CN109842307B - 基于三相三开两电平整流器的直接功率边界控制方法 - Google Patents

基于三相三开两电平整流器的直接功率边界控制方法 Download PDF

Info

Publication number
CN109842307B
CN109842307B CN201910130134.8A CN201910130134A CN109842307B CN 109842307 B CN109842307 B CN 109842307B CN 201910130134 A CN201910130134 A CN 201910130134A CN 109842307 B CN109842307 B CN 109842307B
Authority
CN
China
Prior art keywords
phase
power
current
switch
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910130134.8A
Other languages
English (en)
Other versions
CN109842307A (zh
Inventor
马辉
田鹏辉
韩笑
田宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201910130134.8A priority Critical patent/CN109842307B/zh
Publication of CN109842307A publication Critical patent/CN109842307A/zh
Application granted granted Critical
Publication of CN109842307B publication Critical patent/CN109842307B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

基于三相三开两电平整流器的直接功率边界控制方法,先建立两相同步旋转坐标系下三相三开两电平整流器的数学模型;结合瞬时功率理论,并采用电压定向原则,建立旋转坐标系下整流器的功率模型;以直流侧电压作为相平面的横轴,交流侧电流作为相平面的纵轴,建立标准相平面,分析标准相平面内整流器交流侧电流降低和升高时,整流器自然轨迹的变化;以功率量为基础,利用边界控制条件来创造一种新型直接功率控制,首先以交流侧电流降低和升高时整流***的自然轨迹为基础,选择边界控制的自然开关面,然后使用这个自然开关面更新直接功率控制中功率滞环比较器输出的规则,最终得到直接功率边界控制方法。本发明针对实际应用中的载负突变问题,有效提高三相三开关两电平整流器直流侧的动态性能。

Description

基于三相三开两电平整流器的直接功率边界控制方法
技术领域
本发明涉及三相三开两电平整流器控制技术领域,具体是一种基于三相三开两电平整流器的直接功率边界控制方法。
背景技术
近年来,由于经济的快速发展,对能源的需求也来越大,低碳节能成为了世界各国的共同要求,电能的绿色低碳发展对节能环保意义重大。因此,如何获取高质量的电能成为目前研究的焦点,为了解决谐波污染问题,将PWM技术引入到整流器中产生一种PWM整流器,其优点在于网侧电流正弦化、理论上可实现单位功率因数、网侧电流畸变率低等。目前三相PWM整流器网侧电流控制策略分为间接电流控制策略和直接电流控制策略,其中后者占据主导地位。滞环电流控制、前馈解耦PI控制、预测电流控制、直接功率控制等是目前常见的直接电流控制策略。
直接功率控制(DPC)是三相PWM整流器最有效的控制策略之一,与其他PWM整流器控制策略相比,直接功率控制(DPC)策略的优点如下:①单位功率因数运行;②动态响应很快;③结构简单明了。直接功率控制(DPC)策略的开关状态由开关表根据瞬时功率误差和输入电压矢量位置来选择,通过使用更新的开关表、自适应控制、模糊逻辑选择、滑模控制、占空比优化或预测方法来对直接功率控制进行改善,可以应对参数不确定问题,提高抗干扰能力等,然而这些方法对直流输出电压动态性能的改善是有限的。
边界控制是一种基于几何的控制方法,适用于具有开关动作的电力电子变换器,它在许多电力电子变换器中得到了应用。对于不同的开关面已经有了各种各样的研究,如一阶、二阶和高阶开关面,在这些开关面中,自然开关面具有良好的动态性能。然而,大部分文章只研究了单相电力电子变换器的边界控制方案,针对三相PWM整流器的边界控制,尤其是采用自然开关面的研究很少。
发明内容
为改善三相PWM整流器直流输出电压的动态性能,本发明提供一种基于三相三开两电平整流器的直接功率边界控制方法,可以有效提高三相PWM整流器直流输出电压的动态性能。该控制方法以dq坐标系下的数学模型为基础,推导出d轴交流侧电流降低和升高时整流***的自然轨迹;结合瞬时功率理论,得到以P、Q为变量的直接功率控制模型,对直接功率滞环比较器中输出Sq采用新的规则,并用已分析自然轨迹作为开关面,达到边界控制的效果。
本发明采取的技术方案为:
基于三相三开两电平整流器的直接功率边界控制方法,包括以下步骤:
步骤1:分析三相三开关两电平整流器的工作过程,运用坐标变换,建立同步旋转dq坐标系下整流器的数学模型;
步骤2:结合瞬时功率理论,将同步旋转dq坐标系下整流器的数学模型,转换成dq坐标系下以P,Q为变量的功率模型;
步骤3:分析三相三开关两电平整流器的边界控制条件,即以直流侧电压作为相平面的横轴,交流侧电流作为相平面的纵轴,建立标准相平面;在标准相平面内,不同状态下整流器具有不同的自然轨迹,分析交流侧电流降低和升高时整流器的自然轨迹;
步骤4:以功率量为基础,首先以交流侧电流降低和升高时整流器的自然轨迹,选择边界控制的自然开关面,然后使用这个自然开关面更新直接功率控制中功率滞环比较器输出的规则,最终得到基于三相三开关两电平整流器的直接功率边界控制方法。
步骤1中,分析三相三开关两电平整流器的工作过程,定义开关函数,建立三相三开关两电平整流器在三相静止坐标系下的数学模型;由于三相静止坐标系下的数学模型很复杂,因此需要将坐标变换引入到***的建模过程中,利用坐标变换,得到三相三开关两电平整流器在同步旋转dq坐标系下的数学模型。
步骤2中,根据瞬时功率理论,得到基于dq坐标系下的瞬时有功功率和瞬时无功功率的计算式;采用电网电压定向,选取d轴的初始相角和a相初始相角相等,将上述计算式代入步骤1中所建立的同步旋转dq坐标系下的数学模型中,得到dq坐标系下以P,Q为变量的功率模型。
步骤3中,以直流侧电压作为相平面的横轴,交流侧电流作为相平面的纵轴,建立相平面,经过简单的标准化计算,得到标准化相平面内交流侧电流降低时和电流升高时整流器的自然轨迹。
步骤4中,在直接功率边界控制方法中,无功功率滞环比较器输出SQ数值的规则和开关矢量表与传统直接功率控制方法相同,只有直接有功功率滞环比较器输出SP数值的规则与传统直接功率控制方法不同。
本发明一种基于三相三开两电平整流器的直接功率边界控制方法,技术效果如下:
1:以功率量为基础,利用边界控制条件来创造一种新型功率的直接控制,使用一种新的规则来控制功率滞环比较器输出Sp的数值。
2:针对实际应用中的负载突变问题,可有效提高三相三开两电平整流器直流侧电压的动态性能。
附图说明
图1为三相三开关两电平整流器的拓扑结构图。
图2为三相三开关两电平整流器交流侧电流降低时整流***的自然轨迹图。
图3为三相三开关两电平整流器交流侧电流升高时整流***的自然轨迹图。
图4为三相三开关两电平整流器直接功率控制的边界条件图。
图5为整流器额定负载下交流侧A相电压和电流的波形图。
图6为整流器从额定负载突加1倍负载时,交流侧A相电流波形图。
图7为整流器从额定负载突加1倍负载时,直流侧电压和电流波形图。
具体实施方式
步骤1:分析三相三开关两电平整流器的工作过程,运用坐标变换,建立同步旋转dq坐标系下整流器的数学模型;
步骤2:结合瞬时功率理论,将同步旋转dq坐标系下整流器的数学模型,转换成dq坐标系下以P,Q为变量的功率模型;
步骤3:分析三相三开关两电平整流器的边界控制条件,即以直流侧电压作为相平面的横轴,交流侧电流作为相平面的纵轴,建立标准相平面;在标准相平面内,不同状态下整流器具有不同的自然轨迹,分析交流侧电流降低和升高时整流器的自然轨迹;
步骤4:以功率量为基础,首先以交流侧电流降低和升高时整流器的自然轨迹,选择边界控制的自然开关面,然后使用这个自然开关面更新直接功率控制中功率滞环比较器输出的规则,最终得到基于三相三开关两电平整流器的直接功率边界控制方法。
步骤1中,分析三相三开关两电平整流器的工作过程,定义开关函数,建立三相三开关两电平整流器在三相静止坐标系下的数学模型;由于三相静止坐标系下的数学模型很复杂,因此需要将坐标变换引入到***的建模过程中,利用坐标变换,得到三相三开关两电平整流器在同步旋转dq坐标系下的数学模型。
步骤2中,根据瞬时功率理论,得到基于dq坐标系下的瞬时有功功率和瞬时无功功率的计算式;采用电网电压定向,选取d轴的初始相角和a相初始相角相等,将上述计算式代入步骤1中所建立的同步旋转dq坐标系下的数学模型中,得到dq坐标系下以P,Q为变量的功率模型。
步骤3中,以直流侧电压作为相平面的横轴,交流侧电流作为相平面的纵轴,建立相平面,经过简单的标准化计算,得到标准化相平面内交流侧电流降低时和电流升高时整流器的自然轨迹。
步骤4中,在直接功率边界控制方法中,无功功率滞环比较器输出SQ数值的规则和开关矢量表与传统直接功率控制方法相同,只有直接有功功率滞环比较器输出SP数值的规则与传统直接功率控制方法不同。
具体步骤如下:
步骤1:分析图1三相三开关两电平整流器拓扑结构可知,三相三开关两电平整流器是一种PWM整流器,整流电路包含三个开关管,直流侧输出电压只有vdc和-vdc两种,因此三相三开关两电平整流器具有简单、鲁棒性强、功率模块及辅助器件容易获得等特点。
ea、eb、ec为三相静止坐标系下电网电动势;ia、ib、ic为三相静止坐标系下交流侧三相电流;LA、LB、LC为交流侧电感,LA=LB=LC=L;R为交流侧线路等效等效电阻;C为直流侧电容;RL为直流侧负载;vdc为直流侧电压;ed、eq、id、iq为两相同步旋转坐标系下交流侧电压与电流。
为建立三相三开两电平整流器的一般数学模型,需做以下假设:1)电网电动势为理想三相正弦波;2)交流滤波电感线性无饱和;3)功率开关管均忽略死区时间,为理想开关。
定义开关函数:
Figure BDA0001975012870000041
a、b、c表示三相静止坐标系。
建立三相三开关两电平整流器的一般数学模型:
Figure BDA0001975012870000042
Sa、Sb、Sc分别表示abc三相开关函数。
另外,对直流测电容正极节点处应用基尔霍夫电流定律,得:
Figure BDA0001975012870000043
C表示直流电容、RL表示直流负载。
对式(2)、(3)采用坐标变换,则从三相静止坐标系(a、b、c)变换到两相同步旋转坐标系(d、q),得三相三开关两电平整流器数学模型为:
Figure BDA0001975012870000051
式中:w为角速度,Sd、Sq为变换到dq坐标系下的开关函数。
步骤2:三相电网平衡,结合瞬时功率理论,得到dq坐标系下的瞬时有功功率和瞬时无功功率的计算式为:
P=edid+eqiq,Q=eqid-ediq (5)
采用电网电压定向,则可得到eq=0,将上式代入式(5)中可得:
P=edid,Q=-ediq (6)
将式(4)两边同时乘以ed,得到dq坐标系下以P,Q为变量的功率模型为:
Figure BDA0001975012870000052
步骤3:首先将相平面的两个轴选定,根据微分方程解的存在性与唯一性理论,在任一初始数据条件选定的情况下,一定有一条相轨迹在相平面上与之对应。对于一个整流***而言,它的任何一个状态都和相平面上一个点相对应,因此***运动能够在相平面上表示。相平面上点的移动就相当于***状态随时间的改变,这些移动轨迹即为相轨迹。本发明边界控制所使用的开关面是自然开关面,因此选择交流侧电流作为相平面的纵轴,直流侧电压作为相平面的横轴,建立相平面,选择自然轨迹作为相轨迹。
为了得到单位功率因数,需控制iq=0,当电感等效电阻R小到可以忽略不计时,即R=0,式(4)可以简化为:
Figure BDA0001975012870000061
式(8)中vSd=vdcSd
Figure BDA0001975012870000062
根据三相三开关两电平整流器运行原理,vSd的最大值为:
Figure BDA0001975012870000063
当交流侧电流降低时,vSd应该为正值,即
Figure BDA0001975012870000064
Figure BDA0001975012870000065
将代入式(8)中得:
Figure BDA0001975012870000066
通过使用如下三角恒等式:
Figure BDA0001975012870000067
Figure BDA0001975012870000068
式(10)可以变换成如下形式:
Figure BDA0001975012870000069
式中k为与ide、vdc初值相关的常数。
令vn=vdc
Figure BDA00019750128700000610
edn=ed
Figure BDA00019750128700000611
并将其代入式(11)中,得交流侧电流降低时整流***的自然轨迹λdown为:
Figure BDA00019750128700000612
在标准相平面内,如图2所示,λdown是一个以
Figure BDA00019750128700000613
为圆心,以l为半径的圆。
当交流侧电流升高时,vSd应该为负值,即
Figure BDA0001975012870000071
采用和交流侧电流降低时同样的推导方法,得交流侧电流升高时整流***的自然轨迹λup为:
Figure BDA0001975012870000072
在标准相平面内,如图3所示,λup是一个以
Figure BDA0001975012870000073
为圆心,以m为半径的圆。
步骤4:由于只有有功功率对直流输出电压有影响,并且in的变化可由瞬时有功功率P的变化来表示,而开关状态的改变会使P产生变化。因此可以利用这种方法来控制***运行轨迹。
为了得到三相三开关两电平整流器的直接功率边界控制规则,先做如下定义:
Figure BDA0001975012870000074
Figure BDA0001975012870000075
式(14)、(15)中in_T、vn_T是相平面上运行目标点的电流和电压。
通过交流侧电流降低时的自然轨迹λdown和交流侧电流升高时的自然轨迹λup,选择的边界条件自然开关面为:
Figure BDA0001975012870000076
RT_down表示下降边界电阻
Figure BDA0001975012870000077
edn表示直流侧对地电压、RT_up表示上升边界电阻。
将αβ平面划分为12个矢量扇区,在αβ平面内,每个扇区均为30度,其相角范围可由式(18)来表示。
Figure BDA0001975012870000078
当电网电压矢量所在空间需要被确定时,先计算电网电压矢量E的相位角
Figure BDA0001975012870000081
eα、eβ为αβ坐标系下的交流侧电压然后利用式(18)确定电网电压矢量E所在区间。
三相三开两电平整流器的直接功率边界控制算法中无功功率滞环比较器输出SQ数值的规则与传统直接功率控制规则相同:
Figure BDA0001975012870000082
式(19)中q为瞬时无功功率估算值,qr为瞬时无功功率参考值,Hq为无功功率滞环比较器的滞环宽度。一般来说,滞环比较器的滞环宽度会受到主电路中的参数的影响,如交流侧电感L和直流侧电压vdc。若滞环宽度太小,开关频率就会太高,结果就是提高了***开关的损耗,加速了开关的老化;若滞环宽度太大,结果就是导致功率跟踪太慢,无法满足实时控制。因此在设计***时,滞环宽度大小的选择既要满足***需要,又要符合实际。
三相三开关两电平整流器的直接功率边界控制算法中有功功率滞环比较器输出SP数值则采用一种新的规则:
I:若vdc<vn_T,只有当σdown<0时,SP=1,其他情况下SP=0;
II:若vdc>vn_T,只有当σup>0时,SP=0,其他情况下SP=1。
首先采用式(18)来判别电网电压矢量所在扇区,然后根据功率滞环比较器输出SP、SQ的数值,将电网电压矢量所在扇区和输出的SP、SQ送入开关表中,对开关矢量进行选择。
三相三开关两电平整流器的直接功率边界控制算法中所采用的开关表与传统直接控制功率所用开关表相同:
表1 三相三开关两电平整流器的直接功率边界控制算法开关表
Figure BDA0001975012870000083
Figure BDA0001975012870000091
设置三相三开关两电平整流器线路参数:三相电路有效值为220V/50Hz,交流侧输入电感LA=LB=LC=L=4mH,线路等效电阻R=0.1Ω,直流侧滤波电容C=3300μF,负载R=30Ω,开关频率为20kHz,在0.15s时,在直流侧加一倍负载。
额定负载时,三相三开关两电平整流器交流侧A相电压电流波形图如图5所示,从图中可以得出采用直接功率边界控制算法的三相三开关两电平整流器网侧电流实现了正弦化,电压电流基本同相位,功率因数接近1。
负载由额定负载突变至2倍负载时,三相三开关两电平整流器交流侧A相电流波形图如图6所示,从图中可以得出采用直接功率边界控制算法的三相三开关两电平整流器网侧电流在负载波动时,能够很快的达到稳定状态。
负载由额定负载突变至2倍负载时,三相三开关两电平整流器直流侧电压和电流波形图如图7所示,从图中可以得出采用直接功率边界控制算法的三相三开关两电平整流器直流侧电压和电流在负载波动时,在很短的时间内重新达到稳定状态,有良好的动态性能。
从上述波形图分析可知,基于三相三开关两电平整流器的直接功率边界控制算法可以有效提高三相三开关两电平整流器直流输出电流和电压的动态性能,达到实验预期结果,具有一定的实用价值。

Claims (7)

1.基于三相三开两电平整流器的直接功率边界控制方法,其特征在于包括以下步骤:
步骤1:分析三相三开关两电平整流器的工作过程,运用坐标变换,建立同步旋转dq坐标系下整流器的数学模型;
步骤2:结合瞬时功率理论,将同步旋转dq坐标系下整流器的数学模型,转换成dq坐标系下以P,Q为变量的功率模型;
步骤3:分析三相三开关两电平整流器的边界控制条件,即以直流侧电压作为相平面的横轴,交流侧电流作为相平面的纵轴,建立标准相平面;在标准相平面内,不同状态下整流器具有不同的自然轨迹,分析交流侧电流降低和升高时整流器的自然轨迹;
步骤4:以功率量为基础,首先以交流侧电流降低和升高时整流器的自然轨迹,选择边界控制的自然开关面,然后使用这个自然开关面更新直接功率控制中功率滞环比较器输出的规则,最终得到基于三相三开关两电平整流器的直接功率边界控制方法;
有功功率滞环比较器输出Sp数值则采用规则如下:
I:若vdc<vn_T,只有当σdown<0时,Sp=1,其他情况下Sp=0;
II:若vdc>vn_T,只有当σup>0时,Sp=0,其他情况下Sp=1;
基于三相三开关两电平整流器的直接功率边界控制方法如下:
先做如下定义:
Figure FDA0002720136850000011
Figure FDA0002720136850000012
式(14)、(15)中in_T、vn_T是相平面上运行目标点的电流和电压;
通过交流侧电流降低时的自然轨迹λdown和交流侧电流升高时的自然轨迹λup,选择的边界条件自然开关面为:
Figure FDA0002720136850000013
Figure FDA0002720136850000014
将αβ平面划分为12个矢量扇区,在αβ平面内,每个扇区均为30度,其相角范围可由式(18)来表示;
Figure FDA0002720136850000021
当电网电压矢量所在空间需要被确定时,先计算电网电压矢量E的相位角
Figure FDA0002720136850000022
eα、eβ为αβ坐标系下的交流侧电压然后利用式(18)确定电网电压矢量E所在区间;
三相三开两电平整流器的直接功率边界控制算法中无功功率滞环比较器输出Sq数值的规则为:
Figure FDA0002720136850000023
式(19)中q为瞬时无功功率估算值,qr为瞬时无功功率参考值,Hq为无功功率滞环比较器的滞环宽度。
2.根据权利要求1所述基于三相三开两电平整流器的直接功率边界控制方法,其特征在于:步骤1中,分析三相三开关两电平整流器的工作过程,定义开关函数,建立三相三开关两电平整流器在三相静止坐标系下的数学模型;将坐标变换引入到***的建模过程中,利用坐标变换,得到三相三开关两电平整流器在同步旋转dq坐标系下的数学模型。
3.根据权利要求1所述基于三相三开两电平整流器的直接功率边界控制方法,其特征在于:步骤2中,根据瞬时功率理论,得到基于dq坐标系下的瞬时有功功率和瞬时无功功率的计算式;采用电网电压定向,选取d轴的初始相角和a相初始相角相等,将上述计算式代入步骤1中所建立的同步旋转dq坐标系下的数学模型中,得到dq坐标系下以P,Q为变量的功率模型。
4.根据权利要求1所述基于三相三开两电平整流器的直接功率边界控制方法,其特征在于:步骤3中,以直流侧电压作为相平面的横轴,交流侧电流作为相平面的纵轴,建立相平面,经过标准化计算,得到标准化相平面内交流侧电流降低时和电流升高时整流器的自然轨迹。
5.根据权利要求2所述基于三相三开两电平整流器的直接功率边界控制方法,其特征在于:步骤1包括:
ea、eb、ec为三相静止坐标系下电网电动势;ia、ib、ic为三相静止坐标系下交流侧三相电流;LA、LB、LC为交流侧电感,LA=LB=LC=L;R为交流侧线路等效电阻;C为直流侧电容;RL为直流侧负载;vdc为直流侧电压;ed、eq、id、iq为两相同步旋转坐标系下交流侧电压与电流;
为建立三相三开两电平整流器的一般数学模型,做以下假设:1)电网电动势为理想三相正弦波;2)交流滤波电感线性无饱和;3)功率开关管均忽略死区时间,为理想开关;
定义开关函数:
Figure FDA0002720136850000031
a、b、c表示三相静止坐标系;
建立三相三开关两电平整流器的一般数学模型:
Figure FDA0002720136850000032
另外,对直流测电容正极节点处应用基尔霍夫电流定律,得:
Figure FDA0002720136850000033
对式(2)、(3)采用坐标变换,则从三相静止坐标系(a、b、c)变换到两相同步旋转坐标系(d、q),得三相三开关两电平整流器数学模型为:
Figure FDA0002720136850000034
式中:w为角速度,Sd、Sq为变换到dq坐标系下的开关函数。
6.根据权利要求2所述基于三相三开两电平整流器的直接功率边界控制方法,其特征在于:步骤2包括:
结合瞬时功率理论,得到dq坐标系下的瞬时有功功率和瞬时无功功率的计算式为:
Figure FDA0002720136850000035
采用电网电压定向,则可得到eq=0,将上式代入式(5)中可得:
P=edid,Q=-ediq (6)
将式(4)两边同时乘以ed,得到dq坐标系下以P,Q为变量的功率模型为:
Figure FDA0002720136850000041
7.根据权利要求3所述基于三相三开两电平整流器的直接功率边界控制方法,其特征在于:步骤3包括:边界控制使用的是自然开关面,因此选择交流侧电流作为相平面的纵轴,直流侧电压作为相平面的横轴,建立相平面,选择自然轨迹作为相轨迹;
为了得到单位功率因数,需控制iq=0,当电感等效电阻R小到可以忽略不计时,即R=0,式(4)可以简化为:
Figure FDA0002720136850000042
式(8)中,vSd=vdcSd
Figure FDA0002720136850000043
根据三相三开关两电平整流器运行原理,vSd的最大值为:
Figure FDA0002720136850000044
当交流侧电流降低时,vSd为正值,即
Figure FDA0002720136850000045
Figure FDA0002720136850000046
将代入式(8)中得:
Figure FDA0002720136850000047
通过使用如下三角恒等式:
Figure FDA0002720136850000048
Figure FDA0002720136850000049
式(10)可以变换成如下形式:
Figure FDA00027201368500000410
式中k为与ide、vdc初值相关的常数;
令vn=vdc
Figure FDA0002720136850000051
edn=ed
Figure FDA0002720136850000052
并将其代入式(11)中,得交流侧电流降低时整流***的自然轨迹λdown为:
Figure FDA0002720136850000053
在标准相平面内,λdown是一个以
Figure FDA0002720136850000054
为圆心,以l为半径的圆;
当电流升高时,vSd应该为负值,即
Figure FDA0002720136850000055
采用和电流降低时同样的推导方法,得交流侧电流升高时整流***的自然轨迹λup为:
Figure FDA0002720136850000056
在标准相平面内,λup是一个以
Figure FDA0002720136850000057
为圆心,以m为半径的圆。
CN201910130134.8A 2019-02-21 2019-02-21 基于三相三开两电平整流器的直接功率边界控制方法 Active CN109842307B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910130134.8A CN109842307B (zh) 2019-02-21 2019-02-21 基于三相三开两电平整流器的直接功率边界控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910130134.8A CN109842307B (zh) 2019-02-21 2019-02-21 基于三相三开两电平整流器的直接功率边界控制方法

Publications (2)

Publication Number Publication Date
CN109842307A CN109842307A (zh) 2019-06-04
CN109842307B true CN109842307B (zh) 2021-03-23

Family

ID=66884825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910130134.8A Active CN109842307B (zh) 2019-02-21 2019-02-21 基于三相三开两电平整流器的直接功率边界控制方法

Country Status (1)

Country Link
CN (1) CN109842307B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116131642B (zh) * 2023-04-19 2023-06-30 湖南大学 三相五电平整流器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545665B (zh) * 2012-02-09 2013-12-25 天津大学 一种三电平pwm整流器直接功率控制方法
US9973097B2 (en) * 2016-06-21 2018-05-15 Astronics Advanced Electronic Systems Corp. Regulating transformer rectifier unit with multiple circuits for preventing output overvoltage
CN106712552B (zh) * 2017-02-10 2019-05-14 南京航空航天大学 一种航空多电发动机vienna整流器控制方法
CN107317490B (zh) * 2017-07-03 2020-06-09 三峡大学 一种基于三相Vienna整流器的无差拍预测直接功率控制方法
CN108092527A (zh) * 2017-12-25 2018-05-29 三峡大学 一种基于三相Vienna整流器的滑模比例谐振控制方法
CN109256968B (zh) * 2018-09-19 2020-11-20 嘉兴巨腾信息科技有限公司 一种三相电压型pwm变换器的滑模功率抵消直接功率控制方法

Also Published As

Publication number Publication date
CN109842307A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
CN110165924B (zh) 一种单相pwm整流器的改进无差拍控制方法
CN106936134B (zh) 三相电压源型换流器的有源阻尼控制装置和控制***
CN106130381B (zh) 基于虚拟磁链定向的功率前馈预测直接功率的控制方法
CN101141100A (zh) 基于lcl滤波的电压型有源整流器稳定控制***及方法
CN110513846B (zh) 一种无电解电容空调压缩机控制方法
CN108153150A (zh) 基于空间矢量调制的双级式矩阵变换器模型预测控制策略
CN107918436A (zh) 一种直驱式波浪发电最大功率跟踪算法及其***
Rajagopal et al. A technical review on control strategies for active power filters
CN109842307B (zh) 基于三相三开两电平整流器的直接功率边界控制方法
CN102969716A (zh) 船舶电网有源滤波控制方法
CN110297446B (zh) 一种非理想电网条件下多矢量快速模型预测控制方法
CN110391726B (zh) 单向三相星接可控整流器输入电流过零畸变的抑制方法
CN110690842B (zh) 三相异步电机调速***主电路参数稳定域确定方法
CN102403946B (zh) 基于空间矢量调制的等效交直交矩阵高压变频器控制方法
CN110429834B (zh) 一种基于扩张状态观测器的三相整流器滑模控制方法
CN105958525B (zh) 一种永磁风力发电***的pwm并网逆变器控制方法
CN113991672B (zh) 一种基于三电平双向变流的分布式控制***及方法
CN112467776B (zh) 电流源型变流器***、控制方法及空间矢量调制方法
CN110676860B (zh) 一种基于扩展瞬时有功理论的快速预测不平衡控制方法
CN110244567B (zh) 一种基于扩展瞬时无功理论的快速模型预测控制方法
CN109256968B (zh) 一种三相电压型pwm变换器的滑模功率抵消直接功率控制方法
CN109245104B (zh) 一种有源电力滤波器的动态滑模控制方法
Talavat et al. Direct predictive control of asynchronous machine torque using matrix converter
Roostaee et al. Predictive current control with modification of instantaneous reactive power minimization for direct matrix converter
Fu et al. Research on rectifier control strategy of power system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant