CN109870804A - 一种离轴三反五通道可见红外成像与激光接收光学*** - Google Patents

一种离轴三反五通道可见红外成像与激光接收光学*** Download PDF

Info

Publication number
CN109870804A
CN109870804A CN201910246100.5A CN201910246100A CN109870804A CN 109870804 A CN109870804 A CN 109870804A CN 201910246100 A CN201910246100 A CN 201910246100A CN 109870804 A CN109870804 A CN 109870804A
Authority
CN
China
Prior art keywords
axis
mirror
color separation
shortwave
separation film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910246100.5A
Other languages
English (en)
Inventor
王欣
刘强
窦永昊
舒嵘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201910246100.5A priority Critical patent/CN109870804A/zh
Publication of CN109870804A publication Critical patent/CN109870804A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

本发明公开了一种离轴三反五通道可见红外成像与激光接收光学***。大视场2.5度*2.5度景物经过离轴三反望远镜,利用离轴三反中间像面位置进行分光,再通过两个离轴三镜、四个分色片和四组中继透镜实现从可见光到长波红外的全波段分离成像。本发明既能实现大口径大相对口径高分辨率成像,又能实现大视场凝视成像,避免了运动扫描部件,结构简单紧凑;成像波段宽,涵盖了可见到红外以及激光测距接收功能共计五个通道,解决了多通道难以布局的问题,明显地提升了仪器的探测性能;光学***孔径光阑达到500mm,中波和长波红外通道相对孔径高达1/1.1,设计的实出瞳与杜瓦冷光阑位置匹配,有效抑制了背景辐射对红外成像的影响。

Description

一种离轴三反五通道可见红外成像与激光接收光学***
技术领域
本发明涉及星载大相对孔径大口径高分辨率全波段成像仪,具体是指一种采用离轴三反望远镜、分色片和中继透镜组结合的多通道可见红外成像仪形式。
背景技术
大视场高分辨率的红外相机是对地遥感和空间天文***的关键载荷。大视场红外相机能覆盖宽阔的监视区域,对于提高时间分辨率,缩短重访周期,实现高密度观测具有重要的意义。提高相机的空间分辨率,能够提供目标更为准确的位置、姿态和几何形状信息。
美国、日本和欧洲已经成功发射了多颗带有红外相机的天文卫星,例如第一颗红外天文卫星IRAS、日本发射的天文卫星AKARI、美国研制的红外天文卫星Spitzer、欧洲研制的红外天文卫星Herschel等。
1983年1月25日欧洲航天局ESA发射了世界上第一颗红外天文卫星IRAS(InfraredAstrology Satellite),望远镜是通光口径0.57m,焦距5.5m的RC***,采用12μm、25μm、60μm和100μm共4个波段,以25″-100″的空间分辨率,对96%的天球进行了普查,探测到35万个红外辐射源。
2006年2月21日,日本成功发射了红外天文卫星AKARI(Infrared ImagingSurveyor)。卫星装有3台红外探测仪器,使用512×512元InSb(1.7-5.5μm),256×256元Si:As(5.8-14.1μm)和256×256元Si:As(12.4-26.5μm),工作温度约为2K。卫星的主光学***是口径0.67m,焦距4.2m的RC***,能够对天体目标进行高空间分辨率和高灵敏度的成像观测。
2008年8月25日发射的Spitzer Space Telescope是美国宇航局四大天文台计划的最后一个空间天文卫星。Spitzer的主光学***是口径0.85m,焦距10.2m的RC***,装有红外相机、红外光谱仪和红外成像光度计3台高红外探测仪器。红外相机在3.6-8.0μm波段内用4个独立波段,以1.2″的分辨率对目标拍摄成像。
2009年5月14日欧洲宇航局发射了Herschel Space Observatory,主要用于中远红外和亚毫米波的探测,这也是目前太空中口径最大的一颗红外天文卫星。Herschel的主光学***采用了口径3.5m,焦距28.5m的RC***,光学***的有效集光面积9.6m2,探测波段覆盖60-670μm。
随着各项相关技术的进步,红外相机的主要技术指标都有了明显的提升,同时未来对红外相机的需求也随之提高,主要表现在:
1、超大视场凝视成像
在目标发现与探测、预警和警戒应用中,视场角是极为关键的参数。上述光学***都选择了同轴两反射的RC***,可用视场较小(小于1°)。
2、高分辨率
红外光学***的极限分辨率和信噪比受到光学***相对口径的限制,相对口径越大,则光学***的聚光能力越强,相同奈奎斯特频率处传函值越高,分辨率和信噪比越高。红外光学观测的高分辨率需求,就是对大口径大相对孔径红外光学***的需求。上述光学***的相对孔径范围分布在8.14到12之间,相对孔径较小。
利用离轴三反中间像面位置进行分光以及采用两个离轴三镜和中继透镜组结合的可见红外光学方案,既能实现大口径大相对口径高分辨率成像,又能实现大视场凝视成像,避免了运动扫描部件,结构简单紧凑;成像波段宽,涵盖了可见到红外以及激光测距接收功能共计五个通道;中波和长波红外通道设计的实出瞳与杜瓦冷光阑重合,有效抑制了背景辐射对红外成像的影响。因此本专利解决了可见红外成像相机大视场和大相对孔径情况下多通道难以布局的问题,实现了大视场大相对孔径高分辨率成像,提高了探测效率。
发明内容
离轴三反五通道可见红外成像与激光接收光学***为研究高分辨率多通道全波段成像相机提供一种新型的光学***形式。本发明的技术构思是采用离轴三反作为望远镜结构形式,基于分色片进行波段分离,分别采用两个三镜和各自中继透镜组可以实现大视场2.5度*2.5度、大相对孔径1.1对地物目标全波段成像,包括激光接收模块、可见光成像模块、短波成像模块、中波成像模块与长波成像模块共五个通道。光学***包括离轴主镜1、离轴次镜2、第一分色片3、第一离轴三镜4、可见光折转镜5、第二分色片6、可见光焦面7、激光接收透镜组8、激光接收焦面9、第二离轴三镜10、第三分色片11、中长波校正透镜12、第四分色片13、中波校正透镜组14、中波焦面15、长波校正透镜组16、长波焦面17、第一短波折转镜18、短波校正透镜19、第二短波折转镜20、短波校正透镜组21、短波焦面(22)。本发明的技术解决方案如下:
来自目标的处于子午面内中心视场3.75度±1.25度、弧矢面±1.25度范围内的可见、短波、中波和长波成像光束先经过离轴三反望远镜中的离轴主镜1、离轴次镜2反射后,在第一分色片3处进行可见光、激光波段与短波、中长波波段的分离成像,第一分色片3反射可见光和1064nm激光波段,透射短波、中波和长波波段。第一分色片3反射可见光光束,通过第一离轴三镜4和可见光折转镜5反射,在第二分色片6上进行可见光和激光波段的分离,第二分色片6反射可见光透射激光波段。可见光经第二分色片6反射汇聚到可见光焦面7上成像。短波和中长波波段景物光线经过第一分色片3透射和第二离轴三镜10反射汇聚,再经第三分色片11进行短波和中长波波段分离,第三分色片11反射中波和长波波段,透射短波波段。中长波波段经过第三分色片11反射和中长波校正透镜12透射后,在第四分色片13进行中波和长波波段分离,第四分色片13透射中波波段反射长波波段。中波波段经过第四分色片13透射和中波校正透镜组14透射汇聚成像到中波焦面15上;长波波段经过第四分色片13反射和长波校正透镜组16透射汇聚成像到长波焦面17上。短波景物光线经第三分色片11透射和第一短波折转镜18反射后,经过短波校正透镜19透射和第二短波折转镜20反射,经短波校正透镜组21汇聚成像到短波焦面22上。中波成像模块和长波成像模块在孔径光阑500mm条件下相对孔径高达1/1.1,可实现视场达到2.5度的景物成像,焦面前35mm处设计有实出瞳,可以有效抑制杂散辐射影响。短波成像模块和可见光成像模块可实现孔径光阑500mm、相对孔径分别为1/1.5和1/3以及视场2.5度的景物成像。
来自目标的子午面内中心视场3.75度±0.05度、弧矢面±0.05度范围内1064nm波长激光回波光束经过离轴三反望远镜中的离轴主镜1、离轴次镜2反射后,第一分色片3反射激光光束,通过第一离轴三镜4和可见光折转镜5反射,1064nm激光光束经过第二分色片6透射到离轴三反焦面位置,再经激光接收透镜组8准直汇聚到激光接收焦面9实现孔径光阑500mm、相对孔径1/4的激光测距功能。
本发明所述的离轴主镜1为金属或玻璃凹面反射镜,具有六阶双曲面面形。离轴次镜2为金属或玻璃凸面反射镜,具有六阶双曲面面形。第一分色片3为硒化锌材料,反射波段0.4-1.1微米,透射1.15-15微米。第一离轴三镜4和第二离轴三镜10采用相同的八阶双曲面面形,为金属或玻璃凹面反射镜。可见光折转镜5、第一短波折转镜18和第二短波折转镜20为金属或玻璃平面反射镜。第二分色片6为石英材料,反射可见波段0.4-0.9微米,透射激光波段1-1.1微米。激光接收透镜组8由四个石英透镜和一个超窄带石英滤光片组成,依次为双凸透镜、平面超窄带滤光片、凹凸透镜、凹凸透镜、双凸透镜。第三分色片11为硒化锌材料,反射中长波段2-15微米,透射短波波段1.15-1.8微米。中长波校正透镜12为锗材料的凸凹透镜,面形为球面,表面镀增透膜。第四分色片13为锗材料,透射中波波段2-5微米,反射长波波段8-15微米。中波校正透镜组14由六片透镜组成,依次为凹凸透镜、凹凸透镜、凹凸透镜、凸凹透镜、凹凸透镜、凸凹透镜,材料分别为锗、锗、硒化锌、硒化锌、锗、硒化锌,面形均为球面,表面镀增透膜。长波校正透镜组16由六片透镜组成,依次为凹凸透镜、凹凸透镜、凹凸透镜、凸凹透镜、凹凸透镜、凸凹透镜,材料分别为锗、锗、硒化锌、硒化锌、锗、硒化锌,面形均为球面,表面镀增透膜。短波校正透镜19为锗材料的凹凸透镜,面形为球面,表面镀增透膜。短波校正透镜组21由六片透镜组成,依次为凹凸透镜、凹凸透镜、凸凹透镜、凹凸透镜、凹凸透镜、凸凹透镜,材料分别为硒化锌、锗、硒化锌、锗、锗、硒化锌,面形均为球面,表面镀增透膜。
本发明将离轴三反有中间像面***与分色片和中继透镜组相结合,在大视场和大相对孔径情况下,明显地提升了波段探测的功能,实现了全波段多通道成像,***的特点如下:
1.离轴三反五通道可见红外成像与激光接收光学***工作时,结构简单仅有四个非球面和多个透射球面,***成像优良且无任何中心遮拦。在视场2.5°×2.5°、相对孔径1.1情况下,可以实现中波和长波红外空间分辨率55μrad,通道传函在奈奎斯特频率17lp/mm处优于0.5;可见波段在成像视场2.5°×2.5°、相对孔径3时空间分辨率达到20μrad,通道传函在奈奎斯特频率17lp/mm处优于0.75;短波波段成像视场大于2.5°×2.5°、相对孔径1.5时空间分辨率达到40μrad,通道传函在奈奎斯特频率17lp/mm处优于0.6;激光接收通道工作在相对孔径4,90%的成像能量集中在弥散斑0.1mm圆内。
2.离轴三反五通道可见红外成像与激光接收光学***采用离轴三反中间像面位置,使用分色片和两块三镜分离波段,有效地实现了可见、短波、中波和长波五个通道的分离布局,解决了大视场大相对孔径情况下难以设计多通道的问题。
3.离轴三反五通道可见红外成像与激光接收光学***的中波通道和长波通道焦面前设计有实出瞳,与探测器冷光阑结合可以有效抑制杂散背景辐射的影响。
4.离轴三反五通道可见红外成像与激光接收光学***形式应用广泛,能应用于侦查、全球测绘、地球科学、大气探测、月球、火星或小行星探测等各种高分辨率可见红外成像领域或激光三维成像领域。
附图说明
图1和图2为离轴三反五通道可见红外成像与激光接收光学***光路图,包括离轴主镜(1)、离轴次镜(2)、第一分色片(3)、第一离轴三镜(4)、可见光折转镜(5)、第二分色片(6)、可见光焦面(7)、激光接收透镜组(8)、激光接收焦面(9)、第二离轴三镜(10)、第三分色片(11)、中长波校正透镜(12)、第四分色片(13)、中波校正透镜组(14)、中波焦面(15)、长波校正透镜组(16)、长波焦面(17)、第一短波折转镜(18)、短波校正透镜(19)、第二短波折转镜(20)、短波校正透镜组(21)、短波焦面(22)。。
具体实施方式
本发明设计了一种离轴三反五通道可见红外成像与激光接收光学***,像质优良,***主要技术指标如下:
1.口径:孔径光阑500mm;
2.视场:2.5°×2.5°;
3.成像波段:可见光通道0.4-0.9μm,短波波段1.2-1.8μm,中波波段2-5μm,长波波段8-15微米;激光接收通道波段1064nm;
4.相对孔径:可见谱段光学***相对孔径1/3,焦距1500mm;短波谱段光学***相对孔径1/1.5,焦距750mm;中波和长波谱段光学***相对孔径1/1.1,焦距550mm;激光接收通道相对孔径1/4;
5.探测器参数:可见光探测器像元大小30μm、像元数2K×2K;短波探测器像元大小30μm、像元数1K×1K;中波和长波探测器像元大小30μm、像元数1K×1K;激光接收通道探测器像元0.8mm;
6.空间分辨率:可见谱段优于20μrad,短波谱段优于40μrad,中波和长波谱段优于55μrad;
7.成像性能:全视场传函在奈奎斯特频率17lp/mm处可见谱段优于0.75、短波谱段优于0.6、中波和长波谱段优于0.5,激光接收通道90%的成像能量集中在弥散斑0.1mm圆内;
8.实出瞳位置:中波和长波通道实出瞳在距离焦面前35mm处。
光学***具体设计参数如表1所示:
表1光学***具体设计参数

Claims (15)

1.一种离轴三反五通道可见红外成像与激光接收光学***,包括激光接收模块、可见光成像模块、短波成像模块、中波成像模块与长波成像模块,光学***包括离轴主镜(1)、离轴次镜(2)、第一分色片(3)、第一离轴三镜(4)、可见光折转镜(5)、第二分色片(6)、激光接收透镜组(8)、激光接收焦面(9)、第二离轴三镜(10)、第三分色片(11)、中长波校正透镜(12)、第四分色片(13)、中波校正透镜组(14)、长波校正透镜组(16)、第一短波折转镜(18)、短波校正透镜(19)、第二短波折转镜(20)和短波校正透镜组(21)光学元部件;其特征在于:
来自目标的处于子午面内中心视场3.75度±1.25度、弧矢面±1.25度范围内的可见、短波、中波和长波成像光束先经过离轴三反望远镜中的离轴主镜(1)、离轴次镜(2)反射后,在第一分色片(3)处进行可见光、激光波段与短波、中长波波段的分离成像,第一分色片(3)反射可见光和1064nm激光波段,透射短波、中波和长波波段。第一分色片(3)反射可见光光束,通过第一离轴三镜(4)和可见光折转镜(5)反射,在第二分色片(6)上进行可见光和激光波段的分离,第二分色片(6)反射可见光透射激光波段;可见光经第二分色片(6)反射汇聚到可见光焦面(7)上成像;短波和中长波波段景物光线经过第一分色片(3)透射和第二离轴三镜(10)反射汇聚,再经第三分色片(11)进行短波和中长波波段分离,第三分色片(11)反射中波和长波波段,透射短波波段。中长波波段经过第三分色片(11)反射和中长波校正透镜(12)透射后,在第四分色片(13)进行中波和长波波段分离,第四分色片(13)透射中波波段反射长波波段;中波波段经过第四分色片(13)透射和中波校正透镜组(14)透射汇聚成像到中波焦面(15)上;长波波段经过第四分色片(13)反射和长波校正透镜组(16)透射汇聚成像到长波焦面(17)上;短波景物光线经第三分色片(11)透射和第一短波折转镜(18)反射后,经过短波校正透镜(19)透射和第二短波折转镜(20)反射,经短波校正透镜组(21)汇聚成像到短波焦面(22)上;中波成像模块和长波成像模块在孔径光阑500mm条件下相对孔径达1/1.1,可实现视场达到2.5度的景物成像,焦面前35mm处设计有实出瞳,可以有效抑制杂散辐射影响;短波成像模块和可见光成像模块可实现孔径光阑500mm、相对孔径分别为1/1.5和1/3以及视场2.5度的景物成像;
来自目标的子午面内中心视场3.75度±0.05度、弧矢面±0.05度范围内1064nm波长激光回波光束经过离轴三反望远镜中的离轴主镜(1)、离轴次镜(2)反射后,第一分色片(3)反射激光光束,通过第一离轴三镜(4)和可见光折转镜(5)反射,1064nm激光光束经过第二分色片(6)透射到离轴三反焦面位置,再经激光接收透镜组(8)准直汇聚到激光接收焦面(9)实现孔径光阑500mm、相对孔径1/4的激光测距功能。
2.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的离轴主镜(1)为金属或玻璃凹面反射镜,具有六阶双曲面面形。
3.根据权利要求1所述的一种离轴三反五通道红外成像与激光接收光学***,其特征在于:离轴次镜(2)为金属或玻璃凸面反射镜,具有六阶双曲面面形。
4.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的第一分色片(3)为硒化锌材料,反射波段0.4-1.1微米,透射1.15-15微米。
5.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的第一离轴三镜(4)和第二离轴三镜(10)采用相同的八阶双曲面面形,为金属或玻璃凹面反射镜。
6.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的可见光折转镜(5)、第一短波折转镜(18)和第二短波折转镜(20)为金属或玻璃平面反射镜。
7.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的第二分色片(6)为石英材料,反射可见波段0.4-0.9微米,透射激光波段1-1.1微米。
8.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的激光接收透镜组(8)由四个石英透镜和一个超窄带石英滤光片组成,依次为双凸透镜、平面超窄带滤光片、凹凸透镜、凹凸透镜、双凸透镜。
9.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的第三分色片(11)为硒化锌材料,反射中长波段2-15微米,透射短波波段1.15-1.8微米。
10.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的中长波校正透镜(12)为锗材料的凸凹透镜,面形为球面,表面镀增透膜。
11.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的第四分色片(13)为锗材料,透射中波波段2-5微米,反射长波波段8-15微米。
12.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的中波校正透镜组(14)由六片透镜组成,依次为凹凸透镜、凹凸透镜、凹凸透镜、凸凹透镜、凹凸透镜、凸凹透镜,材料分别为锗、锗、硒化锌、硒化锌、锗、硒化锌,面形均为球面,表面镀增透膜。
13.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的长波校正透镜组(16)由六片透镜组成,依次为凹凸透镜、凹凸透镜、凹凸透镜、凸凹透镜、凹凸透镜、凸凹透镜,材料分别为锗、锗、硒化锌、硒化锌、锗、硒化锌,面形均为球面,表面镀增透膜。
14.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的短波校正透镜(19)为锗材料的凹凸透镜,面形为球面,表面镀增透膜。
15.根据权利要求1所述的一种离轴三反五通道可见红外成像与激光接收光学***,其特征在于:所述的短波校正透镜组(21)由六片透镜组成,依次为凹凸透镜、凹凸透镜、凸凹透镜、凹凸透镜、凹凸透镜、凸凹透镜,材料分别为硒化锌、锗、硒化锌、锗、锗、硒化锌,面形均为球面,表面镀增透膜。
CN201910246100.5A 2019-03-29 2019-03-29 一种离轴三反五通道可见红外成像与激光接收光学*** Pending CN109870804A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910246100.5A CN109870804A (zh) 2019-03-29 2019-03-29 一种离轴三反五通道可见红外成像与激光接收光学***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910246100.5A CN109870804A (zh) 2019-03-29 2019-03-29 一种离轴三反五通道可见红外成像与激光接收光学***

Publications (1)

Publication Number Publication Date
CN109870804A true CN109870804A (zh) 2019-06-11

Family

ID=66921584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910246100.5A Pending CN109870804A (zh) 2019-03-29 2019-03-29 一种离轴三反五通道可见红外成像与激光接收光学***

Country Status (1)

Country Link
CN (1) CN109870804A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112230409A (zh) * 2020-09-28 2021-01-15 北京空间机电研究所 一种高效率可见红外共口径离轴光学***
EP3916462A1 (fr) * 2020-05-26 2021-12-01 Airbus Defence and Space SAS Instrument optique a fonction de telescope et a voies multiples
CN114415202A (zh) * 2022-03-28 2022-04-29 北京中科飞鸿科技股份有限公司 一种基于图像处理的激光侦查设备用追踪***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508361A (zh) * 2011-10-31 2012-06-20 北京空间机电研究所 空间大视场超宽谱段多光谱成像光学***
CN102809824A (zh) * 2012-07-04 2012-12-05 北京空间机电研究所 空间大视场压缩光束多通道成像光学***
CN104977725A (zh) * 2015-06-29 2015-10-14 中国科学院长春光学精密机械与物理研究所 用于光电吊舱的光学***
CN109188666A (zh) * 2018-11-01 2019-01-11 长春理工大学 350mm口径1778.9mm焦距0.4~5μm波段离轴三反光学***
CN209928138U (zh) * 2019-03-29 2020-01-10 中国科学院上海技术物理研究所 离轴三反五通道可见红外成像与激光接收光学***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508361A (zh) * 2011-10-31 2012-06-20 北京空间机电研究所 空间大视场超宽谱段多光谱成像光学***
CN102809824A (zh) * 2012-07-04 2012-12-05 北京空间机电研究所 空间大视场压缩光束多通道成像光学***
CN104977725A (zh) * 2015-06-29 2015-10-14 中国科学院长春光学精密机械与物理研究所 用于光电吊舱的光学***
CN109188666A (zh) * 2018-11-01 2019-01-11 长春理工大学 350mm口径1778.9mm焦距0.4~5μm波段离轴三反光学***
CN209928138U (zh) * 2019-03-29 2020-01-10 中国科学院上海技术物理研究所 离轴三反五通道可见红外成像与激光接收光学***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3916462A1 (fr) * 2020-05-26 2021-12-01 Airbus Defence and Space SAS Instrument optique a fonction de telescope et a voies multiples
FR3110976A1 (fr) * 2020-05-26 2021-12-03 Airbus Defence And Space Sas Instrument optique a fonction de telescope et a voies multiples
CN112230409A (zh) * 2020-09-28 2021-01-15 北京空间机电研究所 一种高效率可见红外共口径离轴光学***
CN114415202A (zh) * 2022-03-28 2022-04-29 北京中科飞鸿科技股份有限公司 一种基于图像处理的激光侦查设备用追踪***

Similar Documents

Publication Publication Date Title
CN106405573B (zh) 一种基于共轴三反无焦望远镜的四波束激光三维成像***
US4598981A (en) Wide-angle flat field telescope
CN103278916B (zh) 一种激光与中、长波红外共孔径的三波段成像***
US6903343B2 (en) Lightweight laser designator ranger flir optics
CN109633879B (zh) 一种高分辨率可见光中波红外双波段光学成像***
US8563929B2 (en) Simultaneous dual band dual FOV imaging system
EP0766112B1 (en) Panoramic optics assembly having an initial flat reflective element
CN108801460B (zh) 一种共口径多通道全波段高光谱成像***
US6333811B1 (en) All-reflective zoom optical imaging system
CN109870804A (zh) 一种离轴三反五通道可见红外成像与激光接收光学***
US5768040A (en) Wide field-of-view imaging spectrometer
JP2017513074A (ja) 宇宙飛行体内に用いられる望遠鏡及び望遠鏡アレイ
CN205539710U (zh) 大视场摆扫二维像移补偿双通道成像仪光学***
US20210003830A1 (en) Compact dual-band sensor
CN111751915B (zh) 一种基于自由曲面棱镜的紧凑型红外取景器光学***
CN110186562A (zh) 全波段大相对孔径Dyson光谱成像***
CN104090355A (zh) 一种实现全天候的星敏感器光学***
CN112305739B (zh) 共光路宽窄视场组合的红外双波段成像光学***
CN103308161A (zh) 航天遥感大相对孔径宽视场高分辨率成像光谱仪光学***
CN105424187A (zh) 基于Dyson结构的制冷型长波红外成像光谱仪
CN209928138U (zh) 离轴三反五通道可见红外成像与激光接收光学***
Ackermann et al. Lens and camera arrays for sky surveys and space surveillance
CN208902974U (zh) 基于施密特望远镜和奥夫纳分光的高光谱成像仪光学***
CN108345095A (zh) 一种宽幅低杂光全天时星***光学结构
Hemmati et al. Preliminary optomechanical design for the X2000 transceiver

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190611

WD01 Invention patent application deemed withdrawn after publication