CN109807907A - 微纳线制备装置及微纳结构 - Google Patents

微纳线制备装置及微纳结构 Download PDF

Info

Publication number
CN109807907A
CN109807907A CN201910149242.XA CN201910149242A CN109807907A CN 109807907 A CN109807907 A CN 109807907A CN 201910149242 A CN201910149242 A CN 201910149242A CN 109807907 A CN109807907 A CN 109807907A
Authority
CN
China
Prior art keywords
micro
nano
liquid phase
line
preparation facilities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910149242.XA
Other languages
English (en)
Inventor
方欲晓
赵春
赵策洲
杨莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong Liverpool University
Original Assignee
Xian Jiaotong Liverpool University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong Liverpool University filed Critical Xian Jiaotong Liverpool University
Priority to CN201910149242.XA priority Critical patent/CN109807907A/zh
Publication of CN109807907A publication Critical patent/CN109807907A/zh
Priority to GB2016347.3A priority patent/GB2594537B/en
Priority to KR1020207032771A priority patent/KR102426520B1/ko
Priority to PCT/CN2020/074811 priority patent/WO2020173301A1/zh
Priority to US17/049,179 priority patent/US20210257130A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/32Filling or coating with impervious material
    • H01B13/322Filling or coating with impervious material the material being a liquid, jelly-like or viscous substance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B5/00Devices comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0003Apparatus or processes specially adapted for manufacturing conductors or cables for feeding conductors or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • H01B7/0027Liquid conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种微纳线制备装置及微纳结构,属于微电子技术领域。所述微纳线制备装置包括液相纳米材料存储装置和微纳线布施机构;所述液相纳米材料存储装置设有至少一个出液孔,微纳线布施机构与出液孔一一对应设置;所述微纳线布施机构包括至少两根柔性线材,柔性线材表面具有规则分布的微型结构,柔性线材根部固定在液相纳米材料存储装置上,两根柔性线材为一组、端部下垂落于衬底上并相互顶靠,端部顶靠的两根柔性线材在衬底上投影后的夹角范围为1°~5°。本发明基于液相纳米材料的重力、与柔性线材的拉普拉斯压力差和不对称保持力,能够实现微纳线的快速制备。

Description

微纳线制备装置及微纳结构
技术领域
本发明涉及的是一种微电子领域的技术,具体是一种微纳线制备装置及微纳结构。
背景技术
利用液相纳米材料在特定衬底上制备的微纳图形或微纳线在集成电路、光学微电子器件、生物传感器和生物探测器方面具有很大的研究前景,这些领域中的器件性能很大程度上取决于一维的微纳图形或微纳线。例如,利用有机材料制备的微纳图形或微纳线可以提高电子与空穴转移的平衡性,从而改善集成电路和光学微电子器件的性能。
近几十年中,有很多制备一维微纳图形或微纳线的方法,例如光刻、微接触印刷、喷墨印刷等,然而这些方法成本较高,工艺复杂,而且可制备的微纳图形有限,通常只能将一些设计好的图形转移到衬底上,而且很难制备出纳米级别的图案。目前制备纳米级图案普遍采用滴注法,然而滴注法制备微纳线的成功率低,制备面积小,微纳线的形状、方向和位置都是随机不可控的。
发明内容
本发明针对现有技术存在的上述不足,提出了一种微纳线制备装置及微纳结构。
本发明是通过以下技术方案实现的:
本发明涉及一种微纳线制备装置,包括液相纳米材料存储装置和微纳线布施机构;液相纳米材料存储装置设有至少一个出液孔,微纳线布施机构与出液孔一一对应设置;微纳线布施机构包括至少两根柔性线材,柔性线材表面具有规则分布的微型结构,柔性线材根部固定在液相纳米材料存储装置上,两根柔性线材为一组、端部下垂落于衬底上并相互顶靠,端部顶靠的两根柔性线材在衬底上投影后的夹角范围为1°~5°。
柔性线材优选动物毫发。
液相纳米材料存储装置存储液相纳米材料,液相纳米材料为量子点材料、荧光材料、导电高分子聚合物材料中至少一种。
衬底为硅基材料、柔性材料中任意一种,优选柔性材料,柔性材料可以是平面结构的也可以是曲面结构的。
在一些技术方案中,液相纳米材料存储装置通过支架与运动执行机构固定连接;优选地,液相纳米材料存储装置在支架上可上下转动设置,通过转动调节柔性线材自然垂落的角度;进一步优选地,采用旋转角度可控的铰链结构。
在一些技术方案中,运动执行机构包括一对X轴直线位移机构、架设在一对X轴直线位移机构上的Y轴直线位移机构和架设在Y轴直线位移机构上的Z轴直线位移机构,通过Z轴直线位移机构控制柔性线材相对于衬底的压力,进而控制微纳线的宽度。
在一些技术方案中,运动执行机构可以采用机器人,如并联机器人或串联机器人。
本发明涉及一种微纳结构,包括微纳线构成的一维图形,设置在衬底上,采用上述微纳线制备装置制备得到。
技术效果
与现有技术相比,本发明具有如下技术效果:
1)基于液相纳米材料的重力、与柔性线材的拉普拉斯压力差和不对称保持力能够实现微纳线的快速制备;
2)通过控制柔性线材的运动方向、运动速度和相对于衬底压力,可以精确控制制备的微纳线的宽度和厚度,保证了微纳线的物理化学性能;
3)通过稳定地移动柔性线材,可在任意形状的衬底上制备出均匀的微纳线,特别是柔性或曲面衬底,使本发明在可穿戴、可植入的电子器件生产中具有很大的应用前景;
4)材料和器件可选择范围广,成本低,制备条件要求低,工艺简单,可大面积生产。
附图说明
图1为实施例1的结构示意图;
图2为实施例1中液相纳米材料存储装置结构示意图;
图中:X轴直线位移机构100、Y轴直线位移机构200、Z轴直线位移机构300、支架400、液相纳米材料存储装置500、出液孔501、动物毫发600、微纳线700、衬底800。
具体实施方式
下面结合附图及具体实施方式对本发明进行详细描述。
实施例1
如图1和图2所示,本实施例涉及一种微纳线制备装置,包括:一对X轴直线位移机构100、Y轴直线位移机构200、Z轴直线位移机构300和液相纳米材料存储装置500,其中,一对X轴直线位移机构100之间设有衬底800;液相纳米材料存储装置500设有出液孔501和微纳线布施机构,微纳线布施机构与出液孔501一一对应设置;微纳线布施机构优选包括两根动物毫发600,两动物毫发600根部优选粘结在液相纳米材料存储装置500上,出液孔501设置在两动物毫发600根部之间,两动物毫发600端部下垂并在下垂部相互顶靠,两动物毫发600在衬底800上投影后的夹角范围为1°~5°。
液相纳米材料存储装置500通过支架400与Z轴直线位移机构300固定连接,并可在Z轴直线位移机构300上稳定移动;Z轴直线位移机构300与Y轴直线位移机构200相连接,并可在Y轴直线位移机构200上稳定移动;Y轴直线位移机构200与X轴直线位移机构100相连接,并可在X轴直线位移机构100上稳定移动;X轴直线位移机构100固定在稳定的平台上。
优选地,X轴直线位移机构100、Y轴直线位移机构200和Z轴直线位移机构300均为可编程直线位移机构,如直线电机模组,可以精确控制动物毫发600的运动方向,运动速度和相对于衬底压力。
两动物毫发600根部的间距为1-3mm。
动物毫发600与衬底800之间的角度和距离可以通过液相纳米材料存储装置500相对于支架400转动进行调节;优选地,动物毫发600根部切线与衬底800之间的角度为20°-70°,根部到衬底的垂直距离小于7cm。
本发明实施例的工作原理如下:
液相纳米材料在重力作用下通过出液孔501流入两根动物毫发600的间隙中;
当动物毫发600接触到衬底800时,间隙中的液相纳米材料在重力、拉普拉斯压力差和不对称保持力的作用下,被连续的、可控的转移到衬底800上,形成宽度均匀的微纳线700,微纳线700具有与液相纳米材料相同的功能属性。
微纳线700的形状根据动物毫发600的运动轨迹变化,微纳线700的宽度和厚度都可实现纳米级别控制,其中微纳线的厚度取决于移动速度、毫发长度和液体表面张力;优选地,微纳线700的宽度为50-1000nm,厚度为40-150nm。
需要强调的是:以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种微纳线制备装置,其特征在于,包括液相纳米材料存储装置和微纳线布施机构;所述液相纳米材料存储装置设有至少一个出液孔,微纳线布施机构与出液孔一一对应设置;所述微纳线布施机构包括至少两根柔性线材,柔性线材表面具有规则分布的微型结构,柔性线材根部固定在液相纳米材料存储装置上,两根柔性线材为一组、端部下垂落于衬底上并相互顶靠,端部相互顶靠的两根柔性线材在衬底上投影后的夹角范围为1°~5°。
2.根据权利要求1所述微纳线制备装置,其特征是,所述衬底为硅基材料、柔性材料中任意一种。
3.根据权利要求1所述微纳线制备装置,其特征是,所述柔性线材采用动物毫发。
4.根据权利要求1所述微纳线制备装置,其特征是,所述液相纳米材料存储装置通过支架与运动执行机构固定连接。
5.根据权利要求4所述微纳线制备装置,其特征是,所述液相纳米材料存储装置在支架上可上下转动设置。
6.根据权利要求5所述微纳线制备装置,其特征是,所述液相纳米材料存储装置通过旋转角度可控的铰链结构固定在支架上。
7.根据权利要求4所述微纳线制备装置,其特征是,所述液相纳米材料存储装置存储液相纳米材料,液相纳米材料为量子点材料、荧光材料、导电高分子聚合物材料中至少一种。
8.根据权利要求4所述微纳线制备装置,其特征是,所述运动执行机构包括一对X轴直线位移机构、架设在一对X轴直线位移机构上的Y轴直线位移机构和架设在Y轴直线位移机构上的Z轴直线位移机构。
9.一种微纳结构,其特征在于,所述微纳结构包括微纳线构成的一维图形,设置在衬底上,采用权利要求1-8任一项所述微纳线制备装置制备得到。
10.根据权利要求9所述微纳结构,其特征是,所述微纳线的宽度为50-1000nm,厚度为40-150nm。
CN201910149242.XA 2019-02-28 2019-02-28 微纳线制备装置及微纳结构 Pending CN109807907A (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201910149242.XA CN109807907A (zh) 2019-02-28 2019-02-28 微纳线制备装置及微纳结构
GB2016347.3A GB2594537B (en) 2019-02-28 2020-02-12 Micro-nano wire manufacturing device and micro-nano structure
KR1020207032771A KR102426520B1 (ko) 2019-02-28 2020-02-12 마이크로 나노 와이어 제조장치 및 마이크로 나노 구조
PCT/CN2020/074811 WO2020173301A1 (zh) 2019-02-28 2020-02-12 微纳线制备装置及微纳结构
US17/049,179 US20210257130A1 (en) 2019-02-28 2020-02-12 Micro-Nano Wire Manufacturing Device and Micro-Nano Structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910149242.XA CN109807907A (zh) 2019-02-28 2019-02-28 微纳线制备装置及微纳结构

Publications (1)

Publication Number Publication Date
CN109807907A true CN109807907A (zh) 2019-05-28

Family

ID=66607623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910149242.XA Pending CN109807907A (zh) 2019-02-28 2019-02-28 微纳线制备装置及微纳结构

Country Status (5)

Country Link
US (1) US20210257130A1 (zh)
KR (1) KR102426520B1 (zh)
CN (1) CN109807907A (zh)
GB (1) GB2594537B (zh)
WO (1) WO2020173301A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020173301A1 (zh) * 2019-02-28 2020-09-03 西交利物浦大学 微纳线制备装置及微纳结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102344115A (zh) * 2011-09-28 2012-02-08 清华大学 基于蘸笔原理的微纳尺度连接方法
JP2012222019A (ja) * 2011-04-05 2012-11-12 Canon Inc ナノワイヤの配列方法、及び分離方法
KR20130036550A (ko) * 2011-10-04 2013-04-12 연세대학교 원주산학협력단 에이에프엠 캔틸레버와 극초단펄스 전압을 이용한 전도성 고분자 나노 와이어 제조방법
CN103612391A (zh) * 2013-11-13 2014-03-05 西安交通大学 一种基于近场静电纺丝的微纳结构的3d打印方法
CN103660540A (zh) * 2012-09-25 2014-03-26 中国科学院理化技术研究所 电子器件印刷装置
CN105185910A (zh) * 2015-09-09 2015-12-23 东北师范大学 利用毛笔制备有机半导体单晶微纳线阵列的方法
CN107399713A (zh) * 2017-08-18 2017-11-28 西安交通大学 基于功能材料微纳三维复杂结构的原位反应直写制造方法
CN108264017A (zh) * 2017-01-04 2018-07-10 北京赛特超润界面科技有限公司 一种毛笔式导液浸润装置
CN209850936U (zh) * 2019-02-28 2019-12-27 西交利物浦大学 微纳线制备装置及微纳结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109807907A (zh) * 2019-02-28 2019-05-28 西交利物浦大学 微纳线制备装置及微纳结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222019A (ja) * 2011-04-05 2012-11-12 Canon Inc ナノワイヤの配列方法、及び分離方法
CN102344115A (zh) * 2011-09-28 2012-02-08 清华大学 基于蘸笔原理的微纳尺度连接方法
KR20130036550A (ko) * 2011-10-04 2013-04-12 연세대학교 원주산학협력단 에이에프엠 캔틸레버와 극초단펄스 전압을 이용한 전도성 고분자 나노 와이어 제조방법
CN103660540A (zh) * 2012-09-25 2014-03-26 中国科学院理化技术研究所 电子器件印刷装置
CN103612391A (zh) * 2013-11-13 2014-03-05 西安交通大学 一种基于近场静电纺丝的微纳结构的3d打印方法
CN105185910A (zh) * 2015-09-09 2015-12-23 东北师范大学 利用毛笔制备有机半导体单晶微纳线阵列的方法
CN108264017A (zh) * 2017-01-04 2018-07-10 北京赛特超润界面科技有限公司 一种毛笔式导液浸润装置
CN107399713A (zh) * 2017-08-18 2017-11-28 西安交通大学 基于功能材料微纳三维复杂结构的原位反应直写制造方法
CN209850936U (zh) * 2019-02-28 2019-12-27 西交利物浦大学 微纳线制备装置及微纳结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020173301A1 (zh) * 2019-02-28 2020-09-03 西交利物浦大学 微纳线制备装置及微纳结构
GB2594537A (en) * 2019-02-28 2021-11-03 Xian Jiaotong Liverpool Univ Micro-nano wire manufacturing device and micro-nano structure
GB2594537B (en) * 2019-02-28 2023-05-03 Xian Jiaotong Liverpool Univ Micro-nano wire manufacturing device and micro-nano structure

Also Published As

Publication number Publication date
KR20210003805A (ko) 2021-01-12
KR102426520B1 (ko) 2022-07-27
US20210257130A1 (en) 2021-08-19
GB2594537B (en) 2023-05-03
GB2594537A (en) 2021-11-03
WO2020173301A1 (zh) 2020-09-03
GB202016347D0 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
Wajahat et al. Flexible strain sensors fabricated by meniscus-guided printing of carbon nanotube–polymer composites
Ye et al. Large‐scale direct‐writing of aligned nanofibers for flexible electronics
Wei et al. Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting
CN109228304B (zh) 一种电场诱导辅助电喷射的三维打印装置
US10974442B2 (en) Set-up and method of electrohydrodynamic jet 3D printing based on resultant effect of electric field and thermal field
Singh et al. Significance of nano-materials, designs consideration and fabrication techniques on performances of strain sensors-A review
Yin et al. Electrohydrodynamic direct-writing for flexible electronic manufacturing
Zhang et al. Electro-hydrodynamic direct-writing technology toward patterned ultra-thin fibers: Advances, materials and applications
CN105300378B (zh) 一种室内移动机器人导航定位方法
CN109807907A (zh) 微纳线制备装置及微纳结构
CN109357796A (zh) 可穿戴压力传感器及其制造方法
Wang et al. Research on Multinozzle Near‐Field Electrospinning Patterned Deposition
Park et al. Contact angle control of sessile drops on a tensioned web
CN101497428A (zh) 一种利用静电纺丝排列纳米线阵列的方法
CN110527468A (zh) 一种基于一维、二维材料的力致导电胶的制备与应用
CN109228305B (zh) 一种电场诱导辅助电喷射的三维打印方法
Cong et al. Electrohydrodynamic printing for demanding devices: A review of processing and applications
CN209850936U (zh) 微纳线制备装置及微纳结构
CN101270197B (zh) 可调均匀孔聚苯乙烯单层膜的制备方法
CN102222770B (zh) 一种小线宽沟道的制备方法及其应用
Kakunuri et al. Fabrication of bio-inspired hydrophobic self-assembled electrospun nanofiber based hierarchical structures
Kong et al. Direct Writing of Silver Nanowire Patterns with Line Width down to 50 μm and Ultrahigh Conductivity
CN100577557C (zh) 一种组装半导体纳米线的方法
Pei et al. Flexible nozzle based liquid metal direct writing system assisted in patterned silicon nanowires
Tong et al. Fundamentals and design guides for printed flexible electronics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination