CN109826609B - 一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法 - Google Patents

一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法 Download PDF

Info

Publication number
CN109826609B
CN109826609B CN201810702864.6A CN201810702864A CN109826609B CN 109826609 B CN109826609 B CN 109826609B CN 201810702864 A CN201810702864 A CN 201810702864A CN 109826609 B CN109826609 B CN 109826609B
Authority
CN
China
Prior art keywords
layer
proppant
fracturing
crack
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810702864.6A
Other languages
English (en)
Other versions
CN109826609A (zh
Inventor
卢聪
马莅
郭建春
王延光
黄波
李明
王建
李芝力
黎俊峰
黄楚淏
张涛
钟烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201810702864.6A priority Critical patent/CN109826609B/zh
Publication of CN109826609A publication Critical patent/CN109826609A/zh
Application granted granted Critical
Publication of CN109826609B publication Critical patent/CN109826609B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法,首先根据测井资料获取压裂层段地质参数和物性参数,在此基础上将压裂层段划分为不同的压裂改造小层;然后,通过裂缝闭合时间优化射孔位置,结合现场实践确定不同压裂改造小层的支撑剂密度;通过计算受携砂浓度与裂缝壁面效应影响的支撑剂沉降速度,设计不同压裂改造小层压裂液视粘度;最后,根据不同压裂改造小层的厚度计算不同阶段携砂液的泵送时间。本发明依据设计的参数,能够将支撑剂全部铺置在目的产层,并使之在裂缝闭合后在产层纵向上均匀铺置,本发明原理可靠,现场操作性较强,具有广阔的市场前景。

Description

一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法
技术领域
本发明涉及石油工程领域水力压裂过程中一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法。
背景技术
水力压裂技术是油气藏增产改造的重要措施。水力压裂是利用地面高压泵组,以超过地层吸液能力的排量将压裂液(前置液)泵入地层来产生裂缝,然后继续注入带有支撑剂(砂粒)的压裂液(携砂液),使裂缝继续延伸并在其中充填支撑剂,当压裂液返排后,留在裂缝中的支撑剂起到阻止裂缝完全闭合的作用,使裂缝在闭合压力作用下保持一定的开启程度,在地层中形成具有一定长度、允许流体流动的填砂裂缝,从而达到油气井增产或注水井增注的目的。
水力压裂的关键在于形成具有一定导流能力的填砂裂缝,压裂液返排后,在地层闭合压力作用下,只有被支撑剂填充的裂缝才能保持一定的开启程度,具有更好的导流能力。因此,有必要根据支撑剂沉降特性优化设计压裂过程中相关施工参数,将支撑剂准确输送至各个压裂改造小层,以达到改善油气流动条件和油气井增产的目的。
目前,国内外优化水力压裂施工参数的设计方法有很多,但针对于含有多个隔夹层的压裂改造段,从支撑剂沉降特性的角度优化设计水力压裂施工参数的理论研究还很少,不能满足当前现场压裂施工的设计要求,压裂施工过程可操作性差,不能准确地将支撑剂输送至目的层,支撑剂的铺置效率低,对油气藏增产改造效果差。
发明内容
本发明的目的在于提供一种针对多隔夹层油气藏水力压裂的支撑剂精准置放的参数设计方法,依据设计的参数,能够将支撑剂全部铺置在目的产层,并使之在裂缝闭合后在产层纵向上均匀铺置,该方法原理可靠,现场操作性较强,具有广阔的市场前景。
为达到以上技术目的,本发明提供以下技术方案。
本发明针对含有多个隔夹层(砂泥互层)的压裂改造段,首先根据测井资料获取压裂层段地质参数和物性参数,在此基础上将压裂层段划分为不同的压裂改造小层。然后,通过裂缝闭合时间优化射孔位置,结合现场实践确定不同压裂改造小层的支撑剂密度;通过计算受携砂浓度与裂缝壁面效应影响的支撑剂沉降速度,设计不同压裂改造小层压裂液视粘度。最后,根据不同压裂改造小层的厚度计算不同阶段携砂液的泵送时间。
本发明通过设计相关压裂参数,将支撑剂精准置放于不同的压裂改造小层,提高支撑剂铺置效率。
一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法,依次包括以下步骤:
(1)根据某单井测井解释得到的储层地质参数和物性参数,将隔夹层(泥岩层)厚度小于1.5m的相邻产层视为同一压裂改造小层,从而把单井压裂层段划分为N个压裂改造小层,从压裂改造层段底部向上依次记为第1层、第2层、…、第N层。
(2)设计顶部第N层的压裂参数,过程如下:
①根据压裂层段的地层裂缝闭合压力P与地层温度T,结合工程实践,确定第N层支撑剂密度ρpN与压裂液视粘度μN
当P≤50MPa时,ρpN=1500kg/m3
当50MPa<P<70MPa时,ρpN=1700kg/m3
当P≥70MPa时,ρpN=1830kg/m3
式中P一地层裂缝闭合压力,MPa。
当T≤90℃时,μN=0.1Pa·s;
当90℃<T<120℃时,μN=0.15Pa·s;
当T≥120℃时,μN=0.2Pa·s。
式中T一压裂层段地层温度,℃。
②通过第N层顶部支撑剂在第N段压裂液中的沉降速度和停泵后裂缝闭合时间TC(根据地层和施工情况可以获得),计算第N层顶部支撑剂在裂缝中的沉降高度从而确定射孔位置:
由于本发明涉及的雷诺数Rep小于1,考虑携砂浓度和裂缝壁面效应的影响,因此可通过如下公式计算第N层顶部支撑剂在第N段压裂液中的沉降速度(李颖川著.采油工程.北京:石油工业出版社,2009):
式中fc一浓度校正系数,其表达式为:fc=Cf 5.5
fw一裂缝壁面校正系数,其表达式为:
μN一第N层压裂液视粘度,Pa·s;
ρpN一第N层支撑剂密度,kg/m3
ρf一压裂液净液密度,kg/m3
dp一支撑剂颗粒直径,m;
Cf一支撑剂与压裂液混合物中液体所占体积分数;
W一裂缝宽度,m;
g一重力加速度,9.8m/s2
一第N层顶部支撑剂在第N段压裂液中的沉降速度,m/s。
计算第N层顶部支撑剂在裂缝中的沉降高度即确定射孔位置在距第N层顶部向上处:
式中TC一停泵后裂缝闭合时间,s;
υf一携砂液在裂缝中垂直向下的运移速度,m/s。
③根据第N层底部支撑剂在第(N-1)段压裂液中的沉降速度第N层底部支撑剂在裂缝中的沉降高度以及停泵后裂缝闭合时间TC,确定第N段携砂液泵送时间TN
通过下式计算第N层底部支撑剂在第(N-1)段压裂液中的沉降速度
式中μN-1一第(N-1)层压裂液的视粘度,Pa·s。
根据第N层压裂改造小层厚度hN,通过下式计算第N层底部支撑剂在裂缝中的沉降高度
式中hN一第N层压裂改造小层的厚度,m。
根据第N层底部支撑剂在裂缝中的沉降高度以及停泵后裂缝闭合时间TC,计算出第N段携砂液泵送时间TN
从而得到:
式中TC一停泵后裂缝闭合时间,s;
υf一携砂液在裂缝中垂直向下的运移速度,m/s。
(3)设计第(N-1)层的压裂参数,过程如下:
①根据现场施工实践,确定第(N-1)层支撑剂密度ρp(N-1)
ρp(N-1)=ρpN+250 (7)
式中ρpN一第N层支撑剂密度,kg/m3
②考虑携砂浓度和裂缝壁面效应的影响,确定第(N-1)段压裂液视粘度μN-1
根据第N层与第(N-1)层之间的隔夹层厚度计算第(N-1)层顶部支撑剂在裂缝中的沉降高度
式中一第N层与第(N-1)层之间的隔夹层厚度,m。
根据第N层携砂液的泵送时间TN、停泵后裂缝闭合时间TC,通过下式计算第(N-1)层顶部支撑剂在第(N-1)段压裂液中的沉降速度为
从而得到:
考虑携砂浓度和裂缝壁面效应的影响,与公式(1)同理,可根据下式确定第(N-1)段压裂液视粘度μN-1
③根据第(N-1)层底部支撑剂在裂缝中的沉降高度与第(N-1)层底部支撑剂在第(N-2)段压裂液中的沉降速度为确定第(N-1)段携砂液泵送时间TN-1
根据第(N-1)层压裂改造小层的厚度hN-1,计算第(N-1)层底部支撑剂在裂缝中的沉降高度
式中hN-1一第(N-1)层压裂改造小层的厚度,m。
考虑携砂浓度和裂缝壁面效应的影响,通过下式计算第(N-1)层底部支撑剂在第(N-2)段压裂液中的沉降速度为
式中μN-2一第(N-2)段压裂液的视粘度,Pa·s。
根据第(N-1)层底部支撑剂在裂缝中的沉降高度与第(N-1)层底部支撑剂在第(N-2)段压裂液中的沉降速度为计算出第(N-1)段携砂液泵送时间TN-1,计算公式如下:
变形得到:
(4)重复步骤(3),最终确定第(N-2)层、第(N-3)层、…、第1层的支撑剂密度、压裂液视粘度以及泵注时间的计算公式。
(5)联立上述方程(1)、(2)、…、(15),解出射孔位置以及全部压裂改造小层的压裂参数(支撑剂密度、压裂液视粘度、泵注时间)。
本发明中,所述步骤(1)把单井压裂层段划分为N个压裂改造小层,N≥2。
本发明中,所述步骤(4)当计算第1层底部支撑剂在前置液中的沉降速度为时,μ0为前置液的视粘度。
与常规压裂设计方法相比,本发明的有益效果是:通过裂缝闭合时间优化射孔位置;结合现场实践确定不同压裂改造小层的支撑剂密度;计算受携砂浓度与裂缝壁面效应影响的支撑剂沉降速度,确定不同压裂改造小层的压裂液视粘度;根据不同压裂改造小层的厚度计算不同阶段携砂液的泵送时间,从而将支撑剂精准输送至各个压裂改造小层,有效提高支撑剂的铺置效率,改善增产改造效果。
具体实施方式
下面通过具体实例对本发明各步骤进行详细说明。
以某油田单井W为例,设计水力压裂层段埋深为4309.4~4323m,含有较多隔夹层,该段平均地层温度为140℃,地层裂缝闭合压力为48MPa。根据前期数值软件模拟结果显示,压裂液密度为1200kg/m3,前置液视粘度为0.04Pa·s,支撑剂颗粒直径为0.0006m,砂比为20%(即支撑剂与压裂液混合物中液体所占体积分数为86%),停泵后裂缝闭合时间为3000s,携砂液在裂缝中垂直向下的运移速度为0.002m/s,在此条件下造出平均宽度为0.004m的裂缝,据此优化设计相关压裂参数,提高支撑剂铺置效率,改善增产改造效果。
一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法,依次包括以下步骤:
(1)根据单井W测井解释曲线,将隔层厚度小于1.5m的相邻产层视为同一压裂改造小层,从而把单井W压裂层段划分为2个压裂改造小层,从改造层段底部向上依次记为第1层(4317~4323)、第2层(4309.4~4315)。
(2)第2层的压裂参数设计如下:
①由于地层裂缝闭合压力为48MPa,设计第2层支撑剂密度ρp2为1500kg/m3;平均地层温度为140℃,设计第2层压裂液视粘度μ2为0.2Pa·s。
②考虑携砂浓度和裂缝壁面效应的影响,计算得到:fc=0.437;fw=0.903,得到第2层顶部支撑剂在第2段压裂液中沉降速度:
根据停泵后裂缝闭合时间TC,计算第2层顶部支撑剂在裂缝中的沉降高度为6.35m,即射孔位置在距第2层顶部向上6.35m处。
③同理,考虑携砂浓度和裂缝壁面效应的影响,第2层底部支撑剂在第1段压裂液中的沉降速度的表达式如下:
根据第2层压裂改造小层厚度h2为5.6m,计算第2层底部支撑剂在裂缝中的沉降高度为11.95m。
根据第2层底部支撑剂在第1段压裂液中的沉降速度以及第2层底部支撑剂在裂缝中的沉降高度计算第2段携砂液泵送时间T2,表达式如下:
(3)第1层的压裂参数设计如下:
①根据现场施工实践,得到第1层支撑剂密度ρp1为1750kg/m3
②根据第2层与第1层之间的隔层厚度,计算第1层顶部支撑剂在裂缝中的沉降高度为13.95m。
根据第2层携砂液的泵送时间T2和停泵后裂缝闭合时间TC,计算第1层顶部支撑剂在第1段压裂液中的沉降速度为表达式如下:
考虑携砂浓度和裂缝壁面效应的影响,确定第1段压裂液视粘度μ1,表达式如下:
③根据第1层压裂改造小层的厚度h1为6m,得到第1层底部支撑剂的沉降高度为19.95m。
考虑携砂浓度和裂缝壁面效应的影响,通过下式计算第1层底部支撑剂在前置液中的沉降速度为
式中μ0一前置液视粘度,Pa·s。
根据第1层底部支撑剂的沉降高度与第1层底部支撑剂在前置液中的沉降速度为通过下式计算出第1段携砂液泵送时间T1
(4)联立上述方程,解出所有参数,设计的压裂参数如下:

Claims (3)

1.一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法,依次包括以下步骤:
(1)根据某单井测井解释得到的储层地质参数和物性参数,将隔夹层厚度小于1.5m的相邻产层视为同一压裂改造小层,把单井压裂层段划分为N个压裂改造小层,从压裂改造层段底部向上依次记为第1层、第2层、…、第N层;
(2)设计顶部第N层的压裂参数,过程如下:
①根据压裂层段的地层裂缝闭合压力P与地层温度T,确定第N层支撑剂密度ρpN与压裂液视粘度μN
当P≤50MPa时,ρpN=1500kg/m3
当50MPa<P<70MPa时,ρpN=1700kg/m3
当P≥70MPa时,ρpN=1830kg/m3
当T≤90℃时,μN=0.1Pa·s;
当90℃<T<120℃时,μN=0.15Pa·s;
当T≥120℃时,μN=0.2Pa·s;
②通过第N层顶部支撑剂在第N段压裂液中的沉降速度和停泵后裂缝闭合时间TC,计算第N层顶部支撑剂在裂缝中的沉降高度从而确定射孔位置:
通过如下公式计算第N层顶部支撑剂在第N段压裂液中的沉降速度
式中fc一浓度校正系数,其表达式为:fc=Cf 5.5
fw一裂缝壁面校正系数,其表达式为:
μN一第N层压裂液视粘度,Pa·s;
ρpN一第N层支撑剂密度,kg/m3
ρf一压裂液净液密度,kg/m3
dp一支撑剂颗粒直径,m;
Cf一支撑剂与压裂液混合物中液体所占体积分数;
W一裂缝宽度,m;
g一重力加速度,9.8m/s2
计算第N层顶部支撑剂在裂缝中的沉降高度从而确定射孔位置在距第N层顶部向上处:
式中υf一携砂液在裂缝中垂直向下的运移速度,m/s;
③根据第N层底部支撑剂在第(N-1)段压裂液中的沉降速度第N层底部支撑剂在裂缝中的沉降高度以及停泵后裂缝闭合时间TC,确定第N段携砂液泵送时间TN
通过下式计算第N层底部支撑剂在第(N-1)段压裂液中的沉降速度
式中μN-1一第(N-1)层压裂液的视粘度,Pa·s;
根据第N层压裂改造小层厚度hN,计算第N层底部支撑剂在裂缝中的沉降高度
根据第N层底部支撑剂在裂缝中的沉降高度以及停泵后裂缝闭合时间TC,计算出第N段携砂液泵送时间TN
式中υf一携砂液在裂缝中垂直向下的运移速度,m/s;
(3)设计第(N-1)层的压裂参数,过程如下:
①根据现场施工实践,确定第(N-1)层支撑剂密度ρp(N-1)
ρp(N-1)=ρpN+250
式中ρpN一第N层支撑剂密度,kg/m3
②考虑携砂浓度和裂缝壁面效应的影响,确定第(N-1)段压裂液视粘度μN-1
根据第N层与第(N-1)层之间的隔夹层厚度计算第(N-1)层顶部支撑剂在裂缝中的沉降高度
根据第N层携砂液的泵送时间TN、停泵后裂缝闭合时间TC,通过下式计算第(N-1)层顶部支撑剂在第(N-1)段压裂液中的沉降速度为
根据下式确定第(N-1)段压裂液视粘度μN-1
③根据第(N-1)层底部支撑剂在裂缝中的沉降高度与第(N-1)层底部支撑剂在第(N-2)段压裂液中的沉降速度为确定第(N-1)段携砂液泵送时间TN-1
根据第(N-1)层压裂改造小层的厚度hN-1,计算第(N-1)层底部支撑剂在裂缝中的沉降高度
通过下式计算第(N-1)层底部支撑剂在第(N-2)段压裂液中的沉降速度为
式中μN-2一第(N-2)段压裂液的视粘度,Pa·s;
根据第(N-1)层底部支撑剂在裂缝中的沉降高度与第(N-1)层底部支撑剂在第(N-2)段压裂液中的沉降速度为计算出第(N-1)段携砂液泵送时间TN-1
(4)重复步骤(3),最终确定第(N-2)层、第(N-3)层、…、第1层的支撑剂密度、压裂液视粘度以及泵注时间的计算公式;
(5)联立上述方程,解出射孔位置以及全部压裂改造小层的支撑剂密度、压裂液视粘度、泵注时间。
2.如权利要求1所述的一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法,其特征在于,所述步骤(1)把单井压裂层段划分为N个压裂改造小层,N≥2。
3.如权利要求1所述的一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法,其特征在于,所述步骤(4)当计算第1层底部支撑剂在前置液中的沉降速度为时,μ0为前置液的视粘度。
CN201810702864.6A 2018-06-30 2018-06-30 一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法 Active CN109826609B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810702864.6A CN109826609B (zh) 2018-06-30 2018-06-30 一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810702864.6A CN109826609B (zh) 2018-06-30 2018-06-30 一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法

Publications (2)

Publication Number Publication Date
CN109826609A CN109826609A (zh) 2019-05-31
CN109826609B true CN109826609B (zh) 2019-09-17

Family

ID=66859505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810702864.6A Active CN109826609B (zh) 2018-06-30 2018-06-30 一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法

Country Status (1)

Country Link
CN (1) CN109826609B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110984947B (zh) * 2019-12-17 2022-04-01 西南石油大学 一种针对天然裂缝发育气藏水力压裂的支撑剂精准置放方法
CN110984948B (zh) * 2019-12-23 2022-04-08 中国石油集团川庆钻探工程有限公司 一种压裂用支撑剂在裂缝中的注入能力测试评价方法
CN111173489B (zh) * 2020-01-06 2021-11-02 西南石油大学 一种裂缝中含纤维支撑剂团自由沉降速度的计算方法
CN111287720A (zh) * 2020-02-27 2020-06-16 西南石油大学 一种基于可压性评价的致密油气藏水力压裂优化设计方法
CN111764882B (zh) * 2020-06-28 2023-02-07 中国石油天然气股份有限公司 一种采用化学剂优化支撑剂浓度的压裂设计优化方法
CN112761609B (zh) * 2021-02-19 2022-02-01 西南石油大学 一种水力压裂作业中高效铺置支撑剂的优化方法
CN113218770B (zh) * 2021-03-12 2022-07-01 西南石油大学 一种多岩性压裂裂缝试验方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2230899C2 (ru) * 2000-08-18 2004-06-20 Ухтинский государственный технический университет Способ разработки газогидратных залежей
CN102865060A (zh) * 2012-09-25 2013-01-09 西南石油大学 一种页岩油藏水力压裂支撑剂量的确定方法
CN104594871A (zh) * 2014-12-27 2015-05-06 重庆地质矿产研究院 一种模拟页岩复杂裂缝铺砂的装置和方法
CN105735961A (zh) * 2016-02-18 2016-07-06 西南石油大学 一种低渗致密储层分层压裂级数优选方法
CN107313762A (zh) * 2016-04-26 2017-11-03 中国石油化工股份有限公司 一种页岩水力压裂方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2230899C2 (ru) * 2000-08-18 2004-06-20 Ухтинский государственный технический университет Способ разработки газогидратных залежей
CN102865060A (zh) * 2012-09-25 2013-01-09 西南石油大学 一种页岩油藏水力压裂支撑剂量的确定方法
CN104594871A (zh) * 2014-12-27 2015-05-06 重庆地质矿产研究院 一种模拟页岩复杂裂缝铺砂的装置和方法
CN105735961A (zh) * 2016-02-18 2016-07-06 西南石油大学 一种低渗致密储层分层压裂级数优选方法
CN107313762A (zh) * 2016-04-26 2017-11-03 中国石油化工股份有限公司 一种页岩水力压裂方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"压裂气井支撑剂回流及出砂控制研究及其应用";李天才等;《西安石油大学学报(自然科学版)》;20060530;第21卷(第3期);第44-48页

Also Published As

Publication number Publication date
CN109826609A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
CN109826609B (zh) 一种针对多隔夹层油气藏水力压裂的支撑剂精准置放方法
CN104594872B (zh) 一种优化致密气藏压裂水平井裂缝导流能力的方法
CN102733789B (zh) 深层稠油油藏厚砂岩储层层内水力分段压裂施工增产方法
CN104234677B (zh) 一种注气垂直驱替提高凝析气藏凝析油采收率方法
CN106437674B (zh) 仿水平井注水开发井网适配方法
CN103089224A (zh) 一种综合控制裂缝高度的压裂方法
CN104989341B (zh) 一种确定低渗透油藏有效驱替注采井距的方法
CN108952660A (zh) 一种模拟注水井水压驱动裂缝延伸动态的方法
CN108868748A (zh) 一种页岩气水平井重复压裂裂缝开启压力的计算方法
RU2305762C1 (ru) Способ разработки залежи вязкой нефти или битума
CN105626036A (zh) 一种确定油藏合理产液量油藏工程计算方法
CN109751035A (zh) 一种油气藏压裂加砂方法
CN105604534A (zh) 用于煤层气储层增产的水力波及压裂工艺方法
CN103899285A (zh) 多层砂岩油藏近极限含水期轮替水驱方法
CN106321051A (zh) 一种用于优化多段压裂水平井网络裂缝参数的方法
CN104818978A (zh) 一种海上低渗油藏厚油层开发的一井多控方法
CN102852505A (zh) 薄-中厚层超稠油难采储量采油方法
CN109751036A (zh) 一种深层页岩气延缓有效裂缝改造体积递减的方法
CN110259421A (zh) 一种裂缝性的致密油藏注水补充能量方法
CN101424185B (zh) 注采主流线与分流线油藏剩余油参数特征及关系的地球化学测定方法
CN105134151B (zh) 热氮气增能降粘增产工艺
CN204804804U (zh) 一种油砂sagd可视化二维物理模拟设备
RU2599994C1 (ru) Способ разработки неоднородного пласта сверхвязкой нефти
Wu et al. Resources
RU2627336C1 (ru) Способ разработки слабопроницаемых коллекторов периодичной закачкой углекислого газа

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant