CN109934871A - 一种面向高危环境的智能无人机抓取目标的***和方法 - Google Patents

一种面向高危环境的智能无人机抓取目标的***和方法 Download PDF

Info

Publication number
CN109934871A
CN109934871A CN201910123394.2A CN201910123394A CN109934871A CN 109934871 A CN109934871 A CN 109934871A CN 201910123394 A CN201910123394 A CN 201910123394A CN 109934871 A CN109934871 A CN 109934871A
Authority
CN
China
Prior art keywords
target
unmanned plane
coordinate
mechanical arm
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910123394.2A
Other languages
English (en)
Inventor
张瑞祥
李皓
郭浩文
林诗杰
杨文�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201910123394.2A priority Critical patent/CN109934871A/zh
Publication of CN109934871A publication Critical patent/CN109934871A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供一种面向高危环境的智能无人机抓取目标的***和方法。本发明通过结合无人机技术、图像处理技术以及一些机械学方面的技术,将无人机应用于高危环境下的异物清理工作。同时,利用多种传感器,采用同时定位与制图算法、目标检测算法和目标定位算法,实现对感兴趣目标的精确检测、精准定位和稳定抓取。相对于传统的人工清理异物的方法,本发明自动化程度高,效率高,安全系数高,可广泛应用于高危环境下的异物清理工作中。

Description

一种面向高危环境的智能无人机抓取目标的***和方法
技术领域
本发明属于图像处理与无人机技术领域,涉及高危环境下无人机的定位导航和目标的检测定位与精准抓取技术。
背景技术
这些年来,随着旅游业的迅猛发展,景区的卫生清理工作关系到景区经济效益、环境效益的均衡发展,是景区亟待解决的问题之一。但是,在部分险峻的景区,譬如悬崖峭壁上,卫生清理工作就变得十分危险。此外,在一些架空电力线路上,异物的清理工作也是十分艰巨的任务。
随着无人机技术的不断进步,其操纵的强灵活性及其功能的高扩展性逐渐受到大众青睐,与人们冒着风险回收垃圾相比,利用无人机无疑是最好的选择。传统的无人机***利用预先编写的程序与固定流程来执行动作,其自主能力有限,难以感知外部环境的变化进行响应动作,与人和工作环境之间进行友好交互。随着计算机技术和人工智能技术的飞速发展,计算机处理能力和传感器精度的提高,无人机在功能和技术层次上有了很大提升,具有感受、思考、决策和动作能力的智能无人机***成为研究领域的热点。智能无人机***能够在复杂环境下,完成自主感知推演、规划和控制,在电力线巡检、灾害救援等应用领域,开展对周围环境的物体检测跟踪、障碍物感知、定位路径规划、动作。其相对于通用无人机平台的一个显著不同点在于其选取最佳角度进行物品抓取功能,可使该无人机***在拾取险峻景区的垃圾和清理架空电力线的异物等应用中发挥重要作用。
然而,无人机在高危环境下完成任务时依然存在许多问题,GPS信号丢失、定位不准等,这使得无人机需要借助其他传感器进行自身定位,同时提高自主飞行能力,才能避免在各种复杂的高危环境下飞行时撞击障碍或坠毁。此外,由于抓取目标的姿态各异以及机械臂抓取时对无人机平衡性造成的影响等,需要设计更好的方案来实现稳定抓取。
发明内容
本发明的目的在于提供一种面向高危环境的智能无人机抓取目标的***和方法,旨在代替目前高危环境下的人工作业,降低人力成本,提高作业效率和安全性。
为达到上述目的,本发明采取了以下技术方案:
一种智能无人机抓取目标的***,包括多旋翼无人机,搭载在无人机上的机载处理器、深度相机、单目相机、惯性测量单元、机载控制器、激光雷达,以及机械臂和重心补偿单元;
所述机载控制器用于控制无人机起飞、移动、降落;
所述机载处理器、单目相机、惯性测量单元、激光雷达相连接,用于对无人机自身进行定位;
所述深度相机和机载处理器相连接,用于检测出目标及目标的摆放角度并且计算出目标相对于无人机的坐标位置;
所述机械臂、重心补偿单元和机载处理器相连接,用于实现多自由度的目标抓取;
所述机械臂为相互铰接的三段式结构,包括三个自由度,一端固定在无人机的中心点处,其末端执行器为可旋转的机械爪结构,用于抓取目标;
所述重心补偿单元用于消除机械臂抓取目标时导致无人机飞行不稳定以及抓取不稳定等影响,其安装在无人机中间,包括牵引导轨,滑台,配重和第四舵机,所述牵引导轨中心点和无人机中心重合,所述第四舵机用于控制滑台在牵引导轨上的移动,配重安放在滑台上面,用配重的重量来平衡无人机重心的位置。
进一步的,所述机械臂的三段之间利用三个舵机相连接,第一舵机连接机械臂的第一段和无人机机身,控制旋转角度θ1,第二舵机连接机械臂的第一段和第二段,控制旋转角度θ2,第三舵机连接机械臂第二段和末端,控制末端执行器的旋转角度θ3;前两个自由度保证机械臂可以在2D平面上移动,最后一个自由度用于实现对目标进行精准地旋转抓握,三自由度机械臂的动力学公式如下:
x0=L1cosθ1+L2cos(θ12)
y0=L1sinθ1+L2sin(θ12)
θ3=θ
其中,L1和L2是第一段与第二段的长度,θ1、θ2、θ3是每个关节的旋转角度,(x0,y0)是在以机械臂固定点为原点的坐标系下机械臂末端执行器的坐标,θ为目标的摆放角度。
进一步的,所述重心补偿单元中的配重为用于向无人机提供电能的电池。
本发明还提供一种面向高危环境的智能无人机抓取目标的方法,应用于上述技术方案中的***中,所述方法包括如下步骤:
步骤100,依靠机载单目相机和惯性测量单元对复杂环境下无人机自身进行定位,实现精准地导航飞行,并通过激光雷达测量无人机的飞行高度,保证无人机和地面保持一定的安全高度距离;
步骤200,利用机载深度相机拍摄实时拍摄当前环境下的图片,获得RGB图像和对应的深度图像,结合RGB图像进行目标的检测识别和定位,并检测目标的摆放角度θ,同时结合深度图像获得目标相对于无人机的相对位置坐标;
步骤300,利用机载控制器控制无人机飞行到靠近目标的位置,实时检测目标的位置坐标和无人机机械臂末端执行器的坐标,当两者的距离小于一定阈值时,机载处理器控制机械臂旋转,并控制重心补偿单元对无人机的重心进行调节,当机械臂末端执行器旋转到与目标摆放角度θ相同时,对目标进行抓取;
步骤400,利用无人机机械臂携带目标返回回收点,机械臂丢下目标。
进一步的,步骤S100中无人机自身进行定位的具体实现方式如下,
步骤S101,机载控制器控制无人机飞行,利用单目相机对周围环境的图像进行采集,单目相机移动之后进行三角化测量像素的距离,以此得到无人机周围的环境的三维点云数据,通过串口或者USB连接到机载处理器上;
步骤S102,机载处理器获取每时刻的三维点云相对于无人机的三维坐标,并匹配相邻时刻的三维点云数据,计算对应的坐标差,通过优化算法估计相邻两个时刻无人机的位移和姿态变化;
步骤S103,以无人机初始位置作为原点建立三维坐标系,利用相邻两时刻无人机的姿态位移变化累计估计无人机相对于坐标原点的位置移动和姿态变化,并利用无人机自身携带的IMU数据对累计误差进行校正。
进一步的,步骤200中采用Rotation-SqueezeDet进行目标的检测识别和定位,所述Rotation-SqueezeDet是一种改进的SqueezeDet网络模型,其利用旋转的边界框来标定目标,表达式为R'=(cx,cy,h,w,θ),其中cx,cy分别表示该边界框左上角的像素坐标,h,w分别表示该边界框的高度和宽度,θ表示旋转边界框的旋转角度。
进一步的,步骤S200中获得目标相对于无人机的相对位置坐标的具体实现方式如下,
检测到目标之后,通过深度图像得到目标的距离信息,将RGB图像与深度图像在同一坐标系中进行对齐,得到RGB图像与三维点云数据;接着,利用检测到的目标结果,从整个图像的点云中提取包含目标的点云子区域;之后,通过计算目标点云子区域的中心来计算目标的在深度相机坐标系下的坐标(xt,yt,zt),公式如下:
式中,(Xp,Yp,Zp)为旋转边界框内所有点云坐标的集合,式中的上标i表示在目标边界框内从左上角开始的第i个有效点云坐标,K表示旋转边界框内的有效点云个数;
最后,利用已知的深度相机的内参,求出目标关于无人机的相对位置坐标。
进一步的,机载处理器控制机械臂旋转,并控制重心补偿单元对无人机的重心进行调节的具体实现方式如下,
令机械臂末端执行器的坐标(x0,y0)等于步骤S200中解算出来的目标的坐标,由此坐标逆向计算出前第一舵机和第二舵机应该旋转的角度θ1、θ2,θ3与检测出来的目标旋转角度θ相等;机载处理器内设置有4个比例-积分-微分控制器(PID控制器),分别用于控制舵机旋转的速度,通过返回的当前实际角度θ1cur、θ2cur、θ3cur和理想角度θ1、θ2、θ3相比较,确定每个舵机旋转的速度v1、v1、v3,以确保最终第一、第二、第三舵机控制的角度到达理想的角度值,同时结合实际的角度值θ1cur、θ2cur利用重心解算原理,求解出配重的理想位移Pb,然后通过检测配重距离中心的实际位移Pbcur,利用第四PID控制器来实现第四舵机旋转速度的控制。
本发明所述的面向高危环境的智能无人机抓取目标的***,其完成的效果是:首先,无人机起飞,在飞行过程中将拍到的图像进行实时处理,检测其中是否存在感兴趣的目标,如果存在,定位目标,无人机接近目标,利用机械臂对目标实施抓取,在成功抓取目标后,携带目标飞行返回回收点,丢下目标后,继续巡视。本发明通过结合无人机技术和图像处理技术,将无人机应用于高危环境下的异物清理工作中,利用多种传感器,采用同时定位与制图算法、路径规划算法、基于深度学习的目标检测等算法实现目标的检测识别和定位,同时,设计了一套完备的机械体系,实现对目标的稳定抓取。相对于传统的人力清理,本发明自动化程度高,效率高,安全系数高。可广泛应用于高危环境下的异物清理工作中。
附图说明
图1为本发明***模块示意图。
图2为本发明***工作流程。
图3为本发明实施例中机械臂及其坐标系示意图。
图4为本发明实施例中机械臂工作空间气流强度示意图。
图5为本发明实施例中机械臂及重心补偿单元控制流程图。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图对本发明进一步详细说明。
本发明主要属于无人机技术领域,涉及空中机器人的基本问题,包括无人机自身定位、路径规划等,同时还涉及图像处理方面的技术,包括目标检测,目标定位,此外,抓取目标所用的机械臂还涉及了一些机械动力学方面的技术。
如图1所示,本发明提供的一种智能无人机抓取目标的***,包括多旋翼无人机,搭载在无人机上的机载处理器、深度相机、单目相机、惯性测量单元、机载控制器、激光雷达,以及机械臂和重心补偿单元;
所述机载控制器用于控制无人机起飞、移动、降落;
所述机载处理器、单目相机、惯性测量单元、激光雷达相连接,用于对无人机自身进行定位;
所述深度相机和机载处理器相连接,用于检测出目标及目标的摆放角度并且计算出目标相对于无人机的坐标位置;
所述机械臂、重心补偿单元和机载处理器相连接,用于实现多自由度的目标抓取;
所述机械臂为相互铰接的三段式结构,包括三个自由度,一端固定在无人机的中心点处,其末端执行器为可旋转的机械爪结构,用于抓取目标;
所述重心补偿单元用于消除机械臂抓取目标时导致无人机飞行不稳定以及抓取不稳定等影响,其安装在无人机中间,包括牵引导轨,滑台,配重和第四舵机,所述牵引导轨中心点和无人机中心重合,所述第四舵机用于控制滑台在牵引导轨上的移动,配重安放在滑台上面,用配重的重量来平衡无人机重心的位置。
如图2所示,本发明提供的一种面向高危环境的智能无人机抓取目标的方法,包含如下步骤:
步骤S100:依靠机载单目相机和惯性测量单元(IMU)对复杂环境下无人机自身进行定位,实现精准地导航飞行,并通过激光雷达测量无人机的飞行高度,保证无人机和地面保持一定的安全高度距离;
该步骤主要利用机载单目相机采集周围环境的数据,通过机载处理器处理来增量式地计算里程计对无人机进行定位,同时由于增量累积法的误差会逐渐增大,因此采用IMU和单目视觉计算出来的点云融合来获取里程计,从而实现对无人机定位。具体包括:
步骤S101:无人机移动飞行,利用单目相机对周围环境的图像进行采集,单目相机移动之后可以进行三角化测量像素的距离,以此可以得到无人机周围的环境的三维点云数据,通过串口或者USB连接到机载处理器上。
步骤S102:机载处理器获取每时刻的三维点云相对于无人机的三维坐标,并匹配相邻时刻的三维点云数据,计算对应的坐标差,通过优化算法估计相邻两个时刻无人机的位移和姿态变化。
步骤S103:以无人机初始位置作为原点建立三维坐标系,利用相邻两时刻无人机的姿态位移变化累计估计无人机相对于坐标原点的位置移动和姿态变化,并利用无人机自身携带的IMU数据对累计误差进行校正。
需要注意的是,无人机在高度的测量上不是利用单目相机和惯性测量单元来实现的,而是通过机载的Tfmini激光雷达实现,保证无人机和地面保持一定的安全高度距离。
步骤S200:利用机载深度相机拍摄实时拍摄当前环境下的图片,获得RGB图像和对应的深度图像,结合RGB图像进行目标的检测识别和定位,并检测目标的摆放角度θ,同时结合深度图像获得目标相对于无人机的相对位置坐标;
该步骤主要是利用机载深度相机拍摄当前环境下的图片,并通过机载处理器利用目标检测算法实时检测是否存在目标,如果检测出目标,就对目标进行定位,解算目标相对于无人机的坐标,具体包括:
步骤S201:利用深度相机采集图像,可以得到RGB图像和对应的深度图像,同时,机载处理器利用基于深度学***行于图像边界的一个矩形,可以表示为R=(cx,cy,h,w),其中cx,cy分别表示该边界框左上角的像素坐标,h,w分别表示该边界框的高度和宽度。这种平行于图像边界的矩形框,容易框入大量的背景信息,且不含有目标角度信息,所以,结合RRPN中采取的旋转边界框的方法,我们对SqueezeDet中的边界框进行了修改,用R'=(cx,cy,h,w,θ),来表示旋转边界框,其中θ表示旋转边界框的旋转角度。利用改进后的检测模型,就可以检测出含有旋转角度信息的目标边界。
步骤S202:在步骤S201中检测到目标,通过深度图像得到目标的距离信息,之后利用机载处理器计算出目标相对于无人机的具***置。首先,将彩色图像(RGB图像)与深度图像在同一坐标系中进行对齐,得到RGB图像与三维点云数据;接着,利用检测到的目标结果,从整个图像的点云中提取包含目标的点云子区域;之后,通过计算目标点云子区域的中心来计算目标的在深度相机坐标系下的坐标(xt,yt,zt),公式如下:
式中,(Xp,Yp,Zp)为目标边界框内所有点云坐标的集合,式中的上标i表示在目标边界框内从左上角开始的第i个有效点云坐标,K表示目标边界框内的有效点云个数。
得到目标在相机坐标系下的坐标之后,利用已知的深度相机的内参,可以求出目标关于无人机的相对位置坐标,该部分为现有技术,本发明不予撰述。
步骤S300:利用机载控制器控制无人机飞行到靠近目标的位置,实时检测目标的位置坐标和无人机机械臂末端执行器的坐标,当两者的距离小于一定阈值时,机载处理器控制机械臂旋转,并控制重心补偿单元对无人机的重心进行调节,当机械臂末端执行器旋转到与目标摆放角度θ相同时,对目标进行抓取;
该步骤在步骤S200检测到目标并且准确定位到目标的基础上,利用无人机飞行到靠近目标的位置,此时,机载处理器控制机械臂旋转,抓取目标。具体包括:
步骤S301:机载处理器利用单目相机采集到的数据,辅以惯性测量单元,计算视觉里程计,控制无人机靠近目标,同时,实时检测目标的位置坐标和无人机机械臂末端的坐标,无人机飞行至两者坐标距离小于3cm,悬停,准备抓取目标;
步骤S302:在步骤S301中无人机接近目标时,末端执行器与目标的距离小于3cm,此时,利用机载处理器控制机械臂移动至末端执行器和目标的坐标重合,同时控制末端执行器旋转至与目标的摆放角度相一致,之后抓取目标。
机械臂有三段,都是由3D打印的PLA材料制成,类似于人的手臂,前两段用来延伸,后面一段是末端执行器,是两爪的机械爪,通过张合来实现抓取和放下,而且末端执行器可以实现任意角度的旋转,因此可以根据物体的摆放角度来调整抓取角度,实现更加稳定的抓取。机械臂的三段之间利用舵机相连接,第一舵机连接机械臂的第一段和无人机机身,固定在无人机的中心点处,控制旋转角度θ1,第二舵机连接机械臂的第一段和第二段,控制旋转角度θ2,第三舵机连接机械臂第二段和末端执行器,控制末端执行器的旋转角度θ3;因此,机械臂具有三个自由度,前两个自由度保证机械臂可以在2D平面上移动,在最后一个自由度上,利用目标检测给出的目标旋转角度,可以实现精准地旋转抓握,很大程度的提高抓取准确性和稳定性。本***三自由度机械臂示意图如附图3所示,其动力学公式如下:
x0=L1cosθ1+L2cos(θ12)
y0=L1sinθ1+L2sin(θ12)
θ3=θ
其中,L1和L2是第一段与第二段的长度,θ1、θ2、θ3是每个关节的旋转角度,(x0,y0)是在以机械臂固定点为原点的坐标系下机械臂末端执行器的坐标。由于θ3只与目标旋转角度θ有关,即步骤S200中检测出来的目标角度。因此我们的机械臂相当于仅有两个自由度。
由于无人机旋翼产生的风力的影响,无人机过于接近目标可能会导致目标受风力影响移动。本***考虑了无人机转子产生的气流影响,对机械臂的工作空间进行了一定的限制。通过查阅资料,我们得到了许多不同无人机的高保真计算流体动力学(CFD)模拟结果。从这些结果的观察中,每个无人机转子产生的流量在***区域迅速减小,具体示意图如附图4所示。该图表示的是以无人机中心点为原点,无人机下方部分区域的气流强度,图中,浅灰色区域表示弱流动影响区域或无流动影响区域,深灰色区域表示强流动影响区域。由此结果,本***规定在机械臂进行抓取或者丢弃目标的工作状态下,机械臂末端执行器需要保持在弱流动影响区域,以此来减小气流的影响。具体方案如下,首先,建立三维坐标系,本***采用四旋翼无人机,包括两个前翼(右侧前翼和左侧前翼)和两个后翼(右侧后翼和左侧后翼),以无人机中心为原点,两个前翼连线的中点和原点的连线作为X轴,由原点向两个前翼连线的中点方向为X轴正方向,右侧前翼和右侧后翼连线的中点与原点的连线作为Y轴,由原点向右为Y轴正方向,垂直无人机平面向上为Z轴。在机械臂进行抓取或者丢弃目标的工作状态下,机械臂末端执行器需要保持在距离ZOY平面的垂直距离大于30cm的弱流动影响区域;在无人机进行丢下目标的工作状态下,机械臂末端执行器保持在距离ZOY平面的垂直距离小于5cm的弱流动影响区域。
此外,需要注意的是,机械臂在移动抓取目标时,整个***的重心会发生改变,会导致无人机飞行不稳定以及抓取不稳定等影响,因此,本***设计了一个重心补偿单元,用来平衡机械臂移动导致的无人机重心的偏移。重心补偿单元安装在无人机中间,由3D打印的PLA材料制成,包括牵引导轨,滑台,配重和第四舵机,导轨长60cm,固定在上述坐标系中的X轴上,牵引导轨中点位于无人机中心,在牵引导轨中点处,即无人机中心的位置,安置第四舵机,通过第四舵机旋转来控制滑台的移动,配重安放在滑台上面,用配重的重量来平衡重心的位置,滑台中心的初始位置位于上述坐标系中X轴上的(-15)cm点处。其工作原理就是机载处理器在机械臂移动时,控制第四舵机工作,驱动滑台在牵引导轨上移动相对应的距离,以此来平衡***的重心。无人机的电池为5200mAh 4S-35C电池,重0.525kg,可以用作为重心补偿单元的配重。
机械臂以及重心补偿单元的工作由机载处理器控制,整个抓取过程由四个比例-积分-微分控制器(Proportion Integration Differentiation Controller,缩写PID控制器)来调节和控制,控制示意图如附图5所示。为了使机械臂末端执行器和目标的坐标重合,令机械臂末端执行器的坐标(x0,y0)等于步骤S202中解算出来的目标的坐标,由此坐标可以逆向计算出前两个舵机(即第一舵机和第二舵机)应该旋转的角度θ1、θ2,θ3与检测出来的目标旋转角度θ相等。在控制舵机旋转的过程中,由于舵机的旋转可能存在超过或者未达到预设的角度值,所以,我们利用三个PID控制器(即第一、二、三PID控制器)去控制舵机旋转的速度,通过返回的当前实际角度θ1cur、θ2cur、θ3cur和理想角度θ1、θ2、θ3相比较,确定每个舵机旋转的速度v1、v1、v3,以确保最终前三个舵机的控制的角度到达理想的角度值,同时结合实际的角度值θ1cur、θ2cur利用重心解算的知识,求解出配重的理想位移Pb,然后通过检测配重距离中心的实际位移Pbcur,利用第四PID控制器来实现第四舵机旋转速度的控制。所有PID控制器的参数均经过良好的调优,保证了控制的稳定性。
S400:利用无人机携带目标返回回收点,机械臂丢下目标;
该步骤在步骤S300中成功抓取目标的基础上,携带目标,返回事先设定的回收点,在回收点处,用机械臂丢下目标,完成整个工作。具体包括:
步骤S401:利用单目相机和惯性测量单元相结合,计算视觉里程计,规划无人机返回回收点的路径,机载控制器控制无人机飞回回收点;
步骤S402:机载处理器控制机械臂垂直向下,松开末端执行器,丢下抓取的目标。
综上所述,本发明所述的一种面向高危环境的智能无人机抓取***,主要是通过单目相机和惯性测量单元计算视觉里程计,以此来对无人机进行定位,控制无人机的飞行轨迹;在飞行过程中,利用机载的深度相机实时拍摄当前环境下的图像,同时,通过机载处理器,利用基于深度学习的目标检测算法进行目标的检测;在确定存在目标后,对目标进行精准定位,得到目标相对于无人机的位置坐标;之后,无人机靠近目标,利用机械臂,结合之前目标检测时得到的目标摆放角度,稳定地抓取目标;最后携带目标返回回收点,丢下目标。本发明通过结合无人机技术、图像处理技术以及一些机械学方面的技术,将无人机应用于高危环境下的异物清理工作。同时,利用多种传感器,采用同时定位与制图算法、路径规划算法、目标检测算法和目标定位算法,实现对感兴趣目标的精确检测、精准定位和稳定抓取。相对于传统的人工清理异物的方法,本发明自动化程度高,效率高,安全系数高。可广泛应用于高危环境下的异物清理工作中。

Claims (8)

1.一种智能无人机抓取目标的***,其特征在于:包括多旋翼无人机,搭载在无人机上的机载处理器、深度相机、单目相机、惯性测量单元、机载控制器、激光雷达,以及机械臂和重心补偿单元;
所述机载控制器用于控制无人机起飞、移动、降落;
所述机载处理器、单目相机、惯性测量单元、激光雷达相连接,用于对无人机自身进行定位;
所述深度相机和机载处理器相连接,用于检测出目标及目标的摆放角度并且计算出目标相对于无人机的坐标位置;
所述机械臂、重心补偿单元和机载处理器相连接,用于实现多自由度的目标抓取;
所述机械臂为相互铰接的三段式结构,包括三个自由度,一端固定在无人机的中心点处,其末端执行器为可旋转的机械爪结构,用于抓取目标;
所述重心补偿单元用于消除机械臂抓取目标时导致无人机飞行不稳定以及抓取不稳定等影响,其安装在无人机中间,包括牵引导轨,滑台,配重和第四舵机,所述牵引导轨中心点和无人机中心重合,所述第四舵机用于控制滑台在牵引导轨上的移动,配重安放在滑台上面,用配重的重量来平衡无人机重心的位置。
2.如权利要求1所述的一种智能无人机抓取目标的***,其特征在于:所述机械臂的三段之间利用三个舵机相连接,第一舵机连接机械臂的第一段和无人机机身,控制旋转角度θ1,第二舵机连接机械臂的第一段和第二段,控制旋转角度θ2,第三舵机连接机械臂第二段和末端,控制末端执行器的旋转角度θ3;前两个自由度保证机械臂可以在2D平面上移动,最后一个自由度用于实现对目标进行精准地旋转抓握,三自由度机械臂的动力学公式如下:
x0=L1cosθ1+L2cos(θ12)
y0=L1sinθ1+L2sin(θ12)
θ3=θ
其中,L1和L2是第一段与第二段的长度,θ1、θ2、θ3是每个关节的旋转角度,(x0,y0)是在以机械臂固定点为原点的坐标系下机械臂末端执行器的坐标,θ为目标的摆放角度。
3.如权利要求1所述的一种智能无人机抓取目标的***,其特征在于:所述重心补偿单元中的配重为用于向无人机提供电能的电池。
4.一种面向高危环境的智能无人机抓取目标的方法,应用于上述权利要求1-3中任一项所述的***,其特征在于,所述方法包括如下步骤:
步骤100,依靠机载单目相机和惯性测量单元对复杂环境下无人机自身进行定位,实现精准地导航飞行,并通过激光雷达测量无人机的飞行高度,保证无人机和地面保持一定的安全高度距离;
步骤200,利用机载深度相机拍摄实时拍摄当前环境下的图片,获得RGB图像和对应的深度图像,结合RGB图像进行目标的检测识别和定位,并检测目标的摆放角度θ,同时结合深度图像获得目标相对于无人机的相对位置坐标;
步骤300,利用机载控制器控制无人机飞行到靠近目标的位置,实时检测目标的位置坐标和无人机机械臂末端执行器的坐标,当两者的距离小于一定阈值时,机载处理器控制机械臂旋转,并控制重心补偿单元对无人机的重心进行调节,当机械臂末端执行器旋转到与目标摆放角度θ相同时,对目标进行抓取;
步骤400,利用无人机机械臂携带目标返回回收点,机械臂丢下目标。
5.如权利要求4所述一种面向高危环境的智能无人机抓取目标的方法,其特征在于:步骤S100中无人机自身进行定位的具体实现方式如下,
步骤S101,机载控制器控制无人机飞行,利用单目相机对周围环境的图像进行采集,单目相机移动之后进行三角化测量像素的距离,以此得到无人机周围的环境的三维点云数据,通过串口或者USB连接到机载处理器上;
步骤S102,机载处理器获取每时刻的三维点云相对于无人机的三维坐标,并匹配相邻时刻的三维点云数据,计算对应的坐标差,通过优化算法估计相邻两个时刻无人机的位移和姿态变化;
步骤S103,以无人机初始位置作为原点建立三维坐标系,利用相邻两时刻无人机的姿态位移变化累计估计无人机相对于坐标原点的位置移动和姿态变化,并利用无人机自身携带的IMU数据对累计误差进行校正。
6.如权利要求4或5所述一种面向高危环境的智能无人机抓取目标的方法,其特征在于:步骤200中采用Rotation-SqueezeDet进行目标的检测识别和定位,所述Rotation-SqueezeDet是一种改进的SqueezeDet网络模型,其利用旋转的边界框来标定目标,表达式为R'=(cx,cy,h,w,θ),其中cx,cy分别表示该边界框左上角的像素坐标,h,w分别表示该边界框的高度和宽度,θ表示旋转边界框的旋转角度。
7.如权利要求6所述一种面向高危环境的智能无人机抓取目标的方法,其特征在于:步骤S200中获得目标相对于无人机的相对位置坐标的具体实现方式如下,
检测到目标之后,通过深度图像得到目标的距离信息,将RGB图像与深度图像在同一坐标系中进行对齐,得到RGB图像与三维点云数据;接着,利用检测到的目标结果,从整个图像的点云中提取包含目标的点云子区域;之后,通过计算目标点云子区域的中心来计算目标的在深度相机坐标系下的坐标(xt,yt,zt),公式如下:
式中,(Xp,Yp,Zp)为旋转边界框内所有点云坐标的集合,式中的上标i表示在目标边界框内从左上角开始的第i个有效点云坐标,K表示旋转边界框内的有效点云个数;
最后,利用已知的深度相机的内参,求出目标关于无人机的相对位置坐标。
8.如权利要求7所述一种面向高危环境的智能无人机抓取目标的方法,其特征在于:机载处理器控制机械臂旋转,并控制重心补偿单元对无人机的重心进行调节的具体实现方式如下,
令机械臂末端执行器的坐标(x0,y0)等于步骤S200中解算出来的目标的坐标,由此坐标逆向计算出前第一舵机和第二舵机应该旋转的角度θ1、θ2,θ3与检测出来的目标旋转角度θ相等;机载处理器内设置有4个比例-积分-微分控制器(PID控制器),分别用于控制舵机旋转的速度,通过返回的当前实际角度θ1cur、θ2cur、θ3cur和理想角度θ1、θ2、θ3相比较,确定每个舵机旋转的速度v1、v1、v3,以确保最终第一、第二、第三舵机控制的角度到达理想的角度值,同时结合实际的角度值θ1cur、θ2cur利用重心解算原理,求解出配重的理想位移Pb,然后通过检测配重距离中心的实际位移Pbcur,利用第四PID控制器来实现第四舵机旋转速度的控制。
CN201910123394.2A 2019-02-18 2019-02-18 一种面向高危环境的智能无人机抓取目标的***和方法 Pending CN109934871A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910123394.2A CN109934871A (zh) 2019-02-18 2019-02-18 一种面向高危环境的智能无人机抓取目标的***和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910123394.2A CN109934871A (zh) 2019-02-18 2019-02-18 一种面向高危环境的智能无人机抓取目标的***和方法

Publications (1)

Publication Number Publication Date
CN109934871A true CN109934871A (zh) 2019-06-25

Family

ID=66985631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910123394.2A Pending CN109934871A (zh) 2019-02-18 2019-02-18 一种面向高危环境的智能无人机抓取目标的***和方法

Country Status (1)

Country Link
CN (1) CN109934871A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110427043A (zh) * 2019-09-04 2019-11-08 福州大学 基于作业飞行机器人重心偏移的位姿控制器设计方法
CN110525642A (zh) * 2019-08-26 2019-12-03 核工业北京地质研究院 一种无人机载多传感器野外查证与定点测量***
US10822082B2 (en) 2017-04-07 2020-11-03 Mark Holbrook Hanna Distributed-battery aerial vehicle and a powering method therefor
CN112161173A (zh) * 2020-09-10 2021-01-01 国网河北省电力有限公司检修分公司 一种电网布线参数检测装置及检测方法
CN113351631A (zh) * 2021-07-05 2021-09-07 北京理工大学 一种光电智能垃圾分拣小车***
CN113602481A (zh) * 2021-09-01 2021-11-05 浙江科顿科技有限公司 搭载机械手和重力平衡装置的无人机自主平衡控制方法
CN113702995A (zh) * 2021-09-01 2021-11-26 国网江苏省电力有限公司扬州供电分公司 一种用于辅助挂放接地线作业的空间定位***
US11235823B2 (en) 2018-11-29 2022-02-01 Saudi Arabian Oil Company Automation methods for UAV perching on pipes
CN114115321A (zh) * 2021-12-13 2022-03-01 盐城工学院 高压输电线路异物自动清除飞行器及其自动清除方法
CN114429432A (zh) * 2022-04-07 2022-05-03 科大天工智能装备技术(天津)有限公司 一种多源信息分层融合方法、装置及存储介质
CN117182354A (zh) * 2023-11-07 2023-12-08 中国铁建电气化局集团有限公司 异物清除方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105775152A (zh) * 2016-03-08 2016-07-20 谭圆圆 带有电池式配重装置的无人飞行器及其配重方法
CN106645205A (zh) * 2017-02-24 2017-05-10 武汉大学 一种无人机桥梁底面裂纹检测方法及***
CN107314762A (zh) * 2017-07-06 2017-11-03 广东电网有限责任公司电力科学研究院 基于无人机单目序列影像的电力线下方地物距离检测方法
CN108780325A (zh) * 2016-02-26 2018-11-09 深圳市大疆创新科技有限公司 用于调整无人飞行器轨迹的***和方法
CN108858199A (zh) * 2018-07-27 2018-11-23 中国科学院自动化研究所 基于视觉的服务机器人抓取目标物体的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780325A (zh) * 2016-02-26 2018-11-09 深圳市大疆创新科技有限公司 用于调整无人飞行器轨迹的***和方法
CN105775152A (zh) * 2016-03-08 2016-07-20 谭圆圆 带有电池式配重装置的无人飞行器及其配重方法
CN106645205A (zh) * 2017-02-24 2017-05-10 武汉大学 一种无人机桥梁底面裂纹检测方法及***
CN107314762A (zh) * 2017-07-06 2017-11-03 广东电网有限责任公司电力科学研究院 基于无人机单目序列影像的电力线下方地物距离检测方法
CN108858199A (zh) * 2018-07-27 2018-11-23 中国科学院自动化研究所 基于视觉的服务机器人抓取目标物体的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIJIE LIN等: "Toward Autonomous Rotation-Aware Unmanned Aerial Grasping", 《ARXIV:1811.03921V1》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10822082B2 (en) 2017-04-07 2020-11-03 Mark Holbrook Hanna Distributed-battery aerial vehicle and a powering method therefor
US11811224B2 (en) 2017-04-07 2023-11-07 Mark Holbrook Hanna Distributed-battery aerial vehicle and a powering method therefor
US11235823B2 (en) 2018-11-29 2022-02-01 Saudi Arabian Oil Company Automation methods for UAV perching on pipes
CN110525642A (zh) * 2019-08-26 2019-12-03 核工业北京地质研究院 一种无人机载多传感器野外查证与定点测量***
CN110427043B (zh) * 2019-09-04 2021-09-28 福州大学 基于作业飞行机器人重心偏移的位姿控制器设计方法
CN110427043A (zh) * 2019-09-04 2019-11-08 福州大学 基于作业飞行机器人重心偏移的位姿控制器设计方法
CN112161173B (zh) * 2020-09-10 2022-05-13 国网河北省电力有限公司检修分公司 一种电网布线参数检测装置及检测方法
CN112161173A (zh) * 2020-09-10 2021-01-01 国网河北省电力有限公司检修分公司 一种电网布线参数检测装置及检测方法
CN113351631A (zh) * 2021-07-05 2021-09-07 北京理工大学 一种光电智能垃圾分拣小车***
CN113602481A (zh) * 2021-09-01 2021-11-05 浙江科顿科技有限公司 搭载机械手和重力平衡装置的无人机自主平衡控制方法
CN113702995A (zh) * 2021-09-01 2021-11-26 国网江苏省电力有限公司扬州供电分公司 一种用于辅助挂放接地线作业的空间定位***
CN114115321A (zh) * 2021-12-13 2022-03-01 盐城工学院 高压输电线路异物自动清除飞行器及其自动清除方法
CN114429432A (zh) * 2022-04-07 2022-05-03 科大天工智能装备技术(天津)有限公司 一种多源信息分层融合方法、装置及存储介质
CN114429432B (zh) * 2022-04-07 2022-06-21 科大天工智能装备技术(天津)有限公司 一种多源信息分层融合方法、装置及存储介质
CN117182354A (zh) * 2023-11-07 2023-12-08 中国铁建电气化局集团有限公司 异物清除方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
CN109934871A (zh) 一种面向高危环境的智能无人机抓取目标的***和方法
CN106595631B (zh) 一种躲避障碍物的方法及电子设备
CN108453738B (zh) 一种基于Opencv图像处理的四旋翼飞行器空中自主抓取作业的控制方法
CN110062919B (zh) 递送车辆的放下地点规划
CN109398688B (zh) 一种旋翼飞行双机械臂目标定位抓取***及方法
CN205453893U (zh) 无人机
CN105492985A (zh) 多传感器环境地图构建
US10921825B2 (en) System and method for perceptive navigation of automated vehicles
JP7492718B2 (ja) 安全着陸可能領域を識別するためのシステム、方法、プログラム及びプログラムを記憶した記憶媒体
Santos et al. UAV obstacle avoidance using RGB-D system
CN111061266A (zh) 一种实时场景分析和空间避障的夜间值守机器人
Hsiao et al. Autopilots for ultra lightweight robotic birds: Automatic altitude control and system integration of a sub-10 g weight flapping-wing micro air vehicle
CN110209202A (zh) 一种可行空间生成方法、装置、飞行器及飞行器***
CN108415460A (zh) 一种组合分离式旋翼与足式移动操作机器人集中-分布式控制方法
CN114488848A (zh) 面向室内建筑空间的无人机自主飞行***及仿真实验平台
Asadi et al. An integrated aerial and ground vehicle (UAV-UGV) system for automated data collection for indoor construction sites
CN110879607A (zh) 一种基于多无人机编队协同探测的海上风电叶片检测方法
JP2020149186A (ja) 位置姿勢推定装置、学習装置、移動ロボット、位置姿勢推定方法、学習方法
Proctor et al. Vision‐only control and guidance for aircraft
Sa et al. Close-quarters Quadrotor flying for a pole inspection with position based visual servoing and high-speed vision
Zufferey et al. Optic flow to steer and avoid collisions in 3D
Beyeler et al. Vision-based altitude and pitch estimation for ultra-light indoor microflyers
Shastry et al. Autonomous detection and tracking of a high-speed ground vehicle using a quadrotor UAV
CN116009583A (zh) 基于纯粹视觉的分布式无人机协同运动控制方法和装置
US20230142863A1 (en) Performance of autonomous vehicle operation in varying conditions by using imagery generated with machine learning for simulations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190625

RJ01 Rejection of invention patent application after publication