CN109877287B - 一种亚包晶钢棒材表面细小裂纹控制的方法 - Google Patents

一种亚包晶钢棒材表面细小裂纹控制的方法 Download PDF

Info

Publication number
CN109877287B
CN109877287B CN201910165444.3A CN201910165444A CN109877287B CN 109877287 B CN109877287 B CN 109877287B CN 201910165444 A CN201910165444 A CN 201910165444A CN 109877287 B CN109877287 B CN 109877287B
Authority
CN
China
Prior art keywords
temperature
peritectic
gamma
steel
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910165444.3A
Other languages
English (en)
Other versions
CN109877287A (zh
Inventor
***
张佩
李亚强
郑桂云
马传庆
梁建国
董凯
李小占
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Shandong Iron and Steel Co Ltd
Original Assignee
University of Science and Technology Beijing USTB
Shandong Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB, Shandong Iron and Steel Co Ltd filed Critical University of Science and Technology Beijing USTB
Priority to CN201910165444.3A priority Critical patent/CN109877287B/zh
Publication of CN109877287A publication Critical patent/CN109877287A/zh
Application granted granted Critical
Publication of CN109877287B publication Critical patent/CN109877287B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

本发明涉及一种亚包晶钢棒材表面细小裂纹控制的方法。通过相图计算分析脆性温度区(LIT~ZDT)包晶反应体缩率(Γ)与钢液碳含量的关系,优选包晶反应体缩率小于0.004的碳含量为亚包晶钢冶炼时碳成分控制范围,并控制钢液中硫含量<0.005%;通过严格的精炼温度控制,保障连铸时钢液的过热度控制为15~25℃;连铸保护渣采用高碱度、高粘度、高熔化温度、高熔化速度和高结晶率的专用保护渣;连铸拉速控制根据包晶反应烈度确定,拉速≤0.002/Γ(m/min);结晶器冷却和二次冷却采用弱冷方式;结晶器锥度控制为1.15~1.25%/m;结晶器振动采用非正弦振动方式。该方法可较为圆满地控制亚包晶钢棒材表面细小裂纹,显著提高亚包晶钢棒材表面质量和合格率,降低生产成本。

Description

一种亚包晶钢棒材表面细小裂纹控制的方法
技术领域
本发明属于钢铁生产领域,涉及一种亚包晶钢棒材表面细小裂纹控制的方法。
背景技术
棒材广泛用于建筑、机械、汽车、船舶等工业领域,一直是各钢铁企业不可缺少的产品,且具有较好的经济效益。但是棒材表面质量问题一直都有存在,尤其是碳含量在0.09~0.17Wt%亚包晶钢,棒材表面细小裂纹严重。
亚包晶钢在凝固过程固相线温度附近会发生包晶反应L+δ→γ和包晶转变δ→γ,产生较大的体积收缩和线收缩,导致初生坯壳生长不均匀,加上包晶反应L+δ→γ和包晶转变δ→γ产生的热应力和相变应力极易超过初生坯壳极限强度在坯壳薄弱处萌生裂纹,然后经过轧制棒材工序,裂纹扩展、长大表现为棒材表面细小纵裂纹。各企业为达到用户使用要求,需要对棒材表面进行扒皮处理,并且严重的裂纹会造成产品报废,严重影响了生产质量,降低了生产效益。
因此,如何有效降低亚包晶钢棒材表面细小裂纹发生率,改善表面质量,提高生产效益,成为了目前本领域技术人员亟需解决的技术问题。
发明内容
针对上述问题,本发明提供了一种亚包晶钢棒材表面细小裂纹控制的方法。所述方法通过相图分析计算调控钢液碳成分,采用高碱度、高粘度、高熔化温度、高熔化速度和高结晶率的专用保护渣,加上连铸生产中钢水过热度、拉速、结晶器锥度、结晶器振动以及冷却工艺的合理控制,可以圆满地控制亚包晶钢棒材表面细小裂纹,显著提高亚包晶钢棒材表面质量和合格率,降低生产成本。
本发明是通过以下技术方案实现的:
一种亚包晶钢棒材表面细小裂纹控制的方法,所述方法通过相图计算分析脆性温度区(LIT~ZDT)包晶反应体缩率(Γ)与钢液碳含量的关系,LIT为粘滞性温度,为钢液凝固过程固相率为0.9时对应温度,ZDT为零塑性温度,为钢液凝固过程固相率为0.99时对应温度;优选包晶反应体缩率小于0.004的碳含量为亚包晶钢冶炼时碳成分控制范围,并控制钢液中硫含量<0.005%;通过严格的精炼温度控制,保障连铸时钢液的过热度控制为15~25℃;连铸保护渣采用高碱度、高粘度、高熔化温度、高熔化速度和高结晶率的专用保护渣;连铸拉速控制根据包晶反应烈度确定,拉速≤0.002/Γm/min;结晶器冷却和二次冷却采用弱冷方式;结晶器锥度控制为1.15~1.25%/m;结晶器振动采用非正弦振动方式。
进一步地,所述包晶反应体缩率Γ的计算方法为:
Γ=(ρ12)1/3-1 (1)
式中ρ1、ρ2分别为脆性温度区(LIT~ZDT)包晶反应开始时和结束时钢的密度;
ρ1和ρ2分别采用Thermocalc商业软件计算脆性温度区(LIT~ZDT)包晶反应开始温度T1和结束温度T2以及所对应的相(L、δ、γ)所占体积分数(fL、fδ、fγ),并结合L、δ相和γ相的密度计算;L、δ相和γ相的密度计算方法为:
ρδ=3.07×10-4(Tδ,start-T)+7.27(×103kg·m-3) (2)
ργ=4.8×10-4(Tγ,start-T)+7.41(×103kg·m-3) (3)
ρL=-7.5×10-4(T-TL,start)+7.02(×103kg·m-3) (4)
脆性温度区(LIT~ZDT)包晶反应开始密度ρ1计算方法为:
ρ1=ρL×fLδ×fδγ×fγ(×103kg·m-3) (5)
脆性温度区(LIT~ZDT)包晶反应结束密度ρ2计算方法为:
ρ2=ρδ×fδγ×fγ(×103kg·m-3) (6)
或ρ2=ρL×fLγ×fγ(×103kg·m-3) (7)
式中:ρi为i相的密度。
进一步地,所述连铸选用高碱度、高粘度、高熔点保护渣,保护渣碱度≥1.2,熔点(半球点温度)处于1210±20℃,粘度η1300℃≥1.0Pa·s,熔速<70秒,转折温度≥1200℃,析晶温度处于1000~1100℃。
进一步地,所述结晶器振动采用非正弦振动方式,负滑脱率NS控制为0.25~0.35,偏斜率a控制为0.1~0.4。
本发明的有益技术效果
本发明公开了一种亚包晶钢棒材表面细小裂纹控制的方法,通过采用Thermocalc商业软件计算分析不同碳含量脆性温度区(LIT~ZDT)包晶反应体缩率(Γ),进而调控钢液碳成分,并且控制钢液中硫含量<0.005%;采用高碱度、高粘度、高熔化温度、高熔化速度和高结晶率的专用保护渣;加上连铸生产中钢水过热度、拉速、结晶器锥度、结晶器振动以及冷却工艺的合理控制,可以圆满地控制亚包晶钢棒材表面细小裂纹,显著提高亚包晶钢棒材表面质量和合格率,降低生产成本。
附图说明
图1为实例1中亚包晶低合金钢包晶反应体缩率与碳含量的关系;
图2为实例2中亚包晶普碳钢包晶反应体缩率与碳含量的关系。
具体实施方式
下面结合实施例对本发明做进一步的详细描述,应该说明的是,下述实施例仅是为了解释本发明,并不对其内容进行限定。
实施例1
生产亚包晶低合金钢,连铸坯断面尺寸为260mm×300mm,热轧成规格为Φ110mm的棒材,因棒材表面存在深度大于2mm细小裂纹,探伤合格率只有42.7%,为减少棒材表面细小裂纹,增加合格率,具体实施措施如下:
采集生产该亚包晶低合金钢化学成分,如表1,通过相图计算分析脆性温度区(LIT~ZDT)包晶反应体缩率(Γ)与钢液碳含量的关系,计算结果如图1所示。根据图1结果,选择包晶反应体缩率Γ小于0.004的碳成分0.09~0.1Wt%,并控制钢液中硫含量为0.004Wt%。
表1亚包晶低合金钢成分/Wt%
Figure GDA0002396392410000031
Figure GDA0002396392410000041
所选连铸保护渣理化性能:碱度为1.22,熔点(半球点温度)为1225℃,粘度η1300℃为1.08Pa·s,溶速为49s,转折温度为1235℃,析晶温度为1030~1100℃。连铸时中间包过热度控制在15~25℃;根据包晶反应烈度,控制拉速小于0.002/Γ,将连铸拉速调节降至0.5m/min左右;结晶器长度为800mm,净空高度为100mm,锥度控制为1.24%/m;结晶器冷却采取弱冷方式:结晶器平均水流量控制在146m3/h左右,水温差控制为3~4℃;二冷也采用弱冷工艺,生产中关闭4、5区冷却水,且比水量控制在0.27L/kg左右;结晶器振动采用非正弦振动,负滑脱率NS为0.3,偏斜率a为0.3。
调整后生产该亚包晶低合金钢,对棒材表面进行探伤,合格率达到97.3%。
实施例2
生产亚包晶普碳钢,连铸坯断面尺寸为200mm×200mm,热轧成规格为Φ90mm的棒材,因棒材表面存在深度大于2mm细小裂纹,探伤合格率为51.6%,为减少亚包晶钢棒材表面细小裂纹,增加合格率,具体实施措施如下:
采集生产该亚包晶普碳钢化学成分,如表2,通过相图计算分析脆性温度区(LIT~ZDT)包晶反应体缩率(Γ)与钢液碳含量的关系,计算结果如图2所示。根据图2结果,选择包晶反应体缩率Γ小于0.004的碳成分0.15~0.17Wt%,并控制钢液中硫含量为0.004Wt%。
表2亚包晶普碳钢成分/Wt%
Figure GDA0002396392410000042
所选连铸保护渣理化性能:碱度为1.21,熔点(半球点温度)为1211℃,粘度η1300℃为1.03Pa·s,溶速为51s,转折温度为1206℃,析晶温度为1040~1090℃。
连铸时中间包过热度控制在15~25℃;根据包晶反应烈度,控制拉速小于0.002/Γ,将连铸拉速调节至1.1m/min左右;结晶器长度为850mm,净空高度为100mm,锥度控制为1.18%/m;结晶器冷却采取弱冷方式:结晶器平均水流量控制在120m3/h左右,水温差为6~7℃;二冷也采用弱冷工艺,生产中关闭4、5区冷却水,且比水量控制在0.25L/kg左右;结晶器振动采用非正弦振动,负滑脱率NS为0.3,偏斜率a为0.1。
调整后生产该亚包晶钢,对棒材表面进行探伤,合格率达到98.1%。
上述实施例表明,通过采用本发明控制亚包晶钢棒材表面细小裂纹方法,亚包晶钢棒材表面探伤合格率明显提高,有效地改善了棒材的表面质量,提高了生产效率,降低了成本。

Claims (1)

1.一种亚包晶钢棒材表面细小裂纹控制的方法,其特征在于通过相图计算分析脆性温度区LIT~ZDT包晶反应体缩率Γ与钢液碳含量的关系,LIT为粘滞性温度,为钢液凝固过程固相率为0.9时对应温度,ZDT为零塑性温度,为钢液凝固过程固相率为0.99时对应温度;选择包晶反应体缩率小于0.004的碳含量为亚包晶钢冶炼时碳成分控制范围,并控制钢液中硫含量<0.005%;通过严格的精炼温度控制,保障连铸时钢液的过热度控制为15~25℃;连铸保护渣采用高碱度、高粘度、高熔化温度、高熔化速度和高结晶率的专用保护渣;连铸拉速控制根据包晶反应烈度确定,拉速≤0.002/Γm/min;结晶器冷却和二次冷却采用弱冷方式;结晶器锥度控制为1.15~1.25%/m;结晶器振动采用非正弦振动方式;
所述包晶反应体缩率Γ的计算方法为:
Γ=(ρ12)1/3-1 (1)
式中ρ1、ρ2分别为脆性温度区LIT~ZDT包晶反应开始时和结束时钢的密度;
ρ1和ρ2分别采用Thermocalc商业软件计算脆性温度区LIT~ZDT包晶反应开始温度T1和结束温度T2以及所对应的相L、δ、γ所占体积分数fL、fδ、fγ,并结合L、δ相和γ相的密度计算;L、δ相和γ相的密度计算方法为:
ρδ=3.07×10-4(Tδ,start-T)+7.27(×103kg·m-3) (2)
ργ=4.8×10-4(Tγ,start-T)+7.41(×103kg·m-3) (3)
ρL=-7.5×10-4(T-TL,start)+7.02(×103kg·m-3) (4)
脆性温度区LIT~ZDT包晶反应开始密度ρ1计算方法为:
ρ1=ρL×fLδ×fδγ×fγ(×103kg·m-3) (5)
脆性温度区LIT~ZDT包晶反应结束密度ρ2计算方法为:
当液相率为0时 ρ2=ρδ×fδγ×fγ(×103kg·m-3) (6)
或 当fδ为0时 ρ2=ρL×fLγ×fγ(×103kg·m-3) (7)
式中:ρi为i相的密度;
所述专用保护渣,保护渣碱度≥1.2,熔点处于1210±20℃,粘度η1300℃≥1.0Pa·s,熔速<70秒,转折温度≥1200℃,析晶温度处于1000~1100℃;
负滑脱率NS控制为0.25~0.35,偏斜率a控制为0.1~0.4。
CN201910165444.3A 2019-03-05 2019-03-05 一种亚包晶钢棒材表面细小裂纹控制的方法 Active CN109877287B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910165444.3A CN109877287B (zh) 2019-03-05 2019-03-05 一种亚包晶钢棒材表面细小裂纹控制的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910165444.3A CN109877287B (zh) 2019-03-05 2019-03-05 一种亚包晶钢棒材表面细小裂纹控制的方法

Publications (2)

Publication Number Publication Date
CN109877287A CN109877287A (zh) 2019-06-14
CN109877287B true CN109877287B (zh) 2020-05-08

Family

ID=66930810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910165444.3A Active CN109877287B (zh) 2019-03-05 2019-03-05 一种亚包晶钢棒材表面细小裂纹控制的方法

Country Status (1)

Country Link
CN (1) CN109877287B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111482566B (zh) * 2020-03-23 2021-07-23 首钢集团有限公司 一种含铝包晶高强汽车钢的连铸方法
CN113102714B (zh) * 2020-07-30 2021-12-03 北京科技大学 一种控制包晶钢板坯角部裂纹的连铸冷却方法
CN113560514A (zh) * 2021-06-29 2021-10-29 江苏沙钢集团有限公司 一种控制桥梁钢板坯表面裂纹的方法
CN114774761A (zh) * 2022-04-15 2022-07-22 福建三宝钢铁有限公司 一种用于提高q355b板坯表面及内部质量的制备工艺
CN114769540B (zh) * 2022-04-26 2023-06-20 武汉钢铁有限公司 高牌号无取向硅钢铸坯的生产方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646849B2 (ja) * 2006-04-25 2011-03-09 株式会社神戸製鋼所 高アルミニウム鋼の連続鋳造用モールドパウダー
CN100467164C (zh) * 2007-05-15 2009-03-11 武汉钢铁(集团)公司 一种防止连铸包晶钢结晶器液面波动的方法
CN101586205B (zh) * 2008-05-22 2012-06-13 鞍钢股份有限公司 用中等厚度板坯连铸机生产低合金包晶钢的方法
CN101612654A (zh) * 2009-07-16 2009-12-30 首钢总公司 控制中碳亚包晶钢板坯结晶器热流均匀性的高碱度保护渣
CN101758174B (zh) * 2009-12-30 2011-12-07 首钢总公司 一种有效控制包晶钢厚板坯窄面凹陷缺陷的保护渣
CN103433438A (zh) * 2013-08-16 2013-12-11 莱芜钢铁集团有限公司 一种控制大方坯亚包晶钢连铸坯的质量的方法
JP6169648B2 (ja) * 2015-06-29 2017-07-26 品川リフラクトリーズ株式会社 鋼の連続鋳造用モールドパウダーおよび鋼の連続鋳造方法

Also Published As

Publication number Publication date
CN109877287A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
CN109877287B (zh) 一种亚包晶钢棒材表面细小裂纹控制的方法
CN110565012B (zh) 一种超高铬铁素体不锈钢连铸制造方法
JP4646849B2 (ja) 高アルミニウム鋼の連続鋳造用モールドパウダー
UA93651C2 (ru) Электрошлаковая система для рафинирования или производства метала, способ рафинирования и способ производства металла
CN101758103B (zh) 高速工具钢扁丝的制作方法
CN104498804A (zh) 一种高温合金的制备方法及其高温合金
US3928028A (en) Grain refinement of copper alloys by phosphide inoculation
CN110205461B (zh) 一种高碳高锰耐磨钢板的制造方法
JP3993623B1 (ja) 高Al鋼の連続鋳造方法
CN106011671B (zh) 一种h13连铸方坯的生产方法
JP2008030061A (ja) 高アルミニウム鋼の連続鋳造用モールドパウダー
CN115338383B (zh) 一种中碳MnB钢大方坯内部角部裂纹的控制方法
Li et al. Smelting and casting technologies of Fe-25Mn-3Al-3Si twinning induced plasticity steel for automobiles
CN104907513A (zh) 一种低碳高锰钢大矩坯的连铸方法
CN111375736B (zh) 一种马氏体沉淀硬化不锈钢的浇铸方法
JP2006326639A (ja) マルエージング鋼の製造方法
RU2403121C1 (ru) Способ непрерывной разливки стали
KR101012843B1 (ko) 티타늄 잉곳의 연속주조방법
KR100642779B1 (ko) 냉간압조용 강의 연속 주조 방법
JP4717357B2 (ja) 炭素鋼の高速連続鋳造方法
CN114570902A (zh) 一种预防板坯连铸机异钢种切换过程表面纵裂纹及角部横裂纹产生的方法
JPH09285855A (ja) Ni含有鋼の製造方法
JP3329305B2 (ja) 丸ビレット鋳片の連続鋳造方法
CN115722641A (zh) 一种连铸板坯表面凹陷缺陷的控制方法
CN118060504A (zh) 一种改善倒角结晶器碳钢铸坯角部纵裂纹的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant