CN109917361A - 一种基于双基雷达的三维未知场景成像方法 - Google Patents

一种基于双基雷达的三维未知场景成像方法 Download PDF

Info

Publication number
CN109917361A
CN109917361A CN201910259240.6A CN201910259240A CN109917361A CN 109917361 A CN109917361 A CN 109917361A CN 201910259240 A CN201910259240 A CN 201910259240A CN 109917361 A CN109917361 A CN 109917361A
Authority
CN
China
Prior art keywords
imaging
vector
scene
measurement
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910259240.6A
Other languages
English (en)
Other versions
CN109917361B (zh
Inventor
杨晓波
陈家辉
崔国龙
师贞鹏
李虎泉
郭世盛
张扬
孔令讲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910259240.6A priority Critical patent/CN109917361B/zh
Publication of CN109917361A publication Critical patent/CN109917361A/zh
Application granted granted Critical
Publication of CN109917361B publication Critical patent/CN109917361B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

该发明公开了一种基于双基雷达的三维未知场景成像方法,涉及雷达成像技术,特别涉及基于双基雷达的三维未知场景成像技术。首先基于双基雷达对未知区域进行多位置、多角度的扫描,使得测量的数据能够包含场景的全部信息。该扫描方案仅记录接收信号的衰减值,因此也适用于窄带雷达,能够有效降低***成本。然后通过本专利提出的TV‑MF‑ART稀疏重建算法,对测量向量分别执行代数迭代重建、正约束、总变分最小化约束和中值滤波操作后,最终得到了高精度的三维场景图像。因此,本发明具有扫描速率快、计算量小和重建精度高的优点。

Description

一种基于双基雷达的三维未知场景成像方法
技术领域
本发明涉及雷达成像技术,特别涉及基于双基雷达的三维未知场景成像技术。
背景技术
未知场景成像技术是通过发射天线发射特定频段的电磁波信号,接收天线接收场景的回波信号或者透射信号,并令收发天线移动完成多位置、多视角的探测,从而获取全部场景的回波并形成包含全部场景图像的未知场景全景图像的技术。该技术可以用于获取未知场景的完整图像,为目标精确定位、多径抑制提供了先验信息,在城市感知、灾难救援等领域发挥着重要作用。
传统的未知场景成像技术一般是基于MIMO雷达或SAR获取回波数据。然而为了得到场景物体准确的位置信息,上述的探测手段需要精确的相位信息和大的信号带宽进行保障,这会导致高的***复杂度和硬件成本。此外,该种方式利用的是回波信号,当场景环境复杂时,内部的多径信号会占主导地位,从而影响成像质量。因此,寻找一种新的成像方案迫在眉睫。
近年来,许多国内外研究机构尝试将医学基于X射线的计算机断层扫描成像理论(CT)应用于微波频段,也开展了相关理论与技术研究工作。Karanam等人根据电磁波在不同介质、不同厚度中衰减不同的这一基本理论,基于Wi-Fi的接收信号强度值(RSSI)和TVAL3算法实现了三维未知场景成像(C.R.Karanam and Y.Mostofi,“3D Through-Wall Imagingwith Unmanned Aerial Vehicles Using Wi-Fi,”in 2017 16th ACM/IEEEInternational Conference on Information Processing in Sensor Networks(IPSN),April 2017,pp.131–142)。Fhager A等人通过FDTD方法仿真验证了基于线性调频信号的微波时延谱测量,并采用收发分置同步扫描方式实现了二维未知物体的重构(Fhager A,Persson M.Comparison of two image reconstruction algorithms for microwavetomography[J].Radio Science,2005,40(3):1-15.)。然而,以上论述的方案虽然能够实现未知区域、物体的成像,但是收发分置同步扫描方案效率低下,该方案对于大的场景成像时则望而却步,并且成像质量较为粗糙。因此如何提高雷达获取探测区域回波的效率,如何得到高质量的未知场景图像仍需大量工作去验证。
发明内容
针对目前未知场景成像技术中收发分置同步扫描速率低下,成像效果不佳等缺陷,本发明提出一种基于窄带窄波束双基雷达的新型未知场景成像方案,在“感知”区域内部时能够有效提高效率,并得到高质量的场景图像。首先,设计了一种基于地基雷达和无人机的地空联合扫描方式来获取未知场景的数据,该方式具有执行效率高、环境适应性强的优点;接着,利用WKB近似方法建立起接收信号与未知场景之间的联系;最后,根据本发明提出的中值滤波下的总变分最小化代数迭代算法(TV-MF-ART)反演得到高精度场景成像结果。
本发明的技术方案为,一种基于双基雷达的三维未知场景成像方法,该方法包括:
步骤1:获取场景信息
对未知区域进行扫描,令一窄波束雷达在未知场景的外侧发射窄带连续波信号,在场景的另一侧,搭载了Na个接收阵元的无人机按照规定好的路线移动,并接收穿透未知区域后的透射信号,在无人机移动期间,发射天线保证在测量时间内正对着相应的接收阵元,确保接收信号的衰减是直达波穿透场景所引起;
令np表示无人机的位置,nv为视角;则n=(na,np,nv)表示为位于nv视角下np位置处的第na个接收阵元的位置矢量;当完成N=Na×Np×Nv次测量时,Na表示接收阵元的总数量,Np表示在固定视角下无人机移动的次数,Nv表示视角数,测量矩阵表示为:
P=[p1,p2,...,pN]T (1)
其中,pn表示在n位置处的接收功率。
测量值为信号功率的衰减量,它会随着不同电介质的尺寸、位置和介电常数的不同而不同,根据Wentzel-Kramers-Brillouin近似,测量的衰减量与传播路径的关系可以表示为:
σn∝exp(j2πfcT→Rα(rn)dr) (2)
其中,fc表示中心频率,σn为衰减值,αn(r)为电磁波在位置r处的衰减速率,∫T→R为收发阵元之间的线积分;将成像区域离散成M个单元,记作成像矩阵O;每个单元处的值取决于电磁波在该位置处的衰减速率,则成像矩阵表示为不同衰减速率的集合,即O=[α(r1),α(r2),...,α(rM)],因此,测量向量与成像向量之间的联系为:
P=A·O+b (3)
其中,A∈RN×M为映射矩阵,表示成像向量与测量向量之间的映射;当jth单元位于ith次测量,则A(i,j)=1,否则为0;b为测量误差,包括定位误差和环境噪声;至此,完成步骤1获取未知场景信息;
步骤2:对未知场景成像
执行步骤1得到包含未知场景信息的测量向量;因为测量的数据远少于成像单元数,并根据测量向量在稀疏采样数据下进行场景成像;
步骤2-1:代数迭代重建
将欠定方程组式(3)视为N个超平面,首先设定一个初始解,将初始解依次正交投影到每个超平面上,实现对初始解的迭代更新,逼近真实解;迭代方程为:
其中,λ为收敛因子,可以设置为1,Oq表示在第q次迭代时的成像向量,Aq,+表示为映射矩阵的第q行向量,NART为测量点数,初始的成像向量设置为全0,通过该步骤迭代得到一个初始的成像向量;
步骤2-2:对步骤2-1得到初始成像向量进行正约束;
对步骤2-1的初始成像向量中的负数置为0;表达式为:
O=max(O,0) (5)
步骤2-3:总变分最小化步骤
将步骤2-2约束后的成像矩阵进行总变分最小化迭代,具体迭代方程为:
其中:α为人为设定的收敛因子,NTV为迭代轮数,ΔO为步骤2-1与步骤2-2成像矩阵的差量,||·||2为矩阵二范数,||·||TV为图像的梯度,三维图像的梯度计算公式为:
其中:Oi,j,k为三维成像矩阵,i,j,k为其行列高索引,ρ为一小正数,防止分母为0;
步骤2-4:三维中值滤波步骤
对总变分最小化后的成像向量转换为三维矩阵执行三维中值滤波操作,具体表达式为:
其中为循环卷积,W为滑窗,窗大小视成像矩阵单元数而定;通过该步骤后得到最终的场景成像结果。
本发明提供了一种适用于收发分置雷达的场景成像方案,具有扫描速率快、成像精度高的优点。首先基于双基雷达对未知区域进行多位置、多角度的扫描,使得测量的数据能够包含场景的全部信息。该扫描方案仅记录接收信号的衰减值,因此也适用于窄带雷达,能够有效降低***成本。然后通过本专利提出的TV-MF-ART稀疏重建算法,对测量向量分别执行代数迭代重建、正约束、总变分最小化约束和中值滤波操作后,最终得到了高精度的三维场景图像。因此,本发明具有扫描速率快、计算量小和重建精度高的优点。
附图说明
图1为本发明双基雷达扫描示意图;
图2为重建算法框图;
图3为三维中值滤波示意图;
图4为待重建场景;
图5为双基雷达扫描场景的一个实例;
图6为传统ART算法重建的结果;
图7为本专利提出的重建算法的结果;
图8为RADON变换下测量曲线的比较。
具体实施方式
下面结合一个仿真给出本发明具体实施步骤。
建筑如图4所示,未知场景面积为3m×3m×1m。将该区域划分为0.01m×0.01m×0.01m的网格单元,也就是说该未知区域共有9×106个单元。区域外设置一个地基雷达和无人机对该区域进行扫描,地基雷达发射的信号为2Ghz的正弦波信号,无人机搭载了100个等间隔阵元的线阵,用于接收透射场景后的信号并记录功率的衰减值。
步骤1:令无人机在场景另一侧移动,每个接收阵元移动间隔0.01m时记录一次信号衰减值,记录次数为300次。记录完毕后完成一个视角测量。该步骤记录的测量值包含直达路径的衰减量、穿透墙体时的多径分量以及环境噪声。为了抑制多径现象对本模型的影响,我们采用的窄波束天线,在增大发射功率的同时可以保证接收信号由直达波占主导地位。
步骤2:为了使得到的场景信息不会冗余,即测量时的张角要足够大。因此要完成多视角的测量。不同视角的选取会影响成像结果。本次仿真视角为4个,分别为0°,45°,90°和135°。完成本轮测量后共得到1200个测量点,记为P。记录每个测量点的位置,根据位置计算映射矩阵A,维度为1200×9000000。
步骤3:执行代数迭代重建步骤,初始成像向量设置为全0,迭代次数为1200次,根据式(4)迭代得到成像矩阵OART
步骤4:执行正约束式(5)得到OPOS,并计算得到步骤3和步骤4成像矩阵的差量ΔO。
步骤5:根据式(6)和式(7)对总变分进行约束,迭代次数为20次,通过梯度下降方法降低图像的总能量。得到的结果记为OMF
步骤6:执行中值滤波操作式(8),进一步平滑图像。
步骤7:若图像未收敛(收敛判定为ΔO的总值小于某个门限值),继续执行步骤3-6。收敛后得到最终的未知场景图像。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (1)

1.一种基于双基雷达的三维未知场景成像方法,该方法包括:
步骤1:获取场景信息
对未知区域进行扫描,令一窄波束雷达在未知场景的外侧发射窄带连续波信号,在场景的另一侧,搭载了Na个接收阵元的无人机按照规定好的路线移动,并接收穿透未知区域后的透射信号,在无人机移动期间,发射天线保证在测量时间内正对着相应的接收阵元,确保接收信号的衰减是直达波穿透场景所引起;
令np表示无人机的位置,nv为视角;则n=(na,np,nv)表示为位于nv视角下np位置处的第na个接收阵元的位置矢量;当完成N=Na×Np×Nv次测量时,Na表示接收阵元的总数量,Np表示在固定视角下无人机移动的次数,Nv表示视角数,测量矩阵表示为:
P=[p1,p2,...,pN]T (1)
其中,pn表示在n位置处的接收功率。
测量值为信号功率的衰减量,它会随着不同电介质的尺寸、位置和介电常数的不同而不同,根据Wentzel-Kramers-Brillouin近似,测量的衰减量与传播路径的关系可以表示为:
σn∝exp(j2πfcT→Rα(rn)dr) (2)
其中,fc表示中心频率,σn为衰减值,αn(r)为电磁波在位置r处的衰减速率,∫T→R为收发阵元之间的线积分;将成像区域离散成M个单元,记作成像矩阵O;每个单元处的值取决于电磁波在该位置处的衰减速率,则成像矩阵表示为不同衰减速率的集合,即O=[α(r1),α(r2),...,α(rM)],因此,测量向量与成像向量之间的联系为:
P=A·O+b (3)
其中,A∈RN×M为映射矩阵,表示成像向量与测量向量之间的映射;当jth单元位于ith次测量,则A(i,j)=1,否则为0;b为测量误差,包括定位误差和环境噪声;至此,完成步骤1获取未知场景信息;
步骤2:对未知场景成像
执行步骤1得到包含未知场景信息的测量向量;因为测量的数据远少于成像单元数,并根据测量向量在稀疏采样数据下进行场景成像;
步骤2-1:代数迭代重建
将欠定方程组式(3)视为N个超平面,首先设定一个初始解,将初始解依次正交投影到每个超平面上,实现对初始解的迭代更新,逼近真实解;迭代方程为:
其中,λ为收敛因子,可以设置为1,Oq表示在第q次迭代时的成像向量,Aq,+表示为映射矩阵的第q行向量,NART为测量点数,初始的成像向量设置为全0,通过该步骤迭代得到一个初始的成像向量;
步骤2-2:对步骤2-1得到初始成像向量进行正约束;
对步骤2-1的初始成像向量中的负数置为0;表达式为:
O=max(O,0) (5)
步骤2-3:总变分最小化步骤
将步骤2-2约束后的成像矩阵进行总变分最小化迭代,具体迭代方程为:
其中:α为人为设定的收敛因子,NTV为迭代轮数,ΔO为步骤2-1与步骤2-2成像矩阵的差量,||·||2为矩阵二范数,||·||TV为图像的梯度,三维图像的梯度计算公式为:
其中:Oi,j,k为三维成像矩阵,i,j,k为其行列高索引,ρ为一小正数,防止分母为0;
步骤2-4:三维中值滤波步骤
对总变分最小化后的成像向量转换为三维矩阵执行三维中值滤波操作,具体表达式为:
其中为循环卷积,W为滑窗,窗大小视成像矩阵单元数而定;通过该步骤后得到最终的场景成像结果。
CN201910259240.6A 2019-04-02 2019-04-02 一种基于双基雷达的三维未知场景成像方法 Active CN109917361B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910259240.6A CN109917361B (zh) 2019-04-02 2019-04-02 一种基于双基雷达的三维未知场景成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910259240.6A CN109917361B (zh) 2019-04-02 2019-04-02 一种基于双基雷达的三维未知场景成像方法

Publications (2)

Publication Number Publication Date
CN109917361A true CN109917361A (zh) 2019-06-21
CN109917361B CN109917361B (zh) 2023-04-25

Family

ID=66968099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910259240.6A Active CN109917361B (zh) 2019-04-02 2019-04-02 一种基于双基雷达的三维未知场景成像方法

Country Status (1)

Country Link
CN (1) CN109917361B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110928326A (zh) * 2019-11-26 2020-03-27 南京航空航天大学 一种面向飞行器外形的测量点差异性规划方法
CN111175740A (zh) * 2020-01-09 2020-05-19 电子科技大学 一种基于穿墙雷达的建筑布局重建优化方法
CN113075738A (zh) * 2021-03-26 2021-07-06 桂林理工大学 一种基于无人机的探地雷达测量***
CN113406637A (zh) * 2021-06-23 2021-09-17 电子科技大学 一种基于双频窄带信号的联合迭代层析成像方法
CN113640798A (zh) * 2021-08-11 2021-11-12 北京无线电测量研究所 一种雷达目标多角度重建方法、装置及存储介质
CN116087235A (zh) * 2023-04-07 2023-05-09 四川川交路桥有限责任公司 一种多源耦合的桥梁损伤探测方法及***

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149554A (zh) * 2013-02-02 2013-06-12 西安电子科技大学 双基sar的变标逆傅里叶变换成像方法
CN104240210A (zh) * 2014-07-21 2014-12-24 南京邮电大学 基于压缩感知的ct图像迭代重建方法
US20150198713A1 (en) * 2014-01-13 2015-07-16 Mitsubishi Electric Research Laboratories, Inc. Method and System for Through-the-Wall Imaging using Compressive Sensing and MIMO Antenna Arrays
US20150355314A1 (en) * 2013-07-22 2015-12-10 Mitsubishi Electric Research Laboratories, Inc. System and Method for Through-the-Wall-Radar-Imaging using Total-Variation Denoising
CN105796121A (zh) * 2016-03-02 2016-07-27 中国人民解放军第四军医大学 一种ct和x射线激发荧光双模同步断层成像方法
CN105954745A (zh) * 2016-04-29 2016-09-21 电子科技大学 一种适用于穿墙雷达多径幻象抑制的成像方法
US20170010352A1 (en) * 2015-07-07 2017-01-12 Mitsubishi Electric Research Laboratories, Inc. System and Method for Radar Imaging Using Distributed Arrays and Compressive Sensing
CN106772365A (zh) * 2016-11-25 2017-05-31 南京理工大学 一种基于贝叶斯压缩感知的多径利用穿墙雷达成像方法
CN107942326A (zh) * 2017-11-14 2018-04-20 西南交通大学 一种具有高通用性的二维主动毫米波成像方法
CN108872980A (zh) * 2018-06-19 2018-11-23 电子科技大学 一种基于窄带***的自适应穿墙成像方法
CN109194959A (zh) * 2018-09-28 2019-01-11 中国科学院长春光学精密机械与物理研究所 一种压缩感知成像方法、装置、设备、***及存储介质
CN109358328A (zh) * 2018-11-06 2019-02-19 电子科技大学 机动平台双基地前视sar的极坐标格式成像方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149554A (zh) * 2013-02-02 2013-06-12 西安电子科技大学 双基sar的变标逆傅里叶变换成像方法
US20150355314A1 (en) * 2013-07-22 2015-12-10 Mitsubishi Electric Research Laboratories, Inc. System and Method for Through-the-Wall-Radar-Imaging using Total-Variation Denoising
US20150198713A1 (en) * 2014-01-13 2015-07-16 Mitsubishi Electric Research Laboratories, Inc. Method and System for Through-the-Wall Imaging using Compressive Sensing and MIMO Antenna Arrays
CN104240210A (zh) * 2014-07-21 2014-12-24 南京邮电大学 基于压缩感知的ct图像迭代重建方法
US20170010352A1 (en) * 2015-07-07 2017-01-12 Mitsubishi Electric Research Laboratories, Inc. System and Method for Radar Imaging Using Distributed Arrays and Compressive Sensing
CN105796121A (zh) * 2016-03-02 2016-07-27 中国人民解放军第四军医大学 一种ct和x射线激发荧光双模同步断层成像方法
CN105954745A (zh) * 2016-04-29 2016-09-21 电子科技大学 一种适用于穿墙雷达多径幻象抑制的成像方法
CN106772365A (zh) * 2016-11-25 2017-05-31 南京理工大学 一种基于贝叶斯压缩感知的多径利用穿墙雷达成像方法
CN107942326A (zh) * 2017-11-14 2018-04-20 西南交通大学 一种具有高通用性的二维主动毫米波成像方法
CN108872980A (zh) * 2018-06-19 2018-11-23 电子科技大学 一种基于窄带***的自适应穿墙成像方法
CN109194959A (zh) * 2018-09-28 2019-01-11 中国科学院长春光学精密机械与物理研究所 一种压缩感知成像方法、装置、设备、***及存储介质
CN109358328A (zh) * 2018-11-06 2019-02-19 电子科技大学 机动平台双基地前视sar的极坐标格式成像方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LINGXIAO CAO 等: "Narrow-Band Through-Wall Imaging with Received Signal Strength Data", 《21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION)》 *
P.JIDESH 等: "Non-local total variation regularization models for image restoration", 《COMPUTERS AND ELECTRICAL ENGINEERING》 *
张燕 等: "结合TV约束的穿墙雷达扩展目标成像方法", 《雷达科学与技术》 *
王馥瑶: "基于层析成像和压缩感知的火焰三维重构研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
赵翔: "基于改进的3D-FFBP三维穿墙成像研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110928326A (zh) * 2019-11-26 2020-03-27 南京航空航天大学 一种面向飞行器外形的测量点差异性规划方法
CN111175740A (zh) * 2020-01-09 2020-05-19 电子科技大学 一种基于穿墙雷达的建筑布局重建优化方法
CN113075738A (zh) * 2021-03-26 2021-07-06 桂林理工大学 一种基于无人机的探地雷达测量***
CN113406637A (zh) * 2021-06-23 2021-09-17 电子科技大学 一种基于双频窄带信号的联合迭代层析成像方法
CN113640798A (zh) * 2021-08-11 2021-11-12 北京无线电测量研究所 一种雷达目标多角度重建方法、装置及存储介质
CN113640798B (zh) * 2021-08-11 2023-10-31 北京无线电测量研究所 一种雷达目标多角度重建方法、装置及存储介质
CN116087235A (zh) * 2023-04-07 2023-05-09 四川川交路桥有限责任公司 一种多源耦合的桥梁损伤探测方法及***
CN116087235B (zh) * 2023-04-07 2023-06-20 四川川交路桥有限责任公司 一种多源耦合的桥梁损伤探测方法及***

Also Published As

Publication number Publication date
CN109917361B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN109917361A (zh) 一种基于双基雷达的三维未知场景成像方法
CN106772365B (zh) 一种基于贝叶斯压缩感知的多径利用穿墙雷达成像方法
CN106526591B (zh) 机动目标高分辨isar子孔径融合成像方法
CN103713288B (zh) 基于迭代最小化稀疏贝叶斯重构线阵sar成像方法
CN103698763B (zh) 基于硬阈值正交匹配追踪的线阵sar稀疏成像方法
CN102176017A (zh) 电大复杂体目标与粗糙面背景复合电磁散射数值仿真方法
CN105353355B (zh) 一种基于稀疏重构和投影成像的多基地雷达多目标定位方法
CN110133682A (zh) 星载全方位sar自适应目标三维重建方法
JP2011123060A (ja) 三次元画像を形成するための識別専用オプトロニックシステムおよび方法
CN109490881A (zh) 基于涡旋电磁波的干涉sar高程测量***及测量方法
CN109782279A (zh) 一种基于压缩感知的双基地isar成像方法
CN105866772A (zh) 一种基于微波相干成像的新型人体内金属物体定位方法
CN105929388A (zh) 一种基于Wi-Fi网络的新型室内定位方法
CN108872980A (zh) 一种基于窄带***的自适应穿墙成像方法
CN113447915B (zh) 一种适用于复杂多径环境下的超宽带层析成像方法
Wei et al. Non-line-of-sight imaging by millimeter wave radar
Bi et al. Baseline distribution optimization and missing data completion in wavelet-based CS-TomoSAR
He et al. Non-line-of-sight imaging with radio signals
Zhang et al. Building layout tomographic reconstruction via commercial WiFi signals
Farquharson et al. An update on the capella space radar constellation
CN113238229B (zh) 一种geo星机双基sar无模糊成像方法
Chen et al. Three-dimensional Building Layout Imaging Based on Bistatic Radar
Zhang et al. Knowledge-assisted building layout reconstruction for through-the-wall radar imaging
Liu et al. Non-line-of-sight radar 3-D imaging via sparse reconstruction
Tan et al. Synthetic aperture radar tomography sampling criteria and three-dimensional range migration algorithm with elevation digital spotlighting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant