CN109922545A - 石墨加热元件、石墨加热器及设计方法 - Google Patents

石墨加热元件、石墨加热器及设计方法 Download PDF

Info

Publication number
CN109922545A
CN109922545A CN201711290532.3A CN201711290532A CN109922545A CN 109922545 A CN109922545 A CN 109922545A CN 201711290532 A CN201711290532 A CN 201711290532A CN 109922545 A CN109922545 A CN 109922545A
Authority
CN
China
Prior art keywords
layer
heating component
graphite heating
graphite
regular polygon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711290532.3A
Other languages
English (en)
Other versions
CN109922545B (zh
Inventor
杨群
严超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Institute of Mechanical and Electrical Technology
Original Assignee
Beijing Research Institute of Mechanical and Electrical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Institute of Mechanical and Electrical Technology filed Critical Beijing Research Institute of Mechanical and Electrical Technology
Priority to CN201711290532.3A priority Critical patent/CN109922545B/zh
Publication of CN109922545A publication Critical patent/CN109922545A/zh
Application granted granted Critical
Publication of CN109922545B publication Critical patent/CN109922545B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

本发明提供一种石墨加热元件、石墨加热器及设计方法,该石墨加热器包含n层石墨加热元件层(n≥1),所述的n层石墨加热元件层构成轴对称的棱台结构,其中,每一层石墨加热元件层由若干个等腰梯形的石墨加热元件在周向上构成轴对称的封闭结构,构成每一层石墨加热元件层的石墨加热元件的底边组成正多边形,且各层正多边形的边数一致,每个正多边形的外接圆平行且同轴,第i+1层的石墨加热元件层的上表面与第i层石墨加热元件层的正多边形底面共面且形状相同,i=1,2,…n。本发明通过将石墨加热元件设计成等腰梯形结构,不仅能够有效的减少元件的规格和数量,互换性强、安装便利;而且对于不同尺寸的回转体或类似回转体结构,有一定的通用性、减少试验费用开支。

Description

石墨加热元件、石墨加热器及设计方法
技术领域
本发明属于飞行器结构热试验的技术领域,涉及一种石墨加热元件、石墨加热器及设计方法,具体涉及一种用于回转体或类似于回转体的试验件的石墨加热元件、石墨加热器及设计方法。
背景技术
随着飞行器飞行的马赫数越来越高,相应的气动加热问题亦越来越严重,其局部最高温度为1400℃以上,瞬时热流密度可达1.2MW/m2以上,这对传统式地面环境结构热试验提出了更高的技术要求。
在传统的石英灯加热温度只能达到1200℃~1300℃的情况下,石墨因其加热温度高、强度好、热导性能良等优点更多的被用作结构热试验中的辐射加热元件;但相较于技术非常成熟的石英灯加热,石墨的起步较晚,石墨加热器的设计方法更多的只能参照石英灯加热器。
为有效的保障辐射加热效果的实现性,结构热试验中的石英灯、石墨等加热器均采用依照试验件外形的随行设计方法。目前,石墨加热器的核心部件石墨加热元件通常参照石英灯,被设计成U型、S型、波形等棒状结构。当被加热试验件为常规的方形、圆形时,棒状结构石墨加热元件构成的石墨加热器能够很好的实现辐射加热效果;但当试验件为回转体或类似于回转体结构时,例如圆锥形结构,此种棒状结构的石墨加热器不仅会造成所需元件的规格和数量众多、生产加工周期长、费用高,而且元件两端的机械连接空间小、操作繁琐、安装过程易发生折断。
发明内容
在下文中给出关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
为解决上述问题,本发明提出一种石石墨加热元件、石墨加热器及设计方法,本发明提供的石墨加热器、设计方法及所用石墨加热元件尤其适用于回转体或类似于回转体试验件的结构热试验。
本发明的技术解决方案:
一方面,本发明提供一种石墨加热器,该石墨加热器包含n层石墨加热元件层(n≥1),所述的n层石墨加热元件层构成轴对称的棱台结构,其中,每一层石墨加热元件层由若干个等腰梯形的石墨加热元件在周向上构成轴对称的封闭结构,构成每一层石墨加热元件层的石墨加热元件的底边组成正多边形,且各层正多边形的边数一致,每个正多边形的外接圆平行且同轴,第i+1层的石墨加热元件层的上表面与第i层石墨加热元件层的正多边形底面共面且形状相同,i=1,2,…n。
进一步的,所述的石墨加热元件层的轴截面底角θ相同;
进一步的,所述的石墨加热元件层的轴截面底角θ的确定如下:根据试验件尺寸以及其加热距离要求,设计一圆锥,该圆锥与试验件之间满足:1)该圆锥可将所述的试验件包裹在其内部,且2)该圆锥的高度和轴截面底角满足试验件加热距离的要求;因此,可以确定出该圆锥的高度和轴截面底角;令该轴截面底角即为所述的θ;
进一步的,所述每层石墨加热元件层中,各石墨加热元件均相同。
进一步的,所述每层石墨加热元件层中,石墨加热元件元件的数量均相同,且不少于3个;
进一步的,所述的石墨加热器还包括水冷电极、反射板和支架,其中,在石墨加热元件布局的基础上,所述水冷电极、反射板和支架围绕该布局进行设计。
进一步的,所述多个石墨加热元件中,任一个石墨加热元件的上下两端均加工有电极,并均水冷电极连接,然后两者整体装配在水冷反射板上,所述的水冷的反射板安装在所述支架上。
另一方面,本发明还提供一种石墨加热器的设计方法,其包括石墨加热元件的布局设计,通过以下步骤实现:
步骤1、基于试验件设计一圆锥,
根据试验件尺寸以及其加热距离要求,设计一圆锥,该圆锥与试验件之间满足:1)该圆锥可将所述的试验件包裹在其内部,且2)该圆锥高度和轴截面底角满足试验件加热距离的要求;因此,可以确定出该圆锥的高度和轴截面底角;
该步骤可根据本领域公知技术以及实际需求进行;
步骤2、石墨加热元件的布局,
基于步骤1所得圆锥,进行石墨加热元件的布局,其中,所述的石墨加热元件布局为n层石墨加热元件层(n≥1),所述的n层石墨加热元件层构成轴对称的棱台结构,其中,每一层石墨加热元件层由若干个等腰梯形的石墨加热元件在周向上构成轴对称的封闭结构,构成每一层石墨加热元件层的石墨加热元件的底边组成正多边形,且各层正多边形的边数一致,每个正多边形的外接圆平行且同轴,第i+1层的石墨加热元件层的上表面与第i层石墨加热元件层的正多边形底面共面且形状相同,i=1,2,…n;
而且,令:
n层石墨加热元件层的轴截面底角为所述圆锥的轴截面底角;
每个正多边形的外接圆与所述圆锥的横截面(垂直于圆锥的轴的面)共面;
石墨加热元件层中最后一层的正多边形的外接圆为所述圆锥的底面;
具体布局方法如下:
2.1确定石墨加热元件层的层数,
该层数的确定原则为:1)、所述层数不少于1层,且2)、所述层数不少于试验件上加热温区的数目;
2.2确定石墨加热元件层的各层层高,
可根据试验件的具体温区划分需求进行取值;
2.3,确定每层石墨加热元件层中的石墨加热元件的数量,
每层石墨加热元件层的石墨加热元件数相等,且不少于3个;
2.4,确定各个等腰梯形的石墨加热元件的其余边长及高。
进一步的,各个等腰梯形的石墨加热元件的其余边长及高由以下公式获取:
R=a/2sin(π/m) (1)
h=Hs/inθ (2)
l=a-2h·tan(π/m) (3)
式中,R—外接圆半径;
a—正多边形边长,亦为等腰梯形的下底长;
m—正多边形边数;
h—等腰梯形的高;
H—等腰梯形对应排列层的层高,根据结构热试验中试验件的具体温区划分需求进行取值;
l—等腰梯形的上底长。
最后,本发明还提供一种石墨加热元件,所述的石墨加热元件的外形为等腰梯形结构。
本发明相比于现有技术的有益效果:
基于现有的石墨加热元件通常被设计成U型、S型、波形等棒状结构,当试验件为回转体或类似回转体结构时,此种棒状结构构成的石墨加热器不仅会造成所需元件的规格和数量众多、生产加工周期长、费用高,而且元件两端的机械连接空间小、操作繁琐、安装过程易发生折断;
本发明通过将石墨加热元件设计成等腰梯形结构,不仅能够有效的减少元件的规格和数量,互换性强、安装便利;而且对于不同尺寸的回转体或类似回转体结构,有一定的通用性、减少试验费用开支。
此外,本发明针对石墨加热器中的多个等腰梯形的石墨加热元件进行布局,有效保证了辐射效果,且连接简便,安装过程中不易发生破坏,本发明提供的石墨加热器、设计方法及所用石墨加热元件尤其适用于回转体或类似于回转体试验件的结构热试验,解决了该类试验件不易甚至难以进行符合均匀加热需求的结构热试验的难题,且本发明的设计方法和结构具有普适性,应用范围广,具有很大的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明具体实施例提供的一种石墨加热器的结构示意图;
图2是根据本发明具体实施例提供的石墨加热器中石墨加热元件的布局示意图;
图3是图2的俯视图;
图4是根据本发明具体实施例提供的一种石墨加热元件的结构示意图;
所述附图中:
1石墨加热元件,2水冷反射板,3水冷电极,4支架底座,5试验件。
具体实施方式
下面将结合附图对本发明的具体实施例进行详细说明。在下面的描述中,出于解释而非限制性的目的,阐述了具体细节,以帮助全面地理解本发明。然而,对本领域技术人员来说显而易见的是,也可以在脱离了这些具体细节的其它实施例中实践本发明。
在此需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
如图1-4所示,根据本发明的具体实施例提供了一种石墨加热器,该石墨加热器包含n层石墨加热元件层(n≥1),所述的n层石墨加热元件层构成轴对称的棱台结构,其中,每一层石墨加热元件层由若干个等腰梯形的石墨加热元件1在周向上构成轴对称的封闭结构,构成每一层石墨加热元件层的石墨加热元件1的底边组成正多边形,且各层正多边形的边数一致,每个正多边形的外接圆平行且同轴,第i+1层的石墨加热元件层的上表面与第i层石墨加热元件层的正多边形底面共面且形状相同,i=1,2,…n。
应用此种配置方式,通过将石墨加热元件设计成等腰梯形结构,与现有的棒状石墨加热器相比,在保证辐射效果的基础上,本发明的等腰梯形石墨加热器具有设计简单、规格种类少、安装便利、通用性强的优点。
进一步的,作为本发明的一个具体实施例,所述的石墨加热元件层的轴截面底角θ相同;应用此种配置方式,将石墨加热元件层的轴截面底角设置为相同,能够保证石墨加热器的随形性,进而保证石墨辐射加热的均匀性。
进一步的,在本发明中,所述的石墨加热元件层的轴截面底角θ相同时;所述的轴截面底角θ的确定如下:根据试验件尺寸以及其加热距离要求,设计一圆锥,该圆锥与试验件之间满足:1)该圆锥可将所述的试验件包裹在其内部,且2)该圆锥的高度和轴截面底角满足试验件加热距离的要求;因此,可以确定出该圆锥的高度和轴截面底角;令该轴截面底角即为所述的θ;
进一步的,为了操作的简便性和保证石墨加热器的随形性,所述每层石墨加热元件层中,各石墨加热元件1均相同,且所述每层石墨加热元件层中,石墨加热元件元件的数量均相同,且不少于3个;
进一步的,为了保证石墨加热器的完整性和正常工作,所述的石墨加热器还包括水冷电极3、水冷反射板2和支架底座4,其中,在石墨加热元件布局的基础上,所述水冷电极3、水冷反射板2和支架底座4围绕该布局进行设计,具体的:
所述水冷电极3用于石墨加热元件1加热电压的传输与供应,与石墨加热元件1上加工有电极的两端通过通孔连接;然后再将两者整体装配在水冷反射板2上,所述的水冷反射板可以为一个或多个,其大小则是根据具体加热条件进行确定的,尺寸规格不一定相同;
所述支架底座4用于石墨加热器的整体支撑与固定,其中,所述的水冷的反射板2安装在所述支架底座4上。
进一步的,作为本发明的一个具体实施例,所述的石墨加热元件1可以为U型、S型或波形的等腰梯形结构。
另一方面,如图1-4所示,根据本发明另一具体实施例还提供一种上述石墨加热器的设计方法,包括石墨加热元件1的布局设计,通过以下步骤实现:
1、首先基于所述的试验件5设计一圆锥,具体为:
根据所述试验件5尺寸以及其加热距离要求,设计一圆锥,该圆锥与所述试验件5之间满足:1)该圆锥可将所述的试验件5包裹在其内部,且2)该圆锥高度和轴截面底角满足所述试验件加热距离的要求;因此,可以确定出该圆锥的高度和轴截面底角;
该步骤可根据本领域公知技术以及实际需求进行,在此不再具体赘述;
2、石墨加热元件的布局,
基于上述步骤1所得的圆锥,进行石墨加热元件1的布局,其中,所述的石墨加热元件1布局呈n层石墨加热元件层(n≥1),所述的n层石墨加热元件层构成轴对称的棱台结构,其中,每一层石墨加热元件层由若干个等腰梯形的石墨加热元件1在周向上构成轴对称的封闭结构,构成每一层石墨加热元件层的石墨加热元件1的底边组成正多边形,且各层正多边形的边数一致,每个正多边形的外接圆平行且同轴,第i+1层的石墨加热元件层的上表面与第i层石墨加热元件层的正多边形底面共面且形状相同,i=1,2,…n;
而且,其中,令:
1)n层石墨加热元件层的轴截面底角为所述圆锥的轴截面底角;
2)每个正多边形的外接圆与所述圆锥的横截面(垂直于圆锥的轴的面)共面;
3)石墨加热元件层中最后一层的正多边形的外接圆为所述圆锥的底面;
具体布局方法如下:
2.1确定石墨加热元件层的层数,
该层数的确定原则为:1)、所述层数不少于1层,且2)、所述层数不少于试验件上加热温区的数目;
2.2确定石墨加热元件层的各层层高,
可根据试验件的具体温区划分需求进行取值;
2.3,确定每层石墨加热元件层中的石墨加热元件的数量,
每层石墨加热元件层的石墨加热元件数相等,且不少于3个;此时即可确定正多边形的边数,即与每层石墨加热元件数量相等;
2.4,确定各个等腰梯形的石墨加热元件的其余边长及高。
进一步的,各个等腰梯形的石墨加热元件的其余边长及高由以下公式获取:
R=a/2sin(π/m) (1)
h=H/sinθ (2)
l=a-2h·tan(π/m) (3)
式中,R—外接圆半径;
a—正多边形边长,亦为等腰梯形的下底长;
m—正多边形边数;
h—等腰梯形的高;
H—等腰梯形对应排列层的层高,根据结构热试验中试验件的具体温区划分需求进行取值;
l—等腰梯形的上底长。
为了对本发明有进一步的了解,下面结合附图1~4对本发明的石墨加热器中的石墨加热元件的布局进行详细说明。
如图1~4所示,作为本发明的一个具体实施例,以试验件为圆锥形结构为例,所述的石墨加热器中石墨加热元件的布局具体设计如下:
1、根据圆锥形试验件的尺寸以及加热距离要求首先设计一圆锥,本实施例中,所述圆锥形试验件的底面半径为R0、轴截面底角θ,此时,所设计的圆锥一方面要将所述的圆锥形试验件包括在其内部,另一方面,圆锥的高度和轴截面底角满足所述试验件加热距离的要求,因此,本实施例设计该圆锥的底面半径为R0+[50mm,100mm],且该圆锥的轴截面底角即为所述圆锥形试验件的轴截面底角,在满足上述条件的基础上,该圆锥的高度可根据实际需要进行选择;
2、基于上述所设计的圆锥,进行石墨加热元件的布局:
其中,所述的石墨加热元件布局呈n层石墨加热元件层(n≥1),所述的n层石墨加热元件层构成轴对称的棱台结构,其中,每一层石墨加热元件层由若干个等腰梯形的石墨加热元件在周向上构成轴对称的封闭结构,构成每一层石墨加热元件层的石墨加热元件的底边组成正多边形,且各层正多边形的边数一致,每个正多边形的外接圆平行且同轴,第i+1层的石墨加热元件层的上表面与第i层石墨加热元件层的正多边形底面共面且形状相同,i=1,2,…n;
而且,令:
1)石墨加热元件层的轴截面底角θ,此时所述的θ为已知值;
2)每个正多边形的外接圆与所述圆锥的横截面(垂直于圆锥的轴的面)共面;
3)石墨加热元件层中最后一层的正多边形的外接圆为所述圆锥的底面,即该外接圆的半径R为R0+[50mm,100mm],即最后一层的石墨加热元件层的底面正多边形的外接圆半径为已知值;
综上,各层的石墨加热元件层的轴截面底角以及最后一层的底面正多边形的外接圆半径均已确定;
进行具体布局:
2.1,根据石墨元件加热元件层的层数确定原则,本实施例确定层数为4层;
2.2,在上述层数确定的基础上,基于试验件温区的大小,确定各层层高,而且本实施例各层层高满足:H01+H12+H23+H34=R0·tanθ;其中:H01—第一层等腰梯形的层高;H12—第二层等腰梯形的层高;H23—第三层等腰梯形的层高;H34—第四层等腰梯形的层高;
2.3,确定每层石墨加热元件层中的石墨加热元件的数量,
本实施例根据需要优选为每层为20个,每层底边组成的均为正二十边形;
2.4,确定各个等腰梯形的石墨加热元件的其余边长及高,具体为:
已知圆锥形试验件底面半径R0、轴截面底角θ以及各层各层层高,同时R取值稍大于R0值50~100mm;则利用在前公式,,进而得到四层等腰梯形石墨加热元件的外形尺寸表,如表1所示。
进一步的,在明确各等腰梯形的石墨加热元件的外形尺寸后,需要综合考虑机械强度、加工、连接等问题,最终确定元件的厚度和电流通路宽度,本发明结构的一种典型的S型的等腰梯形的石墨加热元件实施例如图4所示。
表1四层等腰梯形石墨加热元件的外形尺寸表
其中,a1—第一层等腰梯形的下底;a2—第二层等腰梯形的下底;a3—第三层等腰梯形的下底;a4—第四层等腰梯形的下底。
本发明提供的一种圆锥形石墨加热器,针对热结构试验中圆锥形试验件的特点,通过将石墨加热元件设计成等腰梯形结构,能够有效的减少元件的规格和数量;而且对于不同尺寸的圆锥加热器,本发明的等腰梯形结构有一定的通用性。
本发明提供的一种圆锥形石墨加热器,针对热结构试验中圆锥形试验件的特点,通过将石墨加热元件设计成等腰梯形结构,能够有效的减少元件的规格和数量,而且单位面积下等腰梯形结构的外形尺寸较大,更便于机械连接。
如上针对一种实施例描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施例中使用,和/或与其它实施例中的特征相结合或替代其它实施例中的特征使用。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤、组件或其组合的存在或附加。
这些实施例的许多特征和优点根据该详细描述是清楚的,因此所附权利要求旨在覆盖这些实施例的落入其真实精神和范围内的所有这些特征和优点。此外,由于本领域的技术人员容易想到很多修改和改变,因此不是要将本发明的实施例限于所例示和描述的精确结构和操作,而是可以涵盖落入其范围内的所有合适修改和等同物。
本发明未详细说明部分为本领域技术人员公知技术。

Claims (10)

1.一种石墨加热器,其特征在于:该石墨加热器包含n层石墨加热元件层(n≥1),所述的n层石墨加热元件层构成轴对称的棱台结构,其中,每一层石墨加热元件层由若干个等腰梯形的石墨加热元件在周向上构成轴对称的封闭结构,构成每一层石墨加热元件层的石墨加热元件的底边组成正多边形,且各层正多边形的边数一致,每个正多边形的外接圆平行且同轴,第i+1层的石墨加热元件层的上表面与第i层石墨加热元件层的正多边形底面共面且形状相同,i=1,2,…n。
2.根据权利要求1所述的一种石墨加热器,其特征在于,所述的石墨加热元件层的轴截面底角θ相同。
3.根据权利要求2所述的一种石墨加热器,其特征在于,所述的石墨加热元件层的轴截面底角θ相同时;所述的轴截面底角θ的确定如下:根据试验件尺寸以及其加热距离要求,设计一圆锥,该圆锥与试验件之间满足:1)该圆锥可将所述的试验件包裹在其内部,且2)该圆锥的高度和轴截面底角满足试验件加热距离的要求;因此,可以确定出该圆锥的高度和轴截面底角;令该轴截面底角即为所述的θ。
4.根据权利要求1-3所述的一种石墨加热器,其特征在于,所述n层石墨加热元件层中,各层中的石墨加热元件均相同。
5.根据权利要求1-4所述的一种石墨加热器,其特征在于,所述n层石墨加热元件层中,石墨加热元件元件的数量均相同,且不少于3个。
6.根据权利要求1-5所述的一种用于结构热试验的石墨加热元件,其特征在于:所述的石墨加热器还包括水冷电极、反射板和支架,其中,在石墨加热元件布局的基础上,所述水冷电极、反射板和支架围绕该布局进行设计。
7.根据权利要求6所述的一种用于结构热试验的石墨加热元件,其特征在于:所述多个石墨加热元件中,任一个石墨加热元件的上下两端均加工有电极,并均水冷电极连接,然后两者整体装配在水冷反射板上,所述的水冷的反射板安装在所述支架上。
8.一种石墨加热器的设计方法,其包括石墨加热元件的布局设计,其特征在于,通过以下步骤实现:
步骤1、基于试验件设计一圆锥,
根据试验件尺寸以及其加热距离要求,设计一圆锥,该圆锥与试验件之间满足:1)该圆锥可将所述的试验件包裹在其内部,且2)该圆锥高度和轴截面底角满足试验件加热距离的要求;因此,可以确定出该圆锥的高度和轴截面底角;
该步骤可根据本领域公知技术以及实际需求进行;
步骤2、石墨加热元件的布局,
基于步骤1所得圆锥,进行石墨加热元件的布局,其中,所述的石墨加热元件布局为n层石墨加热元件层(n≥1),所述的n层石墨加热元件层构成轴对称的棱台结构,其中,每一层石墨加热元件层由若干个等腰梯形的石墨加热元件在周向上构成轴对称的封闭结构,构成每一层石墨加热元件层的石墨加热元件的底边组成正多边形,且各层正多边形的边数一致,每个正多边形的外接圆平行且同轴,第i+1层的石墨加热元件层的上表面与第i层石墨加热元件层的正多边形底面共面且形状相同,i=1,2,…n;
而且,令:
n层石墨加热元件层的轴截面底角为所述圆锥的轴截面底角;
每个正多边形的外接圆与所述圆锥的横截面(垂直于圆锥的轴的面)共面;
石墨加热元件层中最后一层的正多边形的外接圆为所述圆锥的底面;
具体布局方法如下:
2.1确定石墨加热元件层的层数,
该层数的确定原则为:1)、所述层数不少于1层,且2)、所述层数不少于试验件上加热温区的数目;
2.2确定石墨加热元件层的各层层高,
可根据试验件的具体温区划分需求进行取值;
2.3,确定每层石墨加热元件层中的石墨加热元件的数量,
每层石墨加热元件层的石墨加热元件数相等,且不少于3个;
2.4,确定各个等腰梯形的石墨加热元件的其余边长及高。
9.根据权利要求8所述的一种石墨加热器的设计方法,其特征在于:
各个等腰梯形的石墨加热元件的其余边长及高由以下公式获取:
R=a/2sin(π/m) (1)
h=H/sinθ (2)
l=a-2h·tan(π/m) (3)
式中,R—外接圆半径;
a—正多边形边长,亦为等腰梯形的下底长;
m—正多边形边数;
h—等腰梯形的高;
H—等腰梯形对应排列层的层高,根据结构热试验中试验件的具体温区划分需求进行取值;
l—等腰梯形的上底长。
10.一种种石墨加热元件,其特征在于:所述的石墨加热元件的外形为等腰梯形结构。
CN201711290532.3A 2017-12-08 2017-12-08 石墨加热元件、石墨加热器及设计方法 Active CN109922545B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711290532.3A CN109922545B (zh) 2017-12-08 2017-12-08 石墨加热元件、石墨加热器及设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711290532.3A CN109922545B (zh) 2017-12-08 2017-12-08 石墨加热元件、石墨加热器及设计方法

Publications (2)

Publication Number Publication Date
CN109922545A true CN109922545A (zh) 2019-06-21
CN109922545B CN109922545B (zh) 2021-12-10

Family

ID=66956700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711290532.3A Active CN109922545B (zh) 2017-12-08 2017-12-08 石墨加热元件、石墨加热器及设计方法

Country Status (1)

Country Link
CN (1) CN109922545B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112016164A (zh) * 2020-09-09 2020-12-01 中国空气动力研究与发展中心计算空气动力研究所 一种航天模型飞行试验布局、及其轴对称头锥区域构型和设计方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343085A (zh) * 2001-06-19 2002-04-03 佛山市扬戈热处理有限公司 一种炉用电阻发热体
CN1648588A (zh) * 2005-02-18 2005-08-03 天津科技大学 板式外流降膜蒸发器中的加热装置
CN202390569U (zh) * 2011-11-24 2012-08-22 北京北方鑫源电碳制品有限责任公司 一种石墨加热器
CN102644113A (zh) * 2012-05-14 2012-08-22 苏州海铂晶体有限公司 c取向蓝宝石单晶的生产方法及设备
CN203968420U (zh) * 2014-05-14 2014-11-26 北京恩吉赛威节能科技有限公司 热辐射体棱台
CN104451892A (zh) * 2014-12-10 2015-03-25 上海汇淬光学科技有限公司 蓝宝石晶体生长设备的多段式石墨加热***及其使用方法
CN204987066U (zh) * 2015-10-09 2016-01-20 吴桥县子强模具有限公司 节能环保锅炉
CN206015148U (zh) * 2016-09-05 2017-03-15 江苏协鑫特种材料科技有限公司 一种石墨隔热装置及具有石墨隔热装置的cvd反应器
CN106704985A (zh) * 2015-07-17 2017-05-24 核工业西南物理研究院 棱面半球壳led灯具光学面罩
CN107000654A (zh) * 2014-12-22 2017-08-01 伊利诺斯工具制品有限公司 用于车辆传感器***的双平面加热器
WO2017160444A1 (en) * 2016-03-18 2017-09-21 Momentive Performance Materials Inc. Cylindrical heater

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343085A (zh) * 2001-06-19 2002-04-03 佛山市扬戈热处理有限公司 一种炉用电阻发热体
CN1648588A (zh) * 2005-02-18 2005-08-03 天津科技大学 板式外流降膜蒸发器中的加热装置
CN202390569U (zh) * 2011-11-24 2012-08-22 北京北方鑫源电碳制品有限责任公司 一种石墨加热器
CN102644113A (zh) * 2012-05-14 2012-08-22 苏州海铂晶体有限公司 c取向蓝宝石单晶的生产方法及设备
CN203968420U (zh) * 2014-05-14 2014-11-26 北京恩吉赛威节能科技有限公司 热辐射体棱台
CN104451892A (zh) * 2014-12-10 2015-03-25 上海汇淬光学科技有限公司 蓝宝石晶体生长设备的多段式石墨加热***及其使用方法
CN107000654A (zh) * 2014-12-22 2017-08-01 伊利诺斯工具制品有限公司 用于车辆传感器***的双平面加热器
CN106704985A (zh) * 2015-07-17 2017-05-24 核工业西南物理研究院 棱面半球壳led灯具光学面罩
CN204987066U (zh) * 2015-10-09 2016-01-20 吴桥县子强模具有限公司 节能环保锅炉
WO2017160444A1 (en) * 2016-03-18 2017-09-21 Momentive Performance Materials Inc. Cylindrical heater
CN206015148U (zh) * 2016-09-05 2017-03-15 江苏协鑫特种材料科技有限公司 一种石墨隔热装置及具有石墨隔热装置的cvd反应器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112016164A (zh) * 2020-09-09 2020-12-01 中国空气动力研究与发展中心计算空气动力研究所 一种航天模型飞行试验布局、及其轴对称头锥区域构型和设计方法
CN112016164B (zh) * 2020-09-09 2022-07-01 中国空气动力研究与发展中心计算空气动力研究所 一种航天模型飞行试验布局、及其轴对称头锥区域构型和设计方法

Also Published As

Publication number Publication date
CN109922545B (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
CN107860554B (zh) 风洞试验中尾喷流试验一体化模型装置及试验方法
Gao et al. A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation
Romdhane The air solar collectors: Comparative study, introduction of baffles to favor the heat transfer
Harmim et al. Experimental investigation of a box-type solar cooker with a finned absorber plate
CN106192712B (zh) 基于电磁超材料的沥青路面微波就地加热方法
CN203216867U (zh) 反射率高温测试平台
CN105562307A (zh) 一种辐射板、制备工艺及红外标准辐射装置
CN109922545A (zh) 石墨加热元件、石墨加热器及设计方法
CN108190001A (zh) 一种新型分区域防除冰蒙皮
Liang et al. Performance analysis of a new-design filled-type solar collector with double U-tubes
CN109890091A (zh) 用于结构热试验的石墨加热元件、石墨加热器
CN106650081A (zh) 冲击‑热气膜复合式防冰结构设计方法
Fan et al. A simple, accurate, and universal method for characterizing and comparing radiative cooling materials and devices
CN109905930A (zh) 石墨加热器、设计方法及所用石墨加热元件
CN209102650U (zh) 一种适用于空间环境试验的大辐射热流加热装置
Ye et al. Experimental investigation on the adiabatic film effectiveness for counter-inclined simple and laid-back film-holes of leading edge
CN112193401A (zh) 一种高超声速飞行器前缘热防护方法
Zhang et al. Characteristics of spatial and temporal variations of monthly mean surface air temperature over Qinghai-Tibet Plateau
CN107734938A (zh) 一种散热结构
CN205936704U (zh) 一种航空用发动机叶片
Urbanczyk et al. Characterization of the mutual influence of Ion Cyclotron and Lower Hybrid Range of frequencies systems on EAST
CN207582004U (zh) 一种单晶炉钼导流筒热场隔热装置
CN207818879U (zh) 太赫兹波段乙炔黑渐变分形宽缝阵列天线结构
CN208057057U (zh) 一种用于极地冰雪钻进的新型高功率电热熔钻头
CN205333550U (zh) 相变墙体整体保温隔热效果测试装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant