CN109917221B - 用于三相配电电缆的故障分类的装置和方法 - Google Patents

用于三相配电电缆的故障分类的装置和方法 Download PDF

Info

Publication number
CN109917221B
CN109917221B CN201811479765.2A CN201811479765A CN109917221B CN 109917221 B CN109917221 B CN 109917221B CN 201811479765 A CN201811479765 A CN 201811479765A CN 109917221 B CN109917221 B CN 109917221B
Authority
CN
China
Prior art keywords
phase
fault
component
magnetic
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811479765.2A
Other languages
English (en)
Other versions
CN109917221A (zh
Inventor
庞永达
朱科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Hong Kong HKU
Original Assignee
University of Hong Kong HKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Hong Kong HKU filed Critical University of Hong Kong HKU
Publication of CN109917221A publication Critical patent/CN109917221A/zh
Application granted granted Critical
Publication of CN109917221B publication Critical patent/CN109917221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/332Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means responsive to dc component in the fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/04Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/50Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the appearance of abnormal wave forms, e.g. ac in dc installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)

Abstract

一种基于DC分量的用于三相配电电缆的故障分类装置和方法。其利用电缆表面布置的磁传感器阵列测量电缆周围的磁场(同时安装屏蔽罩屏蔽外界干扰磁场)以重构三相电缆电流,并通过故障后DC分量的存在和极性判断故障类别。数据采集***从传感器获取模拟信号,并且在故障之后的瞬态期间,处理***通过数学形态学提取各相的模拟信号中的DC分量。当故障发生时,因为在感性电网故障相中存在大的电流变化,所以故障相中出现这些DC分量。

Description

用于三相配电电缆的故障分类的装置和方法
技术领域
本发明涉及一种用于对三相配电电缆中的短路故障状况进行分类的装置和方法。更具体地,其涉及通过磁场测量重构电流并在故障发生后的瞬态期间识别相中DC分量的存在进行分类的装置和方法。
背景技术
电力***需要可靠的配电网来确保输送给客户的电力质量。尽管为了避免恶劣的天气条件以及城市美观,配电电缆部署在地下。但是由于内部绝缘击穿或外部损坏,故障仍然常见于这些地下配线电缆。例如,在绝缘击穿时发生相接地短路故障,导致相导体和接地屏之间的物理接触。因为导体之间的绝缘可能会因潮湿而击穿,所以还可能存在相间短路故障。根据所涉及的故障相的数量和接地情况,故障可分类为(1)单相接地短路故障;(2)相间短路故障;(3)两相接地短路故障;(4)三相短路故障。短路故障的后果可能非常严重。因此,应在尽可能短的时间内通过继电器清除故障以减少其不利影响。
电力***中的短路故障可能导致非常严重的后果,例如(1)故障点和沿输电/配电线路过热引起的火灾和***;(2)***元件上的生热和电动力,其可能会损坏***元件以及降低其使用寿命;(3)由于供电不足,给客户和工业公司带来巨大的经济损失;(4)因为并联操作的电网也可能受到影响和振荡,电力***由于断路器的串级跳闸甚至竞争***或电网关闭而发生故障。
从最初研究电力***的故障分类方法以来,已经发明了一系列稳态故障分类方法,包括电流(电压)峰值方法和阻抗方法。当发生短路故障时,电流增加到较大值,同时电压降至较小值。通过对于电流峰值方法和电压峰值方法设置阈值,可以通过判断是否达到阈值来识别故障相。阻抗方法用于通过定义相电压与电流的比率来实现更高的灵敏度。然而,基于稳态的故障分类方法并非迅速,因为瞬态持续时间可持续约5个周期,而超高速保护方案需要在1~2个周期内的快速故障分类。新研究提出了一系列基于瞬态的故障分类方法以便提高故障分类速度。该类方法满足超高速保护方案的要求并使得故障的不利影响最小化。例如,Al-hassawi团队提出了一种相差方法(Phase Difference Method),用于将三相的测量相电流(电压)差异与预分析的故障结果进行比较。Al-hassawi等人发表了“Aneural-network-based approach for fault classification and faulted phaseselection”,载于IEEE Conference on Electrical and Computing Engineering(1996年)。Bo等人开发了高频噪声(60kHz)(High-Frequency Noise(60kHz))方法,用于检测故障相中是否存在60kHz高频噪声来识别故障相,Bo等人发表了“A new approach to phaseselection using fault generated high frequency noise and neural networks”,载于IEEE Transaction on Power Systems,vol.12,pp.106-115(1997)。2013年,De SouzaGomes小组提出了角差法(Angular Difference Method)来测量每相的正负电流的角度差异,并与预分析中的故障条件进行比较。De Souza等人发表了“Detection andclassification of faults in power transmission lines using functionalanalysis and computational intelligence”,载于IEEE Transactions on PowerDelivery,vol.28,pp.1402-1413(2013)。2004年还提出了电流小波频谱法(WaveletSpectrum of Current Method),以比较故障相和健康相之间的小波频谱。Youssef发表了“Combined fuzzy-logic wavelet-based fault classification technique for powersystem relaying”,载于IEEE Transactions on Power Delivery,vol.19,pp.582-589(2004)。Shu等人开发了一种高频能量(10-20kHz)方法(High-Frequency Energy(10-20kHz))来检测故障相和健康相之间的能量谱。Shu等人发表了“Fault phase selectionand distance location based on ANN and S-transform of transmission line intriangle network”,公开于3rd International Conference on Image and SignalProcessing(2010)。但是,这类方法仍存在如下缺点,例如(1)需要预校准;(2)准确度可能受到电磁干扰的影响,以及(3)无法区分正常状态和三相短路故障。表I列出了每种方法的详细的缺点,这些缺点的影响显而易见,如下:
(1)预校准要求:用于设置继电器阈值的人力成本大概占继电保护投资的30%。随着世界电力消耗和配电网络的急剧扩张,这种成本变得越来越昂贵。
(2)易受电磁干扰的影响:由于故障相和正常相之间的电磁耦合,这可能导致错误的故障分类结果。随着高频电子设备的大量部署,这个问题变得更加严重。
(3)失灵:一些技术可能无法识别三相短路故障,因为三相短路故障的部分特征量仍然像正常运转时一样对称。这种情况下继电器不会跳闸,故障可能会扩大而导致非常严重的后果。
表I.传统故障分类方法之间的比较
Figure BDA0001893083460000031
因此,为了以适当的保护方案使继电器跳闸,在检测到故障之后对故障类型进行准确的分类非常关键。虽然在故障后状况下有许多瞬态方法可以对故障进行分类,但仍然缺少一种的故障分类方法,其不需要预校准、不受电磁干扰影响,且可以可靠地识别三相短路故障。
发明内容
本发明针对如何在故障发生后的瞬态期间内对短路故障类型(单相接地短路故障、两相接地短路故障、相间短路故障和三相短路故障)进行分类,这对于隔离故障和恢复电力***具有重要意义。
本发明的目的是克服上述问题以进一步提升故障分类的准确性。本发明通过磁场测量重构电流,并检测故障相中电流的DC衰减分量以判别故障类型。它是一种非侵入式***,可以简便安装到现有的配电电缆中。利用电流中衰减的DC分量进行故障分类具有以下优点。首先,不需要预校准来初始化不同配电网络的继电器,因为该方法不需要基于故障前的状态来确定阈值。其次,DC分量是稳健的,因为电力***中的电磁干扰一般具有高频带宽(>kHz),并不与DC的频率带宽重叠。最后,DC分量可以可靠地将三相短路故障与正常状态区分开,因为DC分量仅在故障条件下出现。因此,采用DC分量进行故障分类比传统方法更有优势。
本发明提供了一种关于故障分类的装置和方法,它能够增强可靠性、降低人力成本并增加维修人员的安全性。根据本发明的实施例,提供了一种用于测量三相配电电缆表面周围的磁场的装置。该装置包括磁传感器阵列、由高磁导率材料制成的多层磁屏蔽罩,以及数据采集和处理***。
该实施例的操作方法在故障发生之后通过在故障之后的瞬态期间判断故障相的电流中存在衰减的DC分量对故障进行分类(即,相接地短路故障、两相接地短路故障、相间短路故障,以及三相短路故障)。首先,通过逆电流程序(ICP)、磁场评估(MFE)和源位置优化(SPO)由电缆表面周围所测量的磁场重建三相电流。其次,在故障发生之后每1/4周期,分别从三相电流中提取DC分量。最后,通过预先设定的逻辑表识别故障类型。
如上所述,根据本发明,由于本发明的方法解决了易受电磁干扰影响和三相故障识别失灵的问题,故障分类的可靠性得到改善。DC分量是稳健的,因为电力***中的电磁干扰具有高频带宽(>kHz),因此其不会与DC分量重叠。DC分量可以可靠地区分三相短路故障和正常状态,因为DC分量仅在故障条件下出现。
此外,根据本发明,由于以下两个原因,基于该装置的故障分类的成本会降低:
(1)不需要预校准来初始化不同配电网络的继电器,因为该方法不需要基于故障前状态确定阈值,因此节省了人力的财务投资以执行预校准。
(2)该装置采用磁传感器来重构三相电流。磁传感器(例如,磁阻传感器,诸如各向异性磁阻传感器、巨磁阻传感器,或隧道磁阻传感器),与体积大(~m3)并且成本高(~10k美元)的现有光学电流互感器(OCT)相比,这些磁传感器是现成的且成本较低的(每个约几到几十美元)。
最后,与安装和操作传统的霍尔效应电压传感器相比,维修人员的安全性提供高了。霍尔效应电压传感器基于霍尔效应和磁补偿原理。感应电路必须接触初级侧的接线。这种配置需要接触高压侧(330kV至1,000kV),危及维修人员的安全。本发明解决了这个问题,因为感测是非侵入性的并且其不需要与导线接触。
与表I中列出的现有方法相比,本发明不需要预校准,可用于三相短路检测并且不受电磁干扰的影响。
因此,本发明提供了更可靠的故障分类,以(a)确保继电器的正常功能,(b)提高配电***的自我修复能力以实现智能电网,(c)节省预校准所需的人力和(d)控制故障的不利影响以促进智能城市的发展。
附图说明
通过参考以下详细的说明和附图,本发明的前述的和其他的目的和优点将变得更加显而易见,其中在各个视图中相同的标记表示相同的元件,并且其中:
图1A是根据本发明的用于测量三相配电电缆周围的磁场的装置的图形表示,图1B是图1A的装置的电路示意图,以及图1C是示出了磁传感器阵列的放置的三相配电缆的剖视图。
图2是利用根据本发明的图1的装置进行故障分类的方法的流程图;
图3是在图2的方法中使用的三相电流提取(TCE)处理的流程图;
图4A-4C是在获取三相电流之后的瞬态期间的DC电流分量提取的示例性图示,其中图4A示出了用于相对地短路故障(A-G)的电流中的提取的和实际的DC分量,图4B示出了两相对地短路故障(B-C-G),图4C示出了相间短路故障(B-C),以及图4D示出了三相短路故障(A-B-C);以及
图5是识别短路故障类型(即,相接地短路故障、两相接地短路故障、相间短路故障,以及三相短路故障)的逻辑表。
具体实施方式
本发明涉及一种用于三相配电电缆的故障分类的装置和方法。它依靠磁场测量来重构三相电流,并识别故障后瞬态期间电流各相中存在的直流分量以区分故障类别。该方法避免了在电力***中使用现有互感器(最为常见的是电流互感器)检测直流分量时直流偏置可能引起的波形失真问题。因为直流偏置使次级输出电流波形失真,所以不能使用电流互感器。虽然可以使用基于磁光效应(法拉第效应)的光学电流互感器(OCS)进行直流测量,但它们非常昂贵。
在图1中分成上部和下部11、11'示出了用于测量三相配电电缆20周围的磁场的装置10。该装置包括磁传感器阵列12、磁屏蔽罩14、数据获取单元16(图1B),以及数据处理和显示单元18(图1B)。传感器阵列12的磁传感器13(图1C中所示的S1-S8)安装成圆形布置,用于测量电缆20表面周围的不同方位角处的磁场。它们相对于图1的相导体A、B、C定位。为了尽可能精确地测量由三相电力电缆生成的磁场,由高磁导率材料制成的三层磁屏蔽罩14被定位成环绕传感器。屏蔽14保护传感器免受外部电磁干扰,因为外部电磁可能影响由目标电缆生成的磁场测量的精度。
数据获取单元16收集磁传感器13的模拟输出。然后,数据处理单元18处理所收集的信号,以在故障之后的瞬态期间提取相中的DC分量。计算机也会显示这些分量。
图2中示出了提取和识别相中DC分量的存在的程序。该程序在步骤S01以测量电缆表面周围的磁场开始,然后由三相电流提取(TCE)子程序S02处理,这在图3中更详细地示出。TCE的本质是随机优化方法,其中三相电流和电缆导体的位置由优化确定。特别地,最终相电流通过优化所测量和计算的磁场之间的最小欧几里得距离来确定。通过根据磁场测量重构电流再提取DC分量,避免了由电流互感器的DC偏置引起的波形失真的问题。
图2中以步骤S10(相A)、S20(相B)和S30(相C)示出了重构的三相电流。然后,在步骤S12、S22、S32通过数学形态学(MM)方法处理每个重建的三相电流,以分析每1/4周期的DC分量。在步骤S14、S24、S34中将每个相的提取的DC分量(即,|DCA|、|DCB|和|DCC|)与步骤S16、S26、S36中的预设阈值(τ)进行比较。设置阈值(τ)是因为在***中有一些微弱的直流电流可能从可再生能源***或者高压直流(HVDC)传输线***经由交流***中的接地点流入。如果满足条件,则在步骤S18、S28、S38中在相应的相中的指示符将显示“1”;否则,在步骤S19、S29、S39中,比较将显示“0”。
图3描述了根据图2中的步骤S02的TCE程序的细节。TCE从步骤S40开始,在此默认设置三相导体的电流(I0)和位置(P0)。为了加速优化过程,初始电流将被设置为配电电缆的额定电流。同时,三相导体的位置将被设定在磁场分布图案中三个峰所在的角度处(该磁场分布图案在围绕电缆表面的整圆中测量)。在逆电流程序(ICP)中,在步骤S42中通过最小二乘法优化电流(I0’)。然后在步骤S44通过磁场评估(MFE)程序用优化的电流(I0’)和预设位置(P0)更新计算的磁场(Bcal)。步骤S46的结束条件如下:(a)计算的(Bcal)磁场与测量的(Bmea)磁场之间的欧几里得距离小于预设阈值(ε1);(b)电流不平衡度(Kl)小于预设值(ε2,例如10%);和(c)角度不平衡度小于预设值(ε3,例如20%)。在步骤48,算法终止并输出重建的三相导***置(Pf)和电流(IP)。
如果不满足结束条件,则在步骤S45通过源位置优化(SPO)优化(Pu)导***置,在步骤中使用遗传算法,迭代持续优化三相导体的位置和电流直到满足结束条件。然后,经优化的电流(IP)将作为最终的三相电流。因为三相导体A、B、C的位置是固定的,所以可以保留三相位置以便下次执行程序。图3的算法每四分之一周期进行操作以提取DC分量用于实现快速响应。
本发明的故障分类方法对于使继电器跳闸以隔离故障区域,或者对特定相自动重合闸作出决定是至关重要的。
图4A-4D是在获取三相电流之后的瞬态阶段期间的DC分量提取的示例性图示。被测试的配电网络包括馈线(电压:22kV;短路容量,2.2MVA;电感,0.35H;电阻,13.96Ω)、20km配电电缆(电阻r1=0.024Ω/km,r0=0.412Ω/km;电感l1=0.4278mH/km,r0=1.5338mH/km;电容c1=0.2811μF/km,c0=0.1529μF/km)和负载(1MW)。假设在0.10s时在离馈线侧10公里处发生故障,对于所有故障类型,即图4A中的相接地短路故障(A-G)、在图4B中的两相接地短路(B-C-G)、在图4C中的相间短路故障(B-C)、以及
图4D中的三相短路故障(A-B-C)。对于图4A-4D中所示的图示,在故障后时段使用MM方法用于提取三相电流的直流分量。结果表明DC分量仅出现在故障相中,而MM方法提取的直流分量与故障相中的准确值相匹配。
图5示出了配电电缆的故障分类逻辑表。根据图2中的流程图,故障相将报告为“1”,否则为“0”。通过判断相应的相中逻辑指示“1”的存在,可以很容易地识别出单相接地短路故障和三相短路故障,即A-G(1-0-0)、B-G(0-1-0)、C-G(0-0-1)和A-B-C(1-1-1)。在相间短路故障或两相接地短路故障中显示了两个逻辑“1”指示。但是,由于短路电流方向不同(即,电流将在相间短路故障的各相之间流动,在两相接地短路故障中流至接地),因此DC分量也会不同。因此,DC分量的极性可用于进一步区分故障类型。DC分量的相反极性用于相间短路故障,相同极性用于两相接地短路故障。
本发明的益处是(1)在分布式网络中增强故障分类的可靠性以确保继电器的正常功能并减少修复所需的时间;(2)消除了在每个地下电力电缆上安装继电器的预校准处理中的人力成本以实现成本效益更高的电力***升级;(3)通过提高配电***的自我修复能力促进智能电网建设。通过使用符合保护方案(例如,单相重新合闸)的继电器跳闸来增强可靠性,以减少故障的不利影响。准确的故障分类对于计算从继电器到故障点的距离至关重要,从而节省了维修人员定位和修理故障的时间。智能电网中的自我修复还需要尽可能精确地准确定位故障点。通过基于正确故障分类的精确故障定位,可以在最小区域内隔离故障,或者可以快速重新配置网络以通过优化的备选电源维持客户的供电。
而且,本发明的***还具有成本效益,因为磁传感器比光学电流互感器便宜。本发明的***故障分类速度也很快,可以在一个周期内建立故障分类,而非现有技术需要几个周期。
仅为了方便,在一个或多个附图中示出了本发明的具体特征,因为每个特征可以与根据本发明的其他特征组合。本领域技术人员将认识到可选的实施例,并且这些实施例旨在包括在权利要求的范围内。因此,以上说明应被解释为示例而非限制本发明的范围。所有这些明显的变化和修改都在所附的权利要求的专利范围内。

Claims (10)

1.一种用于三相配电电缆的故障分类的装置,包括:
至少三个磁传感器,其中所述传感器以圆形方式布置以形成围绕所述电缆的阵列;
磁屏蔽罩,用于容纳所述磁传感器和阻挡外部磁场干扰;
数据采集***,用于从所述传感器获取模拟信号;和
处理和显示***,用于在故障后的瞬态期间提取各相的所述模拟信号中的DC分量并将所述DC分量作为短路故障分类的指示进行显示。
2.根据权利要求1所述的装置,其中所述传感器是霍尔效应(Hall-effect)传感器、各向异性磁阻(AMR)传感器、隧道磁阻(TMR)传感器、巨磁阻(GMR)传感器,或其他的微型磁传感器。
3.根据权利要求1所述的装置,其中所述磁屏蔽罩是多层的并且由高磁导率材料制成。
4.一种对电力***的三相配电电缆中的故障进行分类的方法,包括以下步骤:
通过多个磁传感器测量三相电缆表面周围的磁场;
应用三相电流提取程序(TCE)通过随机优化的方法由磁场信号重构三相电流;
使用数学形态学(MM)从所重建的三相电流中提取DC分量;和基于所提取的DC分量对故障进行分类。
5.根据权利要求4所述的方法,其中所述随机优化方法包括逆电流优化程序(ICP)、磁场评估(MFE)和源位置优化(SPO)。
6.根据权利要求4所述的方法,其中,当测量和计算的磁场之间的欧几里得距离小于预设阈值时,随机优化方法终止。
7.根据权利要求5所述的方法,其中,所述ICP基于预设的三相导***置和测量的磁场,通过最小二乘法优化三相电流。
8.根据权利要求5所述的方法,其中,所述MFE利用预设的三相导***置和优化的电流来计算所述传感器的感测点处的磁场。
9.根据权利要求5所述的方法,其中SPO通过遗传算法优化三相导***置。
10.根据权利要求4所述的方法,其中,对短路故障进行分类的步骤包括参考在所检测的相的电流中存在DC分量的可能性的逻辑表来识别单相接地短路故障,两相接地短路故障,相间短路故障和三相短路故障。
CN201811479765.2A 2017-12-05 2018-12-05 用于三相配电电缆的故障分类的装置和方法 Active CN109917221B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/831,558 US10852359B2 (en) 2017-12-05 2017-12-05 Apparatus and method for DC-component-based fault classification of three-phase distribution power cables with magnetic sensing
US15/831,558 2017-12-05

Publications (2)

Publication Number Publication Date
CN109917221A CN109917221A (zh) 2019-06-21
CN109917221B true CN109917221B (zh) 2023-01-24

Family

ID=66659038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811479765.2A Active CN109917221B (zh) 2017-12-05 2018-12-05 用于三相配电电缆的故障分类的装置和方法

Country Status (2)

Country Link
US (1) US10852359B2 (zh)
CN (1) CN109917221B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112041693B (zh) * 2018-05-07 2023-10-17 美国映翰通网络有限公司 一种基于混合录波的配电网故障定位***
CN110531216B (zh) * 2019-07-15 2024-02-23 重庆大学 一种架空线与电缆混合输电线路故障区段判别方法
CN110780158B (zh) * 2019-11-29 2022-04-19 广州航海学院 一种基于数学形态学的电力***架空线路故障检测方法
CN111398410A (zh) * 2020-04-30 2020-07-10 中国科学院合肥物质科学研究院 用于cicc超导电缆损伤评估的无损检测方法
CN111505442B (zh) * 2020-05-06 2022-02-01 北京科锐配电自动化股份有限公司 一种基于对等式通信的配电网故障处理方法
CN113640593A (zh) * 2020-05-11 2021-11-12 广东博智林机器人有限公司 一种三相电缺相检测装置和检测方法
CN112327202A (zh) * 2020-07-07 2021-02-05 长沙理工大学 非侵入式漏电检测传感器设计方法
CN111999543B (zh) * 2020-07-21 2023-05-12 云南电网有限责任公司临沧供电局 一种适用于平行三相线故障选线的磁感式电流计算方法
WO2022064350A1 (en) * 2020-09-22 2022-03-31 Victoria Link Limited Electricity distribution network fault detection system and method
CN113392589B (zh) * 2021-06-30 2022-09-27 云南电网有限责任公司电力科学研究院 基于卷积神经网络的高压直流换流站故障分析方法及***
CN114039331B (zh) * 2021-10-27 2023-07-21 成都交大许继电气有限责任公司 一种牵引网智能重构自愈方法及***
EP4239344A1 (en) * 2022-03-01 2023-09-06 Hitachi Energy Switzerland AG Phase selection method
CN116500499B (zh) * 2023-06-26 2023-09-15 陕西雨唐连创科技有限公司 一种三芯电缆故障检测装置、***和方法
CN116932977B (zh) * 2023-09-15 2023-12-12 华中科技大学 一种三相电缆电流非接触快速测量方法、装置及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85106698A (zh) * 1985-09-05 1987-03-25 住友电气工业株式会社 电力设备接地故障的探测***和装置
JPH05133993A (ja) * 1991-11-12 1993-05-28 Chubu Electric Power Co Inc 非接触電界磁界センサ
JP2004241530A (ja) * 2003-02-05 2004-08-26 Fuji Electric Holdings Co Ltd 零相変流器
CN102590691A (zh) * 2011-07-04 2012-07-18 昆明理工大学 一种基于极波数学形态谱的特高压直流输电线路区内外故障检测方法
CN102645613A (zh) * 2012-04-25 2012-08-22 电子科技大学 一种基于非接触式磁场测量的输电线路故障定位方法
CN103278737A (zh) * 2013-04-25 2013-09-04 河北兆联电气设备科技有限公司 一种直流自注式小电流接地选线的***及方法
CN204374358U (zh) * 2015-02-05 2015-06-03 广州航程电气设备有限公司 配电线路智能故障精确定位***
CN110261732A (zh) * 2019-06-03 2019-09-20 清华大学 一种基于电流磁场的三相输电线路参数测量方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853920B2 (en) * 2000-03-10 2005-02-08 Smiths Detection-Pasadena, Inc. Control for an industrial process using one or more multidimensional variables
KR20050065543A (ko) * 2002-09-12 2005-06-29 엔라인 코포레이션 복소 영상의 획득 및 처리 시스템 및 방법
US8319628B2 (en) * 2008-04-04 2012-11-27 Schweitzer Engineering Laboratories Inc Three-phase faulted circuit indicator
US7714567B2 (en) * 2008-06-22 2010-05-11 Heger Research Llc Power cable magnetic field sensor
US8368395B2 (en) * 2008-12-17 2013-02-05 Ndt Technologies, Inc. Magnetic inspection device and method for detecting loss in metallic cross section
US8336352B2 (en) * 2010-01-25 2012-12-25 Aclara Power-Line Systems, Inc. Transient detector and fault classifier for a power distribution system
US9948087B2 (en) * 2010-03-08 2018-04-17 Pass & Seymour, Inc. Protective device for an electrical supply facility
US8405939B2 (en) * 2010-03-08 2013-03-26 Pass & Seymour, Inc. Protective device for an electrical supply facility
US9182429B2 (en) * 2012-01-04 2015-11-10 Sentient Energy, Inc. Distribution line clamp force using DC bias on coil
US9102341B2 (en) * 2012-06-15 2015-08-11 Transportation Technology Center, Inc. Method for detecting the extent of clear, intact track near a railway vehicle
US9535098B2 (en) * 2013-09-02 2017-01-03 Senis Ag Current transducer for measuring an electrical current
JP6237699B2 (ja) * 2015-05-25 2017-11-29 トヨタ自動車株式会社 異常検出装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85106698A (zh) * 1985-09-05 1987-03-25 住友电气工业株式会社 电力设备接地故障的探测***和装置
JPH05133993A (ja) * 1991-11-12 1993-05-28 Chubu Electric Power Co Inc 非接触電界磁界センサ
JP2004241530A (ja) * 2003-02-05 2004-08-26 Fuji Electric Holdings Co Ltd 零相変流器
CN102590691A (zh) * 2011-07-04 2012-07-18 昆明理工大学 一种基于极波数学形态谱的特高压直流输电线路区内外故障检测方法
CN102645613A (zh) * 2012-04-25 2012-08-22 电子科技大学 一种基于非接触式磁场测量的输电线路故障定位方法
CN103278737A (zh) * 2013-04-25 2013-09-04 河北兆联电气设备科技有限公司 一种直流自注式小电流接地选线的***及方法
CN204374358U (zh) * 2015-02-05 2015-06-03 广州航程电气设备有限公司 配电线路智能故障精确定位***
CN110261732A (zh) * 2019-06-03 2019-09-20 清华大学 一种基于电流磁场的三相输电线路参数测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A new approach to phase selection using fault generated high frequency noise and neural networks;Z.Q. Bo et al.;《 IEEE Transactions on Power Delivery 》;19970131;第12卷(第1期);全文 *
体积速度匹配分布源边界点法的特解源位置优化方法研究;吴绍维 等;《声学学报》;20150531;第40卷(第03期);全文 *

Also Published As

Publication number Publication date
US20190170801A1 (en) 2019-06-06
US10852359B2 (en) 2020-12-01
CN109917221A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
CN109917221B (zh) 用于三相配电电缆的故障分类的装置和方法
RU2631025C2 (ru) Обнаружение направления слабоустойчивого короткого замыкания на землю среднего напряжения с помощью линейной корреляции
CA2295342C (en) Fault-detection for powerlines
US10859639B2 (en) Fault-type identification in an electric power delivery system using composite signals
US20150346266A1 (en) System and method for pulsed ground fault detection and localization
RU2583452C2 (ru) Направленное детектирование резистивного замыкания на землю и разрыва проводника среднего напряжения
EP0876620B1 (en) Method of detecting and locating a high-resistance earth fault in an electric power network
CN102262199B (zh) 三相电力***中的故障识别和定向检测
CN109061384A (zh) 一种配电网单相接地故障相辨识方法及***
CN102385020B (zh) 利用单个传感器定向检测接地故障
SE536143C2 (sv) Metod för att detektera jordfel i trefas elkraftdistributionsnät
CN103852691A (zh) 在补偿或绝缘中性点的接地***的网络中故障的定向检测
CN110350483A (zh) 具有接地故障检测功能的功率变流装置以及故障检测方法
Zhu et al. Fault classification of power distribution cables by detecting decaying DC components with magnetic sensing
CN106093714A (zh) 小电流接地***单相接地故障线路的选线方法
EP2750258B1 (en) Methods for locating ground faults and insulation degradation condition in energy conversion systems
CN108490310A (zh) 用于配电网小电流接地***接地故障选线的方法
CN100405685C (zh) 接地故障检测器件和方法以及包括这种器件的继电器
CN103592537A (zh) 输配电线路故障交流阻抗快速跟踪判断法
CN109596934B (zh) 一种二次回路多点接地双钳表测量法
CN102879713A (zh) 一种接地保护选线的方法
CN104062555B (zh) 配电线路高阻接地故障特征谐波的辨识方法
da Silva et al. Analysis of the negative sequence voltage to detect conductor break in distribution systems
EP4005047B1 (en) Anomaly detection in energy systems
CN108051699A (zh) 一种变电站互感器二次回路异常带电检测方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Chinese Pokfulam Road Hongkong

Applicant after: THE University OF HONG KONG

Address before: Pokfulan Road, Hong Kong, China

Applicant before: THE University OF HONG KONG

GR01 Patent grant
GR01 Patent grant