收率92%),1H NMR(500MHz,CDCl3)δ7.63(dt,J=8.8,1.6Hz,2H),7.36–7.29(m,3H),7.19–7.13(m,1H),7.05–7.00(m,1H),6.92(t,J=7.4Hz,2H),6.34–6.28(m,2H),5.34(s,0H),5.23(s,1H),3.94(s,3H),2.33(s,3H).13C NMR(126MHz,CDCl3)δ167.53,157.88,148.91,144.85,142.92,137.40,128.87,128.70,125.74,125.16,123.10,118.94,117.30,113.05,110.74,109.58,90.42,56.19,48.56,12.97.通过手性HPLC分析,具体条件为(IC,15%iPrOH inhexane,flow rate 0.7ml/min):tR(主)=26min,tR(次)=17.6min,83:17dr,85%ee。
实施例19:
Figure BDA0002022652850000222
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(2-噻吩基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物35.5mg(收率91%),1H NMR(500MHz,CDCl3)δ7.50(dt,J=8.8,1.6Hz,2H),7.32–7.27(m,2H),7.21(dd,J=5.1,1.2Hz,1H),7.15–7.11(m,1H),7.04–7.00(m,2H),6.98–6.89(m,3H),5.42(s,1H),3.95(s,3H),2.37(s,3H).13C NMR(126MHz,CDCl3)δ167.62,157.72,147.70,144.77,137.11,135.90,128.64,127.79,127.61,127.16,125.83,125.20,123.09,119.03,117.32,113.05,91.90,56.19,50.14,13.05.通过手性HPLC分析,具体条件为(IC,15%iPrOH inhexane,flow rate 0.7ml/min):tR(主)=25.2min,tR(次)=19.2min,87:13dr,92%ee。
实施例20:
Figure BDA0002022652850000231
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(甲基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物18.0mg(收率56%),1HNMR(500MHz,CDCl3)δ7.92–7.82(m,2H),7.45–7.36(m,2H),7.24–7.16(m,1H),6.96(td,J=7.8,5.9Hz,1H),6.87–6.75(m,2H),3.90(s,3H),3.87(q,J=7.5Hz,1H),2.20(s,3H),1.43(d,J=7.1Hz,3H).13C NMR(126MHz,CDCl3)δ168.52,158.98,146.64,144.57,137.64,130.66,128.87,125.22,122.94,118.73,115.83,112.26,91.35,56.12,43.15,14.09,12.94.通过手性HPLC分析,具体条件为(IC,10%iPrOH in hexane,flow rate 1.0ml/min):tR(主)=12.5min,tR(次)=49.5min,66:34dr,60%ee。
实施例21:
Figure BDA0002022652850000241
与实施例1不同之处在于:所用的底物取代苯酚为6-甲氧基-2-(乙基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物21.8mg(收率65%),1HNMR(500MHz,CDCl3)δ7.86–7.83(m,2H),7.42–7.37(m,2H),7.21–7.17(m,1H),6.94(dd,J=8.6,7.1Hz,1H),6.83(d,J=8.1Hz,2H),3.89(s,3H),3.75–3.66(m,1H),2.20(s,3H),2.04–1.96(m,2H),0.99(t,J=7.5Hz,3H).13C NMR(125MHz,CDCl3)δ168.37,159.41,146.54,144.65,137.63,130.17,128.90,125.27,122.72,118.82,116.30,112.18,90.55,56.09,50.37,23.37,12.97,12.38.通过手性HPLC分析,具体条件为(IC,10%iPrOH in hexane,flow rate 1.0ml/min):tR(主)=12.6min,tR(次)=61.8min,83:17dr,60%ee。
实施例22:
Figure BDA0002022652850000242
与实施例1不同之处在于:所用的底物取代苯酚为2-(苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,
得到产物33.2mg(收率94%),1H NMR(500MHz,CDCl3)δ7.26–7.23(m,3H),7.20–7.11(m,8H),6.99–6.94(m,3H),5.01(s,1H),2.26(s,3H).13C NMR(125MHz,CDCl3)δ168.44,160.01,158.56,136.99,134.06,129.46,129.07,128.60,128.51,128.48,128.15,126.62,125.62,125.19,122.21,119.01,110.51,92.02,55.15,13.05.通过手性HPLC分析,具体条件为(IA,10%iPrOH in hexane,flow rate 1.0ml/min):tR(主)=11.3min,tR(次)=7.0min,72:18dr,50%ee。
实施例23:
Figure BDA0002022652850000251
与实施例1不同之处在于:所用的底物取代苯酚为2-(2-甲氧基苯基(对甲苯磺酰基)甲基)苯酚,其他反应条件及操作步骤与实施例1相同,得到产物36.9mg(收率96%),1HNMR(500MHz,CDCl3)δ7.48–7.42(m,2H),7.22–7.16(m,4H),7.12–7.06(m,2H),7.03–6.92(m,3H),6.84(td,J=7.5,1.1Hz,1H),6.67(d,J=8.2Hz,1H),5.38(s,1H),3.53(s,3H),2.20(s,3H).13C NMR(125MHz,CDCl3)δ168.16,159.88,159.27,157.27,137.57,129.88,129.24,129.20,128.66,126.40,125.97,124.79,123.71,121.94,120.58,118.61,110.48,109.55,90.87,55.11,47.84,12.94.通过手性HPLC分析,具体条件为(ID,20%iPrOH inhexane,flow rate 1.0ml/min):tR(主)=13.3min,tR(次)=20.5min,83:17dr,61%ee。
实施例24:
Figure BDA0002022652850000261
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-(4-氟苯基)-5-甲基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物33.4mg(收率83%),1H NMR(500MHz,CDCl3)δ7.31–7.22(m,7H),7.05–6.99(m,1H),6.93(t,J=8.7Hz,3H),6.78(d,J=7.5Hz,1H),5.16(s,1H),3.96(s,3H),2.40(s,3H).13C NMR(126MHz,CDCl3)δ168.00,160.01(d,J=244.6Hz),158.29,148.25,144.86,133.72,133.07(d,J=2.7Hz),129.10,128.53,128.51,127.73,123.09,120.96(d,J=8.1Hz),117.49,115.36(d,J=22.7Hz),112.71,92.35,56.21,55.42,13.10.通过手性HPLC分析,具体条件为(IA,10%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=10.4min,tR(次)=9.7min,89:11dr,98%ee。
实施例25:
Figure BDA0002022652850000262
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-(4-溴苯基)-5-甲基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物36.5mg(收率79%),1H NMR(500MHz,CDCl3)δ7.39–7.33(m,2H),7.30–7.25(m,5H),7.22(dd,J=7.5,1.9Hz,2H),7.02(t,J=7.8Hz,1H),6.94(s,1H),6.78(d,J=7.5Hz,1H),5.15(s,1H),3.96(s,3H),2.40(s,3H).13C NMR(126MHz,CDCl3)δ168.01,158.50,148.17,144.83,136.05,133.60,131.61,129.02,128.55,128.50,127.64,123.12,120.25,117.99,117.46,112.70,92.34,56.18,55.43,13.11.通过手性HPLC分析,具体条件为(AD-H,10%iPrOH in hexane,flow rate1.0ml/min):tR(主)=10.1min,tR(次)=8.4min,99:1dr,98%ee。
实施例26:
Figure BDA0002022652850000271
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-(4-溴苯基)-5-甲基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物40.7mg(收率88%),1H NMR(500MHz,CDCl3)δ7.55(t,J=2.0Hz,1H),7.33(ddd,J=8.2,2.1,1.0Hz,1H),7.28–7.24(m,3H),7.21–7.16(m,3H),7.07(t,J=8.1Hz,1H),7.02–6.98(m,1H),6.92(d,J=8.2Hz,1H),6.76(dt,J=7.6,1.1Hz,1H),5.13(s,1H),3.94(s,3H),2.38(s,3H).13C NMR(125MHz,CDCl3)δ168.09,158.58,148.15,144.84,138.12,133.52,129.94,129.04,128.61,128.56,127.99,127.67,123.15,122.26,121.59,117.47,117.11,112.71,92.40,56.21,55.47,13.14.通过手性HPLC分析,具体条件为(IC,10%iPrOH in hexane,flow rate 1.0ml/min):tR(主)=13.3min,tR(次)=10.8min,98:2dr,98%ee。
实施例27:
Figure BDA0002022652850000281
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-(2,3,4,5,6-五氟苯基)-5-甲基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物42.9mg(收率91%),1HNMR(500MHz,CDCl3)δ7.37–7.32(m,3H),7.26–7.21(m,2H),7.03(t,J=7.8Hz,1H),6.94(d,J=8.1Hz,1H),6.77(dt,J=7.6,1.1Hz,1H),5.20(s,1H),3.98(s,3H),2.38(s,3H),1.30(d,J=14.3Hz,1H).13C NMR(126MHz,CDCl3)δ168.69,159.88,147.81,144.89,144.81-144.63(m),142.76-142.57(m),140.67-140.40(m),138.81-138.51(m),136.79-136.51(m),133.21,129.18,128.74,128.73,127.70,123.34,117.41,112.60,111.50-111.24(m),90.51,56.14,55.50,13.13.通过手性HPLC分析,具体条件为(IC,10%iPrOH in hexane,flow rate 1.0ml/min):tR(主)=19.3min,tR(次)=17.9min,90:10dr,99%ee。
实施例28:
Figure BDA0002022652850000282
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-(4-甲基苯基)-5-甲基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物33.4mg(收率84%),1H NMR(500MHz,CDCl3)δ7.30–7.23(m,5H),7.19(d,J=8.5Hz,2H),7.03(dd,J=20.3,8.1Hz,3H),6.93(d,J=8.1Hz,1H),6.79(d,J=7.5Hz,1H),5.15(s,1H),3.96(s,3H),2.39(s,3H),2.28(s,3H).13C NMR(126MHz,CDCl3)δ167.90,157.89,148.29,144.82,134.94,134.53,133.81,129.12,128.46,128.43,127.89,122.95,119.26,117.48,112.66,92.31,56.19,55.30,20.88,13.08.通过手性HPLC分析,具体条件为(IC,10%iPrOH in hexane,flow rate1.0ml/min):tR(主)=22.3min,tR(次)=20.3min,92:8dr,98%ee。
实施例29:
Figure BDA0002022652850000291
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-(2-乙基苯基)-5-甲基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物33.6mg(收率81%),1H NMR(500MHz,CDCl3)δ7.33–7.30(m,2H),7.26–7.19(m,7H),7.08–7.04(m,1H),7.00–6.95(m,1H),6.90(d,J=8.1Hz,1H),6.75(dt,J=7.5,1.1Hz,1H),5.22(s,1H),3.93(s,3H),3.08(hept,J=7.0Hz,1H),1.49(d,J=6.8Hz,3H),1.41(d,J=7.0Hz,3H).13C NMR(125MHz,CDCl3)δ168.26,164.80,148.36,144.91,137.13,134.01,129.12,128.53,128.43,128.40,127.93,125.07,122.85,119.12,117.55,112.94,93.13,56.31,55.53,28.18,21.30,20.06.通过手性HPLC分析,具体条件为(ID,7%iPrOH in hexane,flow rate 1.0ml/min):tR(主)=21.2min,tR(次)=24.9min,85:815dr,95%ee。
实施例30:
Figure BDA0002022652850000301
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-(2-萘基)-5-甲基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物41.7mg(收率96%),1H NMR(500MHz,CDCl3)δ8.38(d,J=1.9Hz,1H),8.11(dd,J=8.9,2.2Hz,1H),7.94–7.84(m,3H),7.50(dddd,J=20.9,8.1,6.9,1.3Hz,2H),7.38–7.33(m,3H),7.24–7.20(m,2H),7.10–7.06(m,1H),6.99–6.89(m,2H),5.40(t,J=0.9Hz,1H),3.97(s,3H),1.65(s,3H).13C NMR(126MHz,CDCl3)δ171.12,158.61,147.58,144.95,135.19,134.99,133.42,131.16,128.99,128.79,128.47,128.21,127.98,127.60,127.28,126.53,125.50,123.10,118.23,117.80,116.15,112.61,91.83,56.71,56.13,14.43.通过手性HPLC分析,具体条件为(ID,10%iPrOH inhexane,flow rate 1.0ml/min):tR(主)=20.9min,tR(次)=16.3min,80:20dr,94%ee。
实施例31:
Figure BDA0002022652850000302
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-环己基-5-甲基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物35.1mg(收率90%),1H NMR(500MHz,CDCl3)δ7.30–7.27(m,3H),7.18(dd,J=6.6,2.9Hz,2H),6.96(dd,J=8.1,7.5Hz,1H),6.88(d,J=8.1Hz,1H),6.73(dt,J=7.5,1.1Hz,1H),,5.03(s,1H),3.93(s,3H),3.52–3.44(m,1H),2.27(s,3H),1.75–1.65(m,2H),1.62–1.51(m,3H),1.27–1.00(m,5H),0.88–0.81(m,1H).13C NMR(125MHz,CDCl3)δ168.59,156.35,148.35,144.75,133.82,129.20,128.35,128.23,128.12,122.69,117.34,112.33,92.45,56.06,54.88,51.98,30.32,29.73,25.21,25.19,25.09,12.97.通过手性HPLC分析,具体条件为(ID,10%iPrOH in hexane,flowrate 1.0ml/min):tR(主)=11.2min,tR(次)=9.4min,82:18dr,98%ee。
实施例32:
Figure BDA0002022652850000311
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-苯基-5-乙基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物36.6mg(收率92%),1H NMR(500MHz,CDCl3)δ7.39–7.34(m,2H),7.30–7.21(m,7H),7.09(t,J=7.4Hz,1H),7.01(t,J=7.8Hz,1H),6.93(d,J=8.1Hz,1H),6.78(d,J=7.5Hz,1H),5.17(s,1H),3.96(s,3H),2.77(dd,J=7.4,3.7Hz,2H),1.44(t,J=7.4Hz,3H).13C NMR(126MHz,CDCl3)δ168.29,161.96,148.29,144.85,137.16,133.96,129.11,128.56,128.47,128.43,127.93,125.11,122.94,119.12,117.51,112.74,92.51,56.24,55.55,20.74,9.41.通过手性HPLC分析,具体条件为(IA,7%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=9.8min,tR(次)=9.4min,94:6dr,97%ee。
实施例33:
Figure BDA0002022652850000321
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-苯基-5-正丙基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物37.5mg(收率91%),1H NMR(500MHz,CDCl3)δ7.35(dt,J=8.9,1.8Hz,2H),7.29–7.23(m,7H),7.12–7.07(m,1H),7.01(t,J=7.8Hz,1H),6.93(dt,J=8.1,1.0Hz,1H),6.78(dt,J=7.6,1.1Hz,1H),5.18(s,1H),3.96(s,3H),2.76–2.64(m,2H),1.95(h,J=7.4Hz,2H),1.14(t,J=7.4Hz,3H).13C NMR(126MHz,CDCl3)δ168.23,160.95,148.30,144.83,137.11,133.93,129.11,128.54,128.45,128.41,127.91,125.09,123.10,119.09,117.49,112.75,92.60,56.19,55.48,29.29,18.64,14.05.通过手性HPLC分析,具体条件为(IA,7%iPrOH in hexane,flow rate 0.7ml/min):tR(主)=9.0min,tR(次)=8.5min,91:9dr,87%ee。
实施例34:
Figure BDA0002022652850000322
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-苯基-5-异丙基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物37.0mg(收率90%),1H NMR(500MHz,CDCl3)δ7.33–7.30(m,2H),7.26–7.19(m,7H),7.08–7.04(m,1H),7.00–6.95(m,1H),6.90(d,J=8.1Hz,1H),6.75(dt,J=7.5,1.1Hz,1H),5.22(s,1H),3.93(s,3H),3.08(hept,J=7.0Hz,1H),1.49(d,J=6.8Hz,3H),1.41(d,J=7.0Hz,3H).13C NMR(125MHz,CDCl3)δ168.26,164.80,148.36,144.91,137.13,134.01,129.12,128.53,128.43,128.40,127.93,125.07,122.85,119.12,117.55,112.94,93.13,56.31,55.53,28.18,21.30,20.06.通过手性HPLC分析,具体条件为(ID,5%iPrOH in hexane,flow rate 1.0ml/min):tR(主)=9.1min,tR(次)=10.9min,93:7dr,95%ee。
实施例35:
Figure BDA0002022652850000331
与实施例1不同之处在于:所用的底物吡唑酮为4-溴-2-苯基-5-苯基吡唑酮,其他反应条件及操作步骤与实施例1相同,得到产物38.4mg(收率86%),1H NMR(500MHz,CDCl3)1H NMR(500MHz,CDCl3)δ8.10–8.04(m,2H),7.54–7.47(m,3H),7.41–7.36(m,2H),7.30–7.25(m,5H),7.22(dd,J=7.5,2.0Hz,2H),7.16–7.11(m,1H),7.09–7.03(m,1H),7.00(d,J=8.1Hz,1H),6.80(dt,J=7.4,1.2Hz,1H),5.42(s,1H),4.00(s,3H).13C NMR(125MHz,CDCl3)δ168.53,155.48,148.20,145.16,136.91,133.68,130.97,129.19,129.17,129.15,128.61,128.48,127.85,126.81,125.52,123.12,119.50,117.69,113.12,92.89,57.12,56.40.通过手性HPLC分析,具体条件为(ID,10%iPrOH in hexane,flow rate 1.0ml/min):tR(主)=11.4min,tR(次)=12.7min,93:7dr,95%ee。

Claims (6)

1.一种式(3)所示的手性4-螺环吡唑类化合物的合成方法,其特征在于:所述的合成方法按照如下步骤进行:
在水油两相体系中,以式(1)所示的化合物和式(2)所示的化合物为原料,在缚酸剂、手性催化剂的作用下,在20~30℃下进行反应,得到反应液经后处理,得到式(3)所示的手性4-螺环吡唑类化合物;所述的式(1)所示化合物与式(2)所示化合物、缚酸剂的物质的量之比为0.2~5:1:0.5~20;所述的手性催化剂与式(1)所示化合物的物质的量之比为0.01~100:100;所述手性催化剂为双功能叔胺-氮方酸催化剂,其组成含有氢键供体氮方酸基团和Lewis碱功能的叔胺基团;所述的缚酸剂为无机碱;所述的水油两相体系由水与有机溶剂以体积比1:0.05~10混合形成;
Figure FDA0002660086920000011
式(1)中,Ts表示对甲苯磺酰基;
式(1)或(3)中,
R1为H、甲氧基、乙氧基或卤素;
R2为C1-20的烷基、呋喃基、噻吩基、萘基、苯基或者被一个或多个取代基取代的苯基,所述的取代基各自独立为甲基、甲氧基、三氟甲基或卤素;
式(2)或式(3)中,
R3为C1-20的烷基、萘基、苯基或者被一个或多个取代基取代的苯基,所述的取代基各自独立为甲基、乙基或卤素,
R4为C1-20的烷基或苯基;
所述的手性催化剂为下列化合物之一:
Figure FDA0002660086920000021
式(4)、(5)、(6)中,
R5、R8、R11各自独立为C1~C20的烷基,或者被一个或多个取代基取代的苯基或苄基,所述的取代基各自独立为三氟甲基、硝基或卤素;
R6、R7、R9或R10各自独立为C1~C10的烷基;
R12为乙基或乙烯基;
R13为H、羟基或甲氧基。
2.如权利要求1所述的方法,其特征在于:所述的手性催化剂选自下列之一:
Figure FDA0002660086920000031
3.如权利要求1所述的方法,其特征在于:所述的式(1)所示的化合物与式(2)所示的化合物、缚酸剂的物质的量之比为0.5~2:1:1~10。
4.如权利要求1所述的方法,其特征在于:所述的水油两相体系中,所述的有机溶剂选自二氯甲烷、氯仿、1,2-二氯乙烷、***、甲苯、乙酸乙酯或乙酸异丙酯。
5.如权利要求1所述的方法,其特征在于:所述的缚酸剂为碳酸钠、碳酸钾、碳酸铯、碳酸氢钠、碳酸氢钾、氢氧化钠、氢氧化钾或磷酸氢二钠。
6.如权利要求1所述的方法,其特征在于:所述反应液的后处理方法为:反应结束后,将所述的反应液分液,取有机相减压浓缩后进行硅胶柱层析分离,以石油醚/乙酸乙酯体积比1~30:1的混合液为洗脱剂进行梯度洗脱,收集含目标化合物的洗脱液,蒸除溶剂并干燥,得到产物式(3)所示的手性4-螺环吡唑类化合物。
CN201910284007.3A 2019-04-10 2019-04-10 一种手性4-螺环吡唑类化合物的合成方法 Active CN109970752B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910284007.3A CN109970752B (zh) 2019-04-10 2019-04-10 一种手性4-螺环吡唑类化合物的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910284007.3A CN109970752B (zh) 2019-04-10 2019-04-10 一种手性4-螺环吡唑类化合物的合成方法

Publications (2)

Publication Number Publication Date
CN109970752A CN109970752A (zh) 2019-07-05
CN109970752B true CN109970752B (zh) 2020-11-13

Family

ID=67083914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910284007.3A Active CN109970752B (zh) 2019-04-10 2019-04-10 一种手性4-螺环吡唑类化合物的合成方法

Country Status (1)

Country Link
CN (1) CN109970752B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116434B (zh) * 2019-11-29 2021-08-24 浙江工业大学 一种手性氯代磺酰萘酮类化合物的合成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106905336B (zh) * 2017-01-22 2019-04-09 浙江工业大学 一种手性吡唑螺呋喃类化合物的不对称合成方法
CN109096298B (zh) * 2018-08-29 2021-04-06 浙江工业大学 一种手性苯并呋喃螺氧化吲哚类化合物的不对称合成方法
CN109020987B (zh) * 2018-08-29 2021-04-06 浙江工业大学 一种手性吡唑螺呋喃类化合物的碘媒介制备方法
CN108997365B (zh) * 2018-08-29 2021-04-06 浙江工业大学 一种手性吡唑螺呋喃类化合物的串联催化制备方法

Also Published As

Publication number Publication date
CN109970752A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
Matsui et al. Conformational lock in a Brønsted acid–Lewis base organocatalyst for the aza-Morita–Baylis–Hillman reaction
Zhao et al. Enantioselective additions of diphenylzinc to aldehydes using chiral pyrrolidinylmethanol derivatives as catalysts
Madduri et al. Access to chiral α-bromo and α-H-substituted tertiary allylic alcohols via copper (i) catalyzed 1, 2-addition of Grignard reagents to enones
Sunden et al. Direct enantioselective synthesis of bicyclic Diels–Alder products
Nie et al. Chiral bifunctional thiourea-catalyzed enantioselective aldol reaction of trifluoroacetaldehyde hemiacetal with aromatic ketones
CN100482644C (zh) 一种手性双烯配体、合成方法及其在不对称反应中的应用
CN109970752B (zh) 一种手性4-螺环吡唑类化合物的合成方法
CN112321627A (zh) 一种轴手性芳乙炔基硅烷化合物及其制备方法
CN110950793B (zh) 一种手性二芳基吲哚甲烷类化合物的制备方法
You et al. Enantioselective addition of diethylzinc to aldehydes catalyzed by titanium (IV) complexes of N-sulfonylated amino alcohols with two stereogenic centers
CN106242935B (zh) 一种三芳基取代手性化合物的合成方法
Liang et al. Development of new chiral P, N ligands and their applications in enantioselective 1, 4-conjugate additions of diethylzinc to chalcones
Fujimoto et al. Synthesis of (R)-and (S)-muscone
CN105688987A (zh) 一种新型的手性磷酸催化剂及其合成方法与应用
CN102557955B (zh) 一种硝基取代手性化合物的绿色合成方法
CN108467376A (zh) 一种二苯并呋喃衍生物的合成方法
CN112724168A (zh) 手性吡啶衍生的n,b配体及制备方法和在铱催化不对称硼化反应中的应用
CN111217809B (zh) 一类手性含氮双烯配体及其制备方法和应用
CN102702218A (zh) 含手性螺环骨架结构的双噁唑啉配体化合物及其制备方法和应用
CN109896999B (zh) 一种含相邻叔碳-季碳手性中心吡唑酮类化合物的合成方法
CN109232650A (zh) 手性1-磷杂降冰片二烯衍生物及其合成方法
CN114560892A (zh) 一种基于二茂铁骨架合成的手性三齿氮氮膦配体及其应用
JP3782149B2 (ja) 不斉合成用の金属錯体、触媒及びこれを用いた不斉化合物の製造方法
CN108191736B (zh) 一种2,3-二取代吲哚类衍生物及其制备方法
Yu et al. L‐Proline‐based Phosphamides as a New Kind of Organocatalyst for Asymmetric Direct Aldol Reactions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant