CN109932598B - 一种不确定噪声扰动下Buck变换器的故障检测方法 - Google Patents

一种不确定噪声扰动下Buck变换器的故障检测方法 Download PDF

Info

Publication number
CN109932598B
CN109932598B CN201910226323.5A CN201910226323A CN109932598B CN 109932598 B CN109932598 B CN 109932598B CN 201910226323 A CN201910226323 A CN 201910226323A CN 109932598 B CN109932598 B CN 109932598B
Authority
CN
China
Prior art keywords
buck converter
theta
matrix
convex polyhedron
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910226323.5A
Other languages
English (en)
Other versions
CN109932598A (zh
Inventor
王子赟
刘子幸
王艳
纪志成
徐桂香
张帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201910226323.5A priority Critical patent/CN109932598B/zh
Publication of CN109932598A publication Critical patent/CN109932598A/zh
Application granted granted Critical
Publication of CN109932598B publication Critical patent/CN109932598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种不确定噪声扰动下Buck变换器的故障检测方法,属于电力变换器故障检测领域。该方法包括确定观测矩阵;定义Buck变换器的参数矩阵和Buck变换器的***方程;根据Buck变换器的***方程确定参数矩阵对应的参数空间集合;根据参数空间集合确定凸多面体;根据第一凸多面体和第二凸多面体是否为空集确定Buck变换器的工作状态;解决了在不确定噪声扰动情况下,Buck变换器的故障检测效果和实时性不好的问题;达到了可以在噪声、干扰等不确定因素较多的情况下对Buck变换器进行较为准确的故障检测,提高Buck变换器故障检测的实用性和普适性的效果。

Description

一种不确定噪声扰动下Buck变换器的故障检测方法
技术领域
本发明实施例涉及电力变换器故障检测领域,特别涉及一种不确定噪声扰动下Buck变换器的故障检测方法。
背景技术
电力变换器作为电力***转换中间环节的重要器件,可用于电力***、能源、汽车、农业等领域。随着电子技术应用领域的拓展,变换器必将继续在各个领域发挥重要的作用。
由于电解电容退化、开关管故障、焊点故障等原因,常常导致斩波电路出现故障,为了保障电力变换器安全工作,需要对电力变换器进行故障检测。
故障检测方法可以分为两大类:基于模型的和基于数据驱动的。其中,基于数据驱动的故障检测方法需要以充足可靠的历史数据为前提,但数据采集过程中往往会受到不同噪声的影响,采集到的数据质量不高,且故障检测的实时性不好;基于模型的故障检测方法适用于已知的模型,对数据源的依赖性较低,实时性较好。但基于模型的故障诊断方法的诊断性能依赖于所获取的***模型的准确性,一般由于外界干扰和噪声的影响,***模型不可避免地存在不确定性。
基于集员估计的故障检测方法能够有效处理***模型不确定的***的故障检测问题,具有良好的鲁棒性和快速性。
发明内容
为了解决现有技术的问题,本发明实施例提供了一种不确定噪声扰动下Buck变换器的故障检测方法。该技术方案如下:
第一方面,提供了一种不确定噪声扰动下Buck变换器的故障诊断方法,该方法包括:
根据Buck变换器中晶体管的切换状态、电感电流和输出电压,确定Buck变换器的观测矩阵Φ(k):
Φ(k)=[iL(k-1) uO(k-1) S(k)]T
定义Buck变换器的参数矩阵,参数矩阵包括第一参数矩阵θ1和第二参数矩阵θ2
Figure GDA0002421133880000021
Figure GDA0002421133880000022
根据观测矩阵、参数矩阵、输出矩阵、Buck变换器在电感电流持续导通情况下的混杂***离散模型,定义Buck变换器的***方程:
y1(k)=θ1 TΦ(k)+e1(k),
y2(k)=θ2 TΦ(k)+e2(k);
根据Buck变换器的***方程,确定第一参数矩阵θ1对应的第一参数空间集合Q1(k)以及第二参数矩阵θ2对应的第二参数空间集合Q2(k):
Q1(k)={θ1:|y1(k)-ΦT(k)θ1|≤σ11∈Rm},
Q2(k)={θ2:|y2(k)-ΦT(k)θ2|≤σ22∈Rm};
根据第一参数空间集合Q1(k)确定第一参数矩阵对应的第一凸多面体Θ1(k),根据第二参数空间集合Q2(k)确定的第二参数矩阵对应的第二凸多面体Θ2(k);
检测第一凸多面体Θ1(k)是否为空集,以及检测第二凸多面体Θ2(k)是否为空集;
若检测到第一凸多面体Θ1(k)为空集,第二凸多面体Θ2(k)为空集,则确定Buck变换器发生故障;
若检测到第一凸多面体Θ1(k)为空集,第二凸多面体Θ2(k)不为空集,则确定Buck变换器发生***错误;
若检测到第一凸多面体Θ1(k)不为空集,第二凸多面体Θ2(k)为空集,则确定Buck变换器发生故障;
若检测到第一凸多面体Θ1(k)不为空集,第二凸多面体Θ2(k)不为空集,则确定Buck变换器未发生故障;
其中,iL(k-1)表示k-1时刻Buck变换器的电感电流,uO(k-1)表示k-1时刻Buck变换器的输出电压,S(k)表示Buck变换器中晶体管的切换状态,L表示电感,R表示电阻,C和RC分别表示电解电容等效的电容和串联电阻,T表示采样周期,U表示Buck变换器的输入电压,e1(k)、e2(k)是不确定的Buck变换器的噪声,且e1(k)、e2(k)有界,|e1(k)|≤σ1、|e2(k)|≤σ2,σ1、σ2为大于零的常数,Rm为实数集。
可选的,检测凸多面体Θi(k)是否为空集,i=1,2,包括:
获取凸多面体Θi(k)对应的椭球集合Ei(k):
Ei(k)={θi:(θiic(k))TPi -1(k)(θiic(k))≤1};
检测k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集是否为空集;
若检测到k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集为空集,则确定凸多面体为空集;
若检测到k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集不为空集,则确定凸多面体不为空集;
其中,Pi(k)表示椭球集合Ei(k)的轴信息矩阵,θic(k)表示椭球集合Ei(k)的中心;
Pi(k)=Pi(k-1)-αi(k-1)Pi(k-1)Φ(k-1)ΦT(k-1)Pi(k-1),
θic(k)=θic(k-1)+αi(k-1)Pi(k-1)Φ(k-1)(yi(k)-ΦT(k-1)θic(k-1)),
αi(k-1)=(ρi -1(k-1)+ΦT(k-1)Pi(k-1)Φ(k-1))-1
Figure GDA0002421133880000031
Figure GDA0002421133880000032
可选的,检测k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集是否为空集,包括:
检测交集判断条件是否成立,交集判断条件为:
Figure GDA0002421133880000033
其中,yi(k)表示k时刻Buck变换器的输出矩阵中的元素,Φ(k)表示k时刻Buck变换器的观测矩阵,θic(k-1)表示k-1时刻椭球集合的交集Ei(k-1)的中心,Pi(k-1)表示k-1时刻椭球集合Ei(k-1)的轴信息矩阵,σi为大于零的常数。
可选的,获取凸多面体Θi(k)对应的椭球集合Ei(k),包括:
设置初始化的椭球集合Ei(0)的中心和椭球集合的轴信息矩阵;
通过递推获取k时刻的椭球集合的中心和椭球集合的轴信息矩阵;
根据k时刻的椭球集合的中心和椭球集合的轴信息矩阵确定k时刻的椭球集合;
其中,初始化的椭球集合的中心为:θic(0)=[0 0 0]T
初始化的椭球集合的轴信息矩阵为:Pi -1(0)=δi·I3
θic(0)表示初始化的椭球集合Ei(0)的中心,Pi(0)表示初始化的椭球集合Ei(0)的轴信息矩阵,δi为正数,I3为3阶单位矩阵。
本发明实施例提供的技术方案带来的有益效果是:
通过根据Buck变换器中晶体管的切换状态、电感电流和输出电压,确定Buck变换器的观测矩阵;定义Buck变换器的参数矩阵;根据观测矩阵、参数矩阵、输出矩阵、Buck变换器在电感电流持续导通情况下的混杂***离散模型,定义Buck变换器的***方程;根据Buck变换器的***方程,确定第一参数矩阵对应的第一参数空间集合以及第二参数矩阵θ2对应的第二参数空间集合;根据第一参数空间集合确定第一参数矩阵对应的第一凸多面体,根据第二参数空间集合确定的第二参数矩阵对应的第二凸多面体;再根据第一凸多面体是否为空集以及第二凸多面体是否为空集,确定Buck变换器的工作状态;解决了在不确定噪声扰动情况下,Buck变换器的故障检测效果和实时性不好的问题;达到了可以在噪声、干扰等不确定因素较多的情况下对Buck变换器进行较为准确的故障检测,提高Buck变换器故障检测的实用性和普适性的效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种Buck变换器的拓扑图;
图2是一种Buck变换器的等效原理图;
图3是根据一示例性实施例示出的一种不确定噪声扰动情况下Buck变换器的故障检测方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本发明实施例提供的不确定噪声扰动下的Buck变换器的故障检测方法,检测Buck变换器是否发生故障是在Buck变换器处于工作状态下进行的。
在对Buck变换器进行故障检测之前,建立非理想Buck变换器在电感电流持续导通情况下的混杂***离散模型。
Buck变换器的拓扑图如图1所示,采用非理想Buck变换器等效变换的方法对Buck变换器电路进行简化,即将晶体管MOSFET等效为理想开关S1,将二极管D等效为理想开关S2,将电感L视为理想元件,电解电容C'等效为电容C和串联电阻RC,得到的非理想变换器的拓扑原理图如图2所示。
1、建立非理想Buck变换器的混杂***模型。
由于Buck变换器在电感电流连续导通(Continuous Conduction Mode,CCM模式)时存在两种情况:S1闭合且S2开通、S1开通S2闭合,将两种情况下的状态结合,得到在CCM模式下Buck变换器的混杂***模型:
Figure GDA0002421133880000051
式(1)中S表示Buck变换器的开关管的切换状态,U表示Buck变换器的输入电压,iL表示Buck变换器的电感电流,uo表示Buck变换器的输出电压,
Figure GDA0002421133880000052
表示iL关于时间t的一阶导数,
Figure GDA0002421133880000053
表示uo关于时间t的一阶导数。
如图2所示,Buck变换器的元件包括电感L、电阻R、电解电容C'等效得到的电容C和串联电阻RC
2、对式(1)进行离散化处理,得到非理想Buck变换器在电感电流持续导通情况下的混杂***离散模型:
Figure GDA0002421133880000054
式(2)中T表示采样周期,k为离散时间,iL(k)表示k时刻Buck变换器的电感电流,uO(k)表示k时刻Buck变换器的输出电压;S(k)表示Buck变换器中晶体管的切换状态,在一个周期T内S(k)的值为1或0,S(k)的值为1时表示晶体管处于导通状态,S(k)的值为0时表示晶体管处于断开状态。
请参考图3,其示出了本发明一个实施例提供的不确定噪声扰动情况下Buck变换器的故障检测方法的流程图。如图3所示,该不确定噪声扰动情况下Buck变换器的故障检测方法可以包括以下步骤:
步骤101,根据Buck变换器中晶体管的切换状态、电感电流和输出电压,确定Buck变换器的观测矩阵。
获取Buck变换器在工作状态下晶体管的切换状态、电感电流和输出电压,确定Buck变换器的观测矩阵。
在预定时间范围内,在未知***参数的Buck变换器中,获取Buck变换器在工作状态下时晶体管的切换状态S(k)、电感电流iL(k)和输出电压uO(k)。预定时间范围为1至N,N为整数,N的值是预先设置的。
可选的,利用电压表、示波器获取Buck变换器的晶体管的切换状态S(k)、电感电流iL(k)和输出电压uO(k)。
定义观测矩阵Φ(k)为:
Φ(k)=[iL(k-1) uO(k-1) S(k)]T (3)
其中,iL(k-1)表示k-1时刻Buck变换器的电感电流,uO(k-1)表示k-1时刻Buck变换器的输出电压。
步骤102,定义Buck变换器的参数矩阵,参数矩阵包括第一参数矩阵和第二参数矩阵。
定义Buck变换器的第一参数矩阵θ1为:
Figure GDA0002421133880000061
定义Buck变换器的第二参数矩阵θ2为:
Figure GDA0002421133880000062
第一参数矩阵θ1和第二参数矩阵θ2是未知的。
步骤103,根据观测矩阵、参数矩阵、输出矩阵、Buck变换器在电感电流持续导通情况下的混杂***离散模型,定义Buck变换器的***方程。
根据k时刻Buck变换器的电感电流iL(k)和输出电压uO(k)定义k时刻Buck变换器的输出矩阵Y(k)为:
Figure GDA0002421133880000071
其中,y1(k)、y2(k)为输出矩阵Y(k)中的元素。
根据Buck变换器在电感电流持续导通情况下的混杂***离散模型即式(2)、观测矩阵即式(3)、参数矩阵即式(4)和式(5)、输出矩阵即式(6),确定Buck变换器的***方程如下:
y1(k)=θ1 TΦ(k)+e1(k) (7)
y2(k)=θ2 TΦ(k)+e2(k) (8)
其中,e1(k)、e2(k)是不确定的Buck变换器的噪声,且e1(k)、e2(k)有界,|e1(k)|≤σ1、|e2(k)|≤σ2,σ1、σ2为大于零的常数。
步骤104,根据Buck变换器的***方程,确定第一参数矩阵对应的参数空间集合,以及第二参数矩阵对应的第二参数空间集合。
针对Buck变换器的第一参数矩阵θ1,根据式(7),定义第一参数矩阵θ1的参数空间集合Q1(k)为:
Q1(k)={θ1:|y1(k)-ΦT(k)θ1|≤σ11∈Rm} (9)
针对Buck变换器的第二参数矩阵θ2,根据式(8),定义第二参数矩阵θ2的参数空间集合Q2(k)为:
Q2(k)={θ2:|y2(k)-ΦT(k)θ2|≤σ22∈Rm} (10)
其中,Rm为实数集。
步骤105,根据第一参数空间集合确定第一参数矩阵对应的第一凸多面体,根据第二参数空间集合确定第二参数矩阵对应的第二凸多面体。
当Buck变换器无故障时,针对第一参数矩阵θ1,第一参数矩阵θ1可以用凸多面体Θ1(k)近似表示,即θ1∈Θ1(k);可以利用式(11)求出k时刻的凸多面体Θ1(k):
Figure GDA0002421133880000072
其中i为离散时间,且1≤i≤k。
当Buck变换器无故障时,针对第二参数矩阵θ2,第二参数矩阵θ2可以用凸多面体Θ2(k)近似表示,即θ2∈Θ2(k);可以利用式(12)求出k时刻的凸多面体Θ2(k);
Figure GDA0002421133880000081
步骤106,检测第一凸多面体是否为空集,以及检测第二凸多面体是否为空集。
若检测到第一凸多面体Θ1(k)为空集,第二凸多面体Θ2(k)为空集,则确定k时刻Buck变换器发生故障;
若检测到第一凸多面体Θ1(k)为空集,第二凸多面体Θ2(k)不为空集,则确定k时刻Buck变换器发生***错误;
若检测到第一凸多面体Θ1(k)不为空集,第二凸多面体Θ2(k)为空集,则确定k时刻Buck变换器发生故障;
若检测到第一凸多面体Θ1(k)不为空集,第二凸多面体Θ2(k)不为空集,则确定k时刻Buck变换器未发生故障。
判断k时刻Buck变换器是否发生故障一般通过判断k时刻凸多面体集合Θi(k)来确定,由于Buck变换器包括第一参数矩阵θ1和第二参数矩阵θ2,第一参数矩阵θ1对应第一凸多面体Θ1(k),第二参数矩阵θ2对应第二凸多面体Θ2(k),因此需要同时判断第一凸多面体Θ1(k)是否为空集,以及第二凸多面体Θ2(k)是否为空集。
由于凸多面体Θi(k)的形状较为复杂,不易于用公式表示,因此用一个尽可能包含凸多面体Θi(k)的椭球集合Ei(k)来描述;i=1,2;
Figure GDA0002421133880000082
即第一凸多面体Θ1(k)用第一椭球集合E1(k)来描述,第二凸多面体Θ2(k)用第二椭球集合E2(k)来描述。
具体地,检测凸多面体Θi(k)是否为空集可以通过如下步骤实现:
步骤1061、获取凸多面体Θi(k)对应的椭球集合Ei(k)。
设置初始化的椭球集合Ei(0)的中心和椭球集合的轴信息矩阵。
将初始化的椭球集合Ei(0)的中心θic(0)设置为:θic(0)=[0 0 0]T;将初始化的椭球集合Ei(0)的轴信息矩阵Pi(0)设置为:Pi -1(0)=δi·I3
δi为正数,I3为3阶单位矩阵。
通过递推获取k时刻的椭球集合Ei(k)的中心θic(k)和椭球集合Ei(k)的轴信息矩阵Pi(k)。
轴信息矩阵是表示椭球集合的形状和大小的一个对称正定矩阵。
递推公式如下:
Pi(k)=Pi(k-1)-αi(k-1)Pi(k-1)Φ(k-1)ΦT(k-1)Pi(k-1) (13)
θic(k)=θic(k-1)+αi(k-1)Pi(k-1)Φ(k-1)(yi(k)-ΦT(k-1)θic(k-1)) (14)
αi(k-1)=(ρi -1(k-1)+ΦT(k-1)Pi(k-1)Φ(k-1))-1 (15)
Figure GDA0002421133880000091
Figure GDA0002421133880000092
ρi(k-1)和ri(k-1)是k-1时刻的中间变量,对k时刻的椭球集合Ei(k)的中心θic(k)和轴信息矩阵Pi(k)的递推过程如下:
1、利用Φ(i)计算得到k-1时刻的中间变量ri(k-1),i=1…k-1,即式(17);
2、利用k-1时刻的中间变量ri(k-1)计算得到k-1时刻的加权序列ρi(k-1),即式(16);
3、利用k-1时刻的轴信息矩阵Pi(k-1)、k-1时刻的观测矩阵Φ(k-1)和k-1时刻的加权序列θic(k)计算得到k-1时刻的中间变量αi(k-1),即式(15);
4、更新得到k时刻的轴信息矩阵Pi(k),即式(14);
5、更新得到k时刻的椭球中心θic(k),即式(13)。
然后根据k时刻椭球集合Ei(k)的中心θic(k)和轴信息矩阵Pi(k),按下式(18)得到k时刻的椭球集合Ei(k):
Ei(k)={θi:(θiic(k))TPi -1(k)(θiic(k))≤1} (18)
步骤1062,检测k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集是否为空集。
假设k-1时刻Buck变换器未发生故障,
Figure GDA0002421133880000093
k-1时刻Buck变换器的参数矩阵θ1∈Q1(k-1)、θ2∈Q2(k-1)。
若检测到k时刻参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集为空集,即
Figure GDA0002421133880000094
则确定k时刻Buck变换器的参数矩阵对应的参数空间集合
Figure GDA0002421133880000095
从而得出
Figure GDA0002421133880000096
若检测到k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集不为空集,则确定k时刻Buck变换器的参数矩阵对应的空间集合Qi(k)不为空集,从而确定凸多面体Θi(k)不为空集。
通过检测交集判断条件是否成立,来检测k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集是否为空集。
交集判断条件为:
Figure GDA0002421133880000101
其中,yi(k)为k时刻Buck变换器的输出矩阵中的元素,θic(k-1)表示k-1时刻椭球集合的交集Ei(k-1)的中心,Pi(k-1)表示k-1时刻椭球集合Ei(k-1)的轴信息矩阵,σi为大于零的常数。
若检测到交集判断条件成立,则确定k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集是否为空集;
若检测到交集判断条件不成立,则确定k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集不为空集。
在检测第一凸多面体Θ1(k)是否为空集时:
按步骤1061获取第一凸多面体Θ1(k)对于的椭球集合E1(k);
E1(k)={θ1:(θ11c(k))TP1 -1(k)(θ11c(k))≤1},
P1(k)=P1(k-1)-α1(k-1)P1(k-1)Φ(k-1)ΦT(k-1)P1(k-1),
θ1c(k)=θ1c(k-1)+α1(k-1)P1(k-1)Φ(k-1)(y1(k)-ΦT(k-1)θ1c(k-1)),
α1(k-1)=(ρ1 -1(k-1)+ΦT(k-1)P1(k-1)Φ(k-1))-1
Figure GDA0002421133880000102
Figure GDA0002421133880000103
按步骤1062检测k时刻的参数空间集合Q1(k)与k-1时刻的椭球集合E1(k-1)的交集是否为空集。
其中,交集判断条件为:
Figure GDA0002421133880000104
若交集判断条件
Figure GDA0002421133880000105
成立,则k时刻的参数空间集合Q1(k)与k-1时刻的椭球集合E1(k-1)的交集为空集,即
Figure GDA0002421133880000106
从而确定第一凸多面体Θ1(k)为空集;
若交集判断条件
Figure GDA0002421133880000107
不成立,则k时刻的参数空间集合Q1(k)与k-1时刻的椭球集合E1(k-1)的交集不为空集,即
Figure GDA0002421133880000108
从而确定第一凸多面体Θ1(k)不为空集。
需要说明的是,根据k-1时刻椭球集合E1(k-1)的中心θ1c(k)和轴信息矩阵P1(k-1),按式(18)可以得到k-1时刻的椭球集合E1(k-1);P1(k-1)、θ1c(k-1)可以从递推过程中得到。
在检测第二凸多面体Θ2(k)是否为空集时:
按步骤1061获取第二凸多面体Θ2(k)对于的椭球集合E2(k);
E2(k)={θ2:(θ22c(k))TP2 -1(k)(θ22c(k))≤1},
P2(k)=P2(k-1)-α2(k-1)P2(k-1)Φ(k-1)ΦT(k-1)P2(k-1),
θ2c(k)=θ2c(k-1)+α2(k-1)P2(k-1)Φ(k-1)(y2(k)-ΦT(k-1)θ2c(k-1)),
α2(k-1)=(ρ2 -1(k-1)+ΦT(k-1)P2(k-1)Φ(k-1))-1
Figure GDA0002421133880000111
Figure GDA0002421133880000112
按步骤1062检测k时刻的参数空间集合Q2(k)与k-1时刻的椭球集合E2(k-1)的交集是否为空集。
其中,交集判断条件为:
Figure GDA0002421133880000113
若交集判断条件
Figure GDA0002421133880000114
成立,则k时刻的参数空间集合Q2(k)与k-1时刻的椭球集合E2(k-1)的交集为空集,即
Figure GDA0002421133880000115
若交集判断条件
Figure GDA0002421133880000116
不成立,则k时刻的参数空间集合Q2(k)与k-1时刻的椭球集合E2(k-1)的交集不为空集,即
Figure GDA0002421133880000117
需要说明的是,根据k-1时刻椭球集合E2(k-1)的中心θ2c(k)和轴信息矩阵P2(k-1),按式(18)可以得到k-1时刻的椭球集合E2(k-1);P2(k-1)、θ2c(k-1)可以从递推过程中得到。
综上所述,本发明实施例提供的不确定噪声扰动下Buck变换器的故障检测方法,通过根据Buck变换器中晶体管的切换状态、电感电流和输出电压,确定Buck变换器的观测矩阵;定义Buck变换器的参数矩阵;根据观测矩阵、参数矩阵、输出矩阵、Buck变换器在电感电流持续导通情况下的混杂***离散模型,定义Buck变换器的***方程;根据Buck变换器的***方程,确定第一参数矩阵对应的第一参数空间集合以及第二参数矩阵θ2对应的第二参数空间集合;根据第一参数空间集合确定第一参数矩阵对应的第一凸多面体,根据第二参数空间集合确定的第二参数矩阵对应的第二凸多面体;再根据第一凸多面体是否为空集以及第二凸多面体是否为空集,确定Buck变换器的工作状态;解决了在不确定噪声扰动情况下,Buck变换器的故障检测效果和实时性不好的问题;达到了可以在噪声、干扰等不确定因素较多的情况下对Buck变换器进行较为准确的故障检测,提高Buck变换器故障检测的实用性和普适性的效果。
需要说明的是:上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种不确定噪声扰动下Buck变换器的故障检测方法,其特征在于,所述方法包括:
根据Buck变换器工作原理,确定Buck变换器在电感电流持续导通情况下的混杂***离散模型:
Figure FDA0002421133870000011
根据Buck变换器中晶体管的切换状态、电感电流和输出电压,确定所述Buck变换器的观测矩阵Φ(k):
Φ(k)=[iL(k-1) uO(k-1) S(k)]T
定义Buck变换器的参数矩阵,所述参数矩阵包括第一参数矩阵θ1和第二参数矩阵θ2
Figure FDA0002421133870000012
Figure FDA0002421133870000013
根据Buck变换器的电感电流和输出电压,确定所述Buck变换器的输出矩阵Y(k):
Figure FDA0002421133870000014
其中y1(k)、y2(k)为输出矩阵Y(k)中的元素;
根据所述观测矩阵、参数矩阵、输出矩阵、Buck变换器在电感电流持续导通情况下的混杂***离散模型,定义Buck变换器的***方程:
y1(k)=θ1 TΦ(k)+e1(k),
y2(k)=θ2 TΦ(k)+e2(k);
根据所述Buck变换器的***方程,确定所述第一参数矩阵θ1对应的第一参数空间集合Q1(k)以及所述第二参数矩阵θ2对应的第二参数空间集合Q2(k):
Q1(k)={θ1:|y1(k)-ΦT(k)θ1|≤σ11∈Rm},
Q2(k)={θ2:|y2(k)-ΦT(k)θ2|≤σ22∈Rm};
根据所述第一参数空间集合Q1(k)确定第一参数矩阵对应的第一凸多面体Θ1(k),根据所述第二参数空间集合Q2(k)确定的第二参数矩阵对应的第二凸多面体Θ2(k);
检测所述第一凸多面体Θ1(k)是否为空集,以及检测所述第二凸多面体Θ2(k)是否为空集;
若检测到第一凸多面体Θ1(k)为空集,第二凸多面体Θ2(k)为空集,则确定Buck变换器发生故障;
若检测到第一凸多面体Θ1(k)为空集,第二凸多面体Θ2(k)不为空集,则确定Buck变换器发生***错误;
若检测到第一凸多面体Θ1(k)不为空集,第二凸多面体Θ2(k)为空集,则确定Buck变换器发生故障;
若检测到第一凸多面体Θ1(k)不为空集,第二凸多面体Θ2(k)不为空集,则确定Buck变换器未发生故障;
其中,iL(k)表示k时刻Buck变换器的电感电流,uO(k)表示k时刻Buck变换器的输出电压,iL(k-1)表示k-1时刻Buck变换器的电感电流,uO(k-1)表示k-1时刻Buck变换器的输出电压,S(k)表示Buck变换器中晶体管的切换状态,L表示电感,R表示电阻,C和RC分别表示电解电容等效的电容和串联电阻,T表示采样周期,U表示Buck变换器的输入电压,e1(k)、e2(k)是不确定的Buck变换器的噪声,且e1(k)、e2(k)有界,|e1(k)|≤σ1、|e2(k)|≤σ2,σ1、σ2为大于零的常数,Rm为实数集。
2.根据权利要求1所述的方法,其特征在于,检测凸多面体Θi(k)是否为空集,i=1,2,包括:
获取凸多面体Θi(k)对应的椭球集合Ei(k):
Ei(k)={θi:(θiic(k))TPi -1(k)(θiic(k))≤1};
检测k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集是否为空集;
若检测到k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集为空集,则确定凸多面体为空集;
若检测到k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集不为空集,则确定凸多面体不为空集;
其中,Pi(k)表示椭球集合Ei(k)的轴信息矩阵,θic(k)表示椭球集合Ei(k)的中心;
Pi(k)=Pi(k-1)-αi(k-1)Pi(k-1)Φ(k-1)ΦT(k-1)Pi(k-1),
θic(k)=θic(k-1)+αi(k-1)Pi(k-1)Φ(k-1)(yi(k)-ΦT(k-1)θic(k-1)),
αi(k-1)=(ρi -1(k-1)+ΦT(k-1)Pi(k-1)Φ(k-1))-1
Figure FDA0002421133870000031
Figure FDA0002421133870000032
3.根据权利要求2所述的方法,其特征在于,所述检测k时刻的参数空间集合Qi(k)与k-1时刻的椭球集合Ei(k-1)的交集是否为空集,包括:
检测交集判断条件是否成立,所述交集判断条件为:
Figure FDA0002421133870000033
其中,yi(k)表示k时刻Buck变换器的输出矩阵中的元素,Φ(k)表示k时刻Buck变换器的观测矩阵,θic(k-1)表示k-1时刻椭球集合的交集Ei(k-1)的中心,Pi(k-1)表示k-1时刻椭球集合Ei(k-1)的轴信息矩阵,σi为大于零的常数。
4.根据权利要求2或3所述的方法,其特征在于,所述获取凸多面体Θi(k)对应的椭球集合Ei(k),包括:
设置初始化的椭球集合Ei(0)的中心和椭球集合的轴信息矩阵;
通过递推获取k时刻的椭球集合的中心和椭球集合的轴信息矩阵;
根据k时刻的椭球集合的中心和椭球集合的轴信息矩阵确定k时刻的椭球集合;
其中,初始化的椭球集合的中心为:θic(0)=[0 0 0]T
初始化的椭球集合的轴信息矩阵为:Pi -1(0)=δi·I3
θic(0)表示初始化的椭球集合Ei(0)的中心,Pi(0)表示初始化的椭球集合Ei(0)的轴信息矩阵,δi为正数,I3为3阶单位矩阵。
CN201910226323.5A 2019-03-25 2019-03-25 一种不确定噪声扰动下Buck变换器的故障检测方法 Active CN109932598B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910226323.5A CN109932598B (zh) 2019-03-25 2019-03-25 一种不确定噪声扰动下Buck变换器的故障检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910226323.5A CN109932598B (zh) 2019-03-25 2019-03-25 一种不确定噪声扰动下Buck变换器的故障检测方法

Publications (2)

Publication Number Publication Date
CN109932598A CN109932598A (zh) 2019-06-25
CN109932598B true CN109932598B (zh) 2020-05-22

Family

ID=66988133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910226323.5A Active CN109932598B (zh) 2019-03-25 2019-03-25 一种不确定噪声扰动下Buck变换器的故障检测方法

Country Status (1)

Country Link
CN (1) CN109932598B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111597647B (zh) * 2020-04-09 2023-04-25 江南大学 一种面向工业生产过程的弹簧阻尼***滤波故障诊断方法
CN111796196B (zh) * 2020-07-01 2022-07-19 哈尔滨工业大学(深圳) Buck变换器故障检测方法
CN112710963B (zh) * 2020-12-28 2023-10-13 哈尔滨工业大学(深圳) 基于脉冲响应的开关电源故障检测方法
WO2023005064A1 (zh) * 2021-07-30 2023-02-02 江南大学 一种基于凸空间滤波的动力电池化成过程状态估计方法
US11650253B2 (en) 2021-07-30 2023-05-16 Jiangnan University State estimation method for power battery formation process based on convex space filtering

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202218180U (zh) * 2011-09-07 2012-05-09 中国电子科技集团公司第十六研究所 一种基于双向dc-dc变换器的车用太阳能发电装置
CN104750915B (zh) * 2015-03-06 2018-08-28 南京航空航天大学 一种Buck电路多参数在线辨识方法
US10564191B2 (en) * 2016-11-22 2020-02-18 Oracle International Corporation Test tool for power distribution networks
CN106873558B (zh) * 2017-03-22 2019-02-26 东北大学 一种非线性***的模糊重复输出控制器及其控制方法

Also Published As

Publication number Publication date
CN109932598A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
CN109932598B (zh) 一种不确定噪声扰动下Buck变换器的故障检测方法
Han et al. Short-time wavelet entropy integrating improved LSTM for fault diagnosis of modular multilevel converter
US20220198244A1 (en) Method for diagnosing open-circuit fault of switching transistor of single-phase half-bridge five-level inverter
CN109725213B (zh) 基于逆向卡尔曼滤波器的Buck变换器故障检测方法
CN102721941A (zh) 一种基于som和d-s理论的电表电路故障信息融合和诊断方法
CN110838075A (zh) 电网***暂态稳定的预测模型的训练及预测方法、装置
US11002802B2 (en) Fault detection method for buck converter based on inverse kalman filter
CN112444759A (zh) 三相三电平整流器功率开关器件开路故障诊断方法及***
CN116413629A (zh) 基于物理信息神经网络的航天器锂电池健康状态估计方法
WO2022156274A1 (zh) 开路故障检测方法、装置、计算机设备
CN113075585A (zh) 一种npc三电平逆变器复合开路故障诊断方法
CN109738778B (zh) 逆变器开路诊断方法、装置、终端设备及计算机可读介质
Huang et al. EaLDL: Element-aware lifelong dictionary learning for multimode process monitoring
Ke et al. Compound fault diagnosis method of modular multilevel converter based on improved capsule network
CN115935244B (zh) 一种基于数据驱动的单相整流器故障诊断方法
CN112731193A (zh) 基于新型滑模观测器的npc逆变器多类故障诊断方法
CN112009252A (zh) 一种动力电池***故障诊断及容错控制方法
CN115019129B (zh) 基于时序成像与图像融合的双有源桥变换器故障诊断方法及***
CN108845247B (zh) 一种模拟电路模块故障诊断方法
CN116702060A (zh) 一种多电平逆变器功率器件故障诊断方法
Aguilera et al. An EM-based identification algorithm for a class of hybrid systems with application to power electronics
CN110083992B (zh) 一种基于多新息递推最小二乘的Boost变换器故障诊断方法
CN115828481A (zh) 一种基于近似马尔科夫毯的配电网拓扑识别方法及***
CN114879087A (zh) 一种用于vienna整流器开路故障综合辨识的方法
Xia et al. Early fault diagnosis for DC/DC converters based on digital twins and transfer learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant