CN109803392A - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
CN109803392A
CN109803392A CN201711147135.0A CN201711147135A CN109803392A CN 109803392 A CN109803392 A CN 109803392A CN 201711147135 A CN201711147135 A CN 201711147135A CN 109803392 A CN109803392 A CN 109803392A
Authority
CN
China
Prior art keywords
data
frame
sending
sent
sta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711147135.0A
Other languages
English (en)
Other versions
CN109803392B (zh
Inventor
淦明
左鑫
梁丹丹
杨讯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201711147135.0A priority Critical patent/CN109803392B/zh
Priority to CN202111284914.1A priority patent/CN114222367A/zh
Publication of CN109803392A publication Critical patent/CN109803392A/zh
Application granted granted Critical
Publication of CN109803392B publication Critical patent/CN109803392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据传输方法及装置,属于通信技术领域。方法包括:发送全双工FD触发帧,FD触发帧包括长度字段,所述长度字段用于指示进行数据传输所需要的时间;在发送FD触发帧后隔预设时间间隔向待接收数据的STA发送第一数据;接收发送数据的STA发送的第二数据;向发送数据的STA发送第二数据的确认帧;接收待接收数据的STA发送的第一数据的确认帧。本公开通过在发送数据之前,AP发送一个包括长度字段的触发帧,使得上下行不同传输方向的数据传输同时结束,既避免了确认帧无法被正确接收的问题,也避免了信道资源被抢占的问题,保障了AP和STA之间正确的数据传输。

Description

数据传输方法及装置
技术领域
本公开涉及通信技术领域,特别涉及一种数据传输方法及装置。
背景技术
全双工(full duplex,FD)技术能够在同一个无线信道上实现上下行不同传输方向的数据信号传输,即在发送数据信号的同时也能够接收数据信号,数据信号的发送和接收同步进行。相比于传统的半双工(half duplex,HD)技术,如频分双工、时分双工等,全双工技术可以将频谱利用率提高一倍,因而成为下一代无线保真(wireless fidelity,WiFi)的潜在技术之一。
目前,相关技术的通信流程如下:接入点(access point,AP)先发送预设帧给2个站点(station,STA),如STA1和STA2,其中,STA1为接收数据的STA,STA2为发送数据的STA。STA2接收到该预设帧后,隔短帧间间隔(short inter-frame space,SIFS)发送数据给AP,此时AP同时发送数据给STA1。在接收到数据后,AP和STA1进行ACK帧的发送,如STA1向AP发送ACK帧,AP向STA2发送ACK帧。
在实现本公开的过程中,发明人发现现有技术至少存在以下问题:
上述技术中AP发送的数据和STA2发送的数据可能在传输过程中所用的时间不一致,导致STA1和AP接收到数据的时间不同,这样先接收到数据的STA1向AP发送ACK帧的时间距其接收到数据的时间超过SIFS,进而导致在STA1接收到数据的时间至其发送ACK帧的时间段内信道资源可能会被其他STA抢占,从而影响STA1与AP之间的数据传输。
发明内容
本公开实施例提供了一种数据传输方法及装置,可以解决现有技术信道资源被抢占而影响数据传输的问题。所述技术方案如下:
第一方面,提供了一种数据传输方法,所述方法包括:
发送FD触发帧,所述FD触发帧包括长度字段,所述长度字段用于指示进行数据传输所需要的时间;
在发送所述FD触发帧后隔预设时间间隔向待接收数据的STA发送第一数据;
接收发送数据的STA发送的第二数据,所述第二数据由所述发送数据的STA在接收到所述FD触发帧后隔所述预设时间间隔发送;
向所述发送数据的STA发送所述第二数据的确认帧;
接收所述待接收数据的STA发送的所述第一数据的确认帧。
本公开实施例提供的方法,针对只有AP支持全双工的通信场景,通过在发送数据之前,AP向STA1和STA2发送一个包括长度字段的触发帧。该长度字段指示全双工中的上行和下行数据传输所需要的时间相同,使得STA2发送的数据到达AP的时间和AP发送的数据到达STA1的时间一致,上下行不同传输方向的数据传输同时结束。这样,AP和STA1可以同时响应确认帧或以指定先后顺序响应确认帧,既避免了确认帧无法被正确接收的问题,也避免了信道资源被抢占的问题,保障了AP和STA之间正确的数据传输。
在第一方面的第一种可能实现方式中,所述向所述发送数据的STA发送所述第二数据的确认帧,包括:
在接收到所述第二数据后隔所述预设时间间隔向所述发送数据的STA发送所述第二数据的确认帧。
在第一方面的第二种可能实现方式中,所述向所述发送数据的STA发送所述第二数据的确认帧,包括:
根据预先设置的确认帧发送先后顺序以及发送时间差,向所述发送数据的STA发送所述第二数据的确认帧。
在第一方面的第三种可能实现方式中,所述长度字段与上行物理层协议数据单元(physical protocol data unit,PPDU)或下行PPDU中传统前导码中传统信令字段中的长度字段相同。
在第一方面的第四种可能实现方式中,所述方法还包括:
当待传输的数据传输所需要的时间小于所述长度字段对应的时间时,向所述待传输的数据中填充默认值或随机值,使得所述待传输的数据传输所需要的时间等于所述FD触发帧中长度字段对应的时间。
在第一方面的第五种可能实现方式中,所述待接收数据的STA和所述发送数据的STA为同一个STA。
第二方面,提供了一种数据传输方法,其特征在于,所述方法包括:
接收FD触发帧,所述FD触发帧包括长度字段,所述长度字段用于指示进行数据传输所需要的时间;
与发送所述FD触发帧的设备进行数据传输。
本公开实施例提供的方法,针对AP和STA都支持全双工的通信场景,通过在发送数据之前,AP向STA发送一个包括长度字段的触发帧。由于该长度字段用于指示进行数据传时的时间,从而在传输速率一致的情况下,可以保证上下行不同传输方向的数据的传输时间一致,使得STA发送的数据到达AP的时间和AP发送的数据到达STA的时间一致,上下行不同传输方向的数据传输同时结束。这样,AP和STA可以同时响应确认帧或以指定先后顺序响应确认帧,既避免了确认帧无法被正确接收的问题,也避免了信道资源被抢占的问题,保障了AP和STA之间正确的数据传输。
在第二方面的第一种可能实现方式中,所述与发送所述FD触发帧的设备进行数据传输,包括:
接收所述设备发送的第一数据,所述第一数据由所述设备在发送所述FD触发帧后隔预设时间间隔发送;
向所述设备发送所述第一数据的确认帧。
在第二方面的第二种可能实现方式中,所述向所述设备发送所述第一数据的确认帧,包括:
在接收到所述第一数据后隔所述预设时间间隔向所述设备发送所述第一数据的确认帧。
在第二方面的第三种可能实现方式中,所述向所述设备发送所述第一数据的确认帧,包括:
根据预先设置的确认帧发送先后顺序以及发送时间差,向所述设备发送所述第一数据的确认帧。
在第二方面的第四种可能实现方式中,所述与发送所述FD触发帧的设备进行数据传输,包括:
在接收到所述FD触发帧后隔预设时间间隔向所述设备发送第二数据;
接收所述设备发送的所述第二数据的确认帧。
在第二方面的第五种可能实现方式中,所述与所述发送FD触发帧的设备进行数据传输,包括:
在接收到所述FD触发帧后隔预设时间间隔向所述设备发送所述第二数据;
接收所述设备发送的所述第一数据;
向所述设备发送所述第一数据的确认帧;
接收所述设备发送的所述第二数据的确认帧。
在第二方面的第六种可能实现方式中,其特征在于,所述长度字段与上行PPDU或下行PPDU中传统前导码中传统信令字段中的长度字段相同。
在第二方面的第七种可能实现方式中,所述方法还包括:
当待传输的数据传输所需要的时间小于所述长度字段对应的时间时,向所述待传输的数据中填充默认值或随机值,使得所述待传输的数据传输所需要的时间等于所述长度字段对应的时间。
第三方面,提供了一种数据传输方法,所述方法包括:
发送FD请求发送(require to send,RTS)帧;
接收待接收数据的STA发送的第一允许发送(clear to send,CTS)帧和待发送数据的STA发送的第二CTS帧,所述第一CTS帧和所述第二CTS帧的发送时间相同且包含的内容相同;
与所述待接收数据的STA和所述待发送数据的STA进行数据传输。
本公开实施例提供的方法,针对只有AP支持全双工的通信场景,通过在数据传输之前进行FD RTS/CTS的信道保护流程,且STA1和STA2在接收到FD RTS帧后同时向AP发送CTS帧,使得AP可以同时接收到这两类STA发送的CTS帧。相比于现有技术在进行信道保护时STA1和STA2按顺序发送CTS帧,浪费空口传输时间以及容易出现由于某个STA没有回复CTS帧导致信道保护失败的情况,本公开中多个STA同时发送CTS帧的信道保护方案既节省了空口传输时间,也避免了多个STA轮流发送CTS帧的不可靠性,加强了信道保护的鲁棒性。
在第三方面的第一种可能实现方式中,所述第一CTS帧和所述第二CTS帧采用与所述FD RTS帧相同的扰码初始状态和调制编码参数。
第四方面,提供了一种数据传输方法,其特征在于,所述方法包括:
接收FD RTS帧;
向发送所述FD RTS帧的设备发送CTS帧;
与所述设备进行数据传输。
本公开实施例提供的方法,针对只有AP支持全双工的通信场景,通过在数据传输之前进行FD RTS/CTS的信道保护流程,每个STA在接收到FD RTS帧后同时向AP发送CTS帧,使得AP可以同时接收到这两类STA发送的CTS帧。相比于现有技术在进行信道保护时不同STA按顺序发送CTS帧,浪费空口传输时间以及容易出现由于某个STA没有回复CTS帧导致信道保护失败的情况,本公开中STA同时发送CTS帧的信道保护方案既节省了空口传输时间,也避免了多个STA轮流发送CTS帧的不可靠性,加强了信道保护的鲁棒性。
在第四方面的第一种可能实现方式中,所述CTS帧采用与所述FD RTS帧相同的扰码初始状态和调制编码参数。
第五方面,提供了一种数据传输方法,其特征在于,所述方法包括:
发送FD触发帧,所述FD触发帧包括长度字段,所述长度字段用于指示进行数据传输所需要的时间;
接收STA发送的数据,所述数据由所述STA在接收到所述FD触发帧后隔预设时间间隔发送;
向所述STA发送所述数据的确认帧。
本公开实施例提供的方法,通过在接收到STA发送的数据后,向STA发送确认帧,使得全双工传输过程中参与数据发送的STA可以在接收到确认帧后,使用AP提供的FD EDCA参数更新自己现有的EDCA参数,从而降低信道接入的优先级,保证了参与全双工传输的STA和未参与全双工传输的STA在发送机会方面的公平性。
在第五方面的第一种可能实现方式中,所述向所述STA发送所述数据的确认帧之前,所述方法还包括:
向所述STA发送管理帧,所述管理帧携带FD增强式分布式信道接入(enhanceddistributed channel access,EDCA)参数,所述FD EDCA参数用于更新所述STA的已有EDCA参数。
第六方面,提供了一种数据传输方法,其特征在于,所述方法包括:
在接收FD触发帧后向发送所述FD触发帧的设备发送数据;
接收所述设备发送的所述数据的确认帧;
使用FD EDCA参数更新已有EDCA参数,所述已有EDCA参数包括竞争窗口(contention window,CW)min[接入类别(access category,AC)]、CWmax[AC]、仲裁帧间距数目(arbitration interframe space number,AIFSN)[AC]和FD EDCATimer[AC]。
本公开实施例提供的方法,针对全双工传输过程中参与数据发送的STA,通过在完成数据发送后,使用AP提供的FD EDCA参数更新自己现有的EDCA参数,从而降低信道接入的优先级,保证了参与全双工传输的STA和未参与全双工传输的STA在发送机会方面的公平性。
在第六方面的第一种可能实现方式中,所述FD EDCA参数的信道接入优先级小于所述已有EDCA参数。
在第六方面的第二种可能实现方式中,所述使用FD EDCA参数更新已有EDCA参数之后,所述方法包括:
根据更新后的所述FD EDCATimer[AC],确定本次更新的有效时长;
当本次更新的时长达到所述有效时长时,将所述已有EDCA参数恢复至本次更新前的状态。
在第六方面的第三种可能实现方式中,所述已有EDCA参数包含在已有EDCA参数集元素结构中的FD AC参数记录字段中,所述已有EDCA参数集元素结构与FD EDCA参数集元素结构相同。
在第六方面的第四种可能实现方式中,所述FD AC参数记录包括FD尽力而为流接入类别(access category_best effort,AC_BE)参数记录、FD背景流接入类别(accesscategory_background,AC_BK)参数记录、FD视频流接入类别(access category_video,AC_VI)参数记录以及FD语音流接入类别(access category_voice,AC_VO)参数记录。
在第六方面的第五种可能实现方式中,所述FD EDCA参数以元素的形式携带于所述设备发送的管理帧中;所述使用FD EDCA参数更新已有EDCA参数之前,所述方法还包括:
接收所述设备发送的所述管理帧;
从所述管理帧中获取所述FD EDCA参数。
第七方面,提供一种数据传输装置,用于执行第一方面或第一方面的任一种可能实现方式中的方法。具体地,该数据传输装置包括用于执行上述第一方面或第一方面的任一种可能实现方式中的方法的功能模块。
第八方面,提供了一种数据传输装置,用于执行第二方面或第二方面的任一种可能实现方式中的方法。具体地,该数据传输装置包括用于执行上述第二方面或第二方面的任一种可能实现方式中的方法的功能模块。
第九方面,提供了一种数据传输装置,用于执行第三方面或第三方面的任一种可能实现方式中的方法。具体地,该数据传输装置包括用于执行上述第三方面或第三方面的任一种可能实现方式中的方法的功能模块。
第十方面,提供了一种数据传输装置,用于执行第四方面或第四方面的任一种可能实现方式中的方法。具体地,该数据传输装置包括用于执行上述第四方面或第四方面的任一种可能实现方式中的方法的功能模块。
第十一方面,提供了一种数据传输装置,用于执行第五方面或第五方面的任一种可能实现方式中的方法。具体地,该数据传输装置包括用于执行上述第五方面或第五方面的任一种可能实现方式中的方法的功能模块。
第十二方面,提供了一种数据传输装置,用于执行第六方面或第六方面的任一种可能实现方式中的方法。具体地,该数据传输装置包括用于执行上述第六方面或第六方面的任一种可能实现方式中的方法的功能模块。
第十三方面,提供了一种电子设备,该电子设备包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器接收信号,并控制收发器发送信号,并且当该处理器执行该存储器存储的指令时,该电子设备使得该处理器执行第一方面或第一方面的任一种可能实现方式中的方法。
第十四方面,提供了一种电子设备,该电子设备包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器接收信号,并控制收发器发送信号,并且当该处理器执行该存储器存储的指令时,该电子设备使得该处理器执行第二方面或第二方面的任一种可能实现方式中的方法。
第十五方面,提供了一种电子设备,该电子设备包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器接收信号,并控制收发器发送信号,并且当该处理器执行该存储器存储的指令时,该电子设备使得该处理器执行第三方面或第三方面的任一种可能实现方式中的方法。
第十六方面,提供了一种电子设备,该电子设备包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器接收信号,并控制收发器发送信号,并且当该处理器执行该存储器存储的指令时,该电子设备使得该处理器执行第四方面或第四方面的任一种可能实现方式中的方法。
第十七方面,提供了一种电子设备,该电子设备包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器接收信号,并控制收发器发送信号,并且当该处理器执行该存储器存储的指令时,该电子设备使得该处理器执行第五方面或第五方面的任一种可能实现方式中的方法。
第十八方面,提供了一种电子设备,该电子设备包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器接收信号,并控制收发器发送信号,并且当该处理器执行该存储器存储的指令时,该电子设备使得该处理器执行第六方面或第六方面的任一种可能实现方式中的方法。
第十九方面,提供一种数据传输***,在一种可能的实现方式中,所述***包括:
第七方面所述的数据传输装置和第八方面所述的数据传输装置,或者第九方面所述的数据传输装置和第十方面所述的数据传输装置,或者第十一方面所述的数据传输装置和第十二方面所述的数据传输装置。
在另一种可能的实现方式中,所述***包括:
第十三方面所述的电子设备和第十四方面所述的电子设备,或者第十五方面所述的电子设备和第十六方面所述的电子设备,或者第十七方面所述的电子设备和第十八方面所述的电子设备。
第二十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述任一方面或任一方面中任一种可能实现方式所提供的数据传输方法。
第二十一方面,提供了一种芯片,所述芯片包括处理器和/或程序指令,当所述芯片运行时,实现上述任一方面或任一方面中任一种可能实现方式所提供的数据传输方法。
附图说明
图1是本公开实施例提供的一种无线局域网络100的示范性示意图。
图2是本公开实施例提供的一种数据传输方法的***结构示意图。
图3是本公开实施例提供的一种数据传输方法的***结构示意图。
图4是本公开实施例提供的一种只有AP支持全双工的通信流程的示意图。
图5是本公开实施例提供的一种数据传输方法的流程示意图。
图6是本公开实施例提供的一种FD触发帧的结构示意图。
图7是本公开实施例提供的一种FD触发帧的结构示意图。
图8是本公开实施例提供的一种信道保护流程的示意图。
图9是本公开实施例提供的一种数据传输方法的流程示意图。
图10是本公开实施例提供的一种FD RTS帧的结构示意图。
图11是本公开实施例提供的一种AP和STA都支持全双工的通信流程的示意图。
图12是本公开实施例提供的一种数据传输方法的流程示意图。
图13是本公开实施例提供的一种FD触发帧的结构示意图。
图14是本公开实施例提供的一种FD触发帧的结构示意图。
图15是本公开实施例提供的一种数据传输方法的流程示意图。
图16是本公开实施例提供的一种FD EDCA参数集元素结构的示意图。
图17是本公开实施例提供的一种数据传输装置的结构示意图。
图18是本公开实施例提供的一种数据传输装置的结构示意图。
图19是本公开实施例提供的一种数据传输装置的结构示意图。
图20是本公开实施例提供的一种数据传输装置的结构示意图。
图21是本公开实施例提供的一种数据传输装置的结构示意图。
图22是本公开实施例提供的一种数据传输装置的结构示意图。
图23是本公开实施例提供的一种数据传输装置的结构示意图。
图24是本公开实施例提供的一种数据传输装置的结构示意图。
图25是本公开实施例提供的一种数据传输装置的结构示意图。
图26是本公开实施例提供的一种数据传输装置的结构示意图。
图27是本公开实施例提供的一种电子设备2700的结构示意图。
具体实施方式
下面将结合附图对本公开实施方式作进一步地详细描述。
图1是本公开实施例提供的一种无线局域网络(wireless local area networks,WLAN)100的示范性示意图。如图1所示,无线局域网络100包括接入点102、STA104和106,其中STA104和106可通过无线链路与AP 102通信。
目前WLAN采用的标准为电气和电子工程师协会(institute of electrical andelectronics engineers,IEEE)802.11系列标准。WLAN可以包括多个基本服务集(basicservice set,BSS),基本服务集的节点为STA,STA包括接入点类的STA(简称为AP)和非接入点类的STA(none access point station,Non-AP STA),每个基本服务集可以包含一个AP和多个关联于该AP的Non-AP STA,需要指出的是上述STA104和106为Non-AP STA,下文将Non-AP STA简称为STA。
接入点类STA,也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个STA连接到一起,然后将无线网络接入有线网。具体地,AP可以是带有无线保真(wirelessfidelity,WiFi)芯片的终端设备或者网络设备,例如提供AP功能或者服务的智能手机。可选地,AP可以为支持802.11ax制式的设备,进一步可选地,该AP可以为支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式的设备。
上述STA可以是无线通信芯片、无线传感器或无线通信终端。例如:支持WiFi通信功能的移动电话、支持WiFi通信功能的平板电脑、支持WiFi通信功能的机顶盒、支持WiFi通信功能的智能电视、支持WiFi通信功能的智能可穿戴设备、支持WiFi通信功能的车载通信设备和支持WiFi通信功能的计算机。可选地,STA可以支持802.11ax制式,进一步可选地,该STA支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式。
需要说明的是,引入正交频分多址(orthogonal frequency division multipleaccess,OFDMA)技术后的WLAN***802.11ax中,AP可以在不同的时频资源上给不同的STA进行上下行传输。AP进行上下行传输可以采用不同的模式,如OFDMA单用户多输入多输出(single-user multiple-input multiple-output,SU-MIMO)模式,或者OFDMA多用户多输入多输出(multi-user multiple-input multiple-output,MU-MIMO)模式。
需要说明的是,本公开实施例提供的数据传输方法除了应用于上述WLAN***,还可以应用于其他通信***,本公开实施例对此不做限定。
图2是本公开实施例提供的一种数据传输方法的***结构示意图。参见图2,该***结构包括:AP 201、STA 202和STA 203。图2是针对只有AP具有全双工通信功能的场景,该场景下AP同时与2类STA进行全双工传输。其中一类是接收数据的STA,如图2中的STA 202,另一类是发送数据的STA,如图2中的STA 203。也即,STA 202可以是一个或多个接收数据的STA,STA 203可以是一个或多个发送数据的STA。
其中,AP 201可以向STA 202和STA 203发送FD触发帧,以指示进行数据传输所需要的时间。STA203可以在接收到该FD触发帧时,向AP 201发送数据,同时,AP可以向STA 202发送数据。AP 201和STA202在接收到数据后,可以分别向STA203和AP 201回复确认帧。
图3是本公开实施例提供的一种数据传输方法的***结构示意图。参见图3,该***结构包括:AP 301和STA 302。图3是针对AP和STA都具有全双工通信功能的场景,该场景下AP同时与全双工STA进行上下行传输。其中,全双工STA既可以接收AP发送的数据,也可以向AP发送数据,如图3中的STA 302,该STA 302可以是一个或多个全双工STA。
其中,AP 301可以向STA302发送FD触发帧,以指示进行数据传输所需要的时间。STA302可以在接收到该FD触发帧时,向AP 301发送数据,同时,AP可以向STA302发送数据。AP 301和STA302在接收到数据后,可以分别向对方回复确认帧。
需要说明的是,本公开实施例的数据传输方法适用于AP与STA之间的通信,但同样适用于AP与AP之间的通信或STA与STA之间的通信。本公开实施例仅以应用在AP与STA之间的通信为例进行说明。其中,AP是移动用户进入有线网络的接入点,STA是基本服务集的节点中非接入点类的STA。AP和STA包括但不限于通信服务器、路由器、交换机、网桥、计算机和手机等。
参见图4,图4是本公开实施例提供的一种只有AP支持全双工的通信流程的示意图,如图4所示,AP先向STA1和STA2发送FD触发帧;STA2接收到FD触发帧后,隔预设时间间隔(如SIFS)发送数据给AP,此时AP同时发送数据给STA1;STA1和AP在接收到数据后进行确认帧的发送。该STA1是指一次数据传输过程中接收数据的STA,如图2中的STA 202,该STA2是指一次数据传输过程中发送数据的STA,如图2中的STA 203。下面将结合图5所示的实施例进行具体描述。
图5是本公开实施例提供的一种数据传输方法的流程示意图。该数据传输方法应用于只有AP支持全双工的场景,参见图5,该数据传输方法包括以下步骤:
501、AP发送全双工FD触发帧,该FD触发帧包括长度字段,该长度字段用于指示进行数据传输所需要的时间。
本公开实施例中,AP可以在进行数据传输之前,向STA1和STA2发送FD触发帧,以指示进行数据传输所需要的时间。其中,该STA1是指一次数据传输过程中接收数据的STA,即下行STA,如图2中的STA 202;该STA2是指一次数据传输过程中发送数据的STA,即上行STA,如图2中的STA 203。
参见图6,图6是本公开实施例提供的一种FD触发帧的结构示意图,该FD触发帧包括帧控制字段,时长/标识字段,下行接收STA地址、上行发送STA地址、发送端地址、长度字段以及帧校验序列字段。其中,下行接收STA地址可以是STA1的MAC地址,上行发送STA地址可以是STA2的MAC地址,发送端地址可以是AP的MAC地址。
在一种可能实现方式中,该长度字段与上行PPDU或下行PPDU中传统前导码中传统信令字段中的长度字段相同,即用来欺骗传统STA,便于传统STA使用同样的6Mbps速率以及该长度获得该数据传输所需要的时间,该时间也就是全双工通信中上行和下行数据传输所需要的时间。
相对于现有技术中的调度信息帧,本公开通过在触发帧中增加长度字段,可以保证上下行不同传输方向的数据传输所需要的时间一致,进而保证AP和STA1同时响应确认帧或以指定先后顺序响应确认帧,既可以避免确认帧无法被正确接收的问题,也可以避免信道资源被抢占的问题,保障了AP和STA之间正确的数据传输。
502、AP在发送FD触发帧后隔预设时间间隔向STA1发送指定长度的第一数据。
其中,预设时间间隔可以是SIFS。
本公开实施例中,AP可以在发送FD触发帧后,根据FD触发帧中的长度字段,向STA1发送该第一数据。该第一数据可以是实际待传输的数据,也可以是向待传输的数据中填充字段后的数据。
在一种可能实现方式中,当待传输的数据传输所需要的时间等于长度字段对应的时间时,AP可以直接将该待传输的数据作为该第一数据发送给STA1;当待传输的数据传输所需要的时间小于长度字段对应的时间时,AP可以向待传输的数据中填充默认值(如0、1)或随机值,得到该第一数据,使得第一数据传输所需要的时间等于FD触发帧中长度字段对应的时间。
503、STA2在接收到FD触发帧后隔预设时间间隔向AP发送第二数据。
本公开实施例中,STA2作为发送数据的STA,可以在接收到FD触发帧后,根据FD触发帧中的长度字段,向AP发送第二数据。该第二数据的发送过程与上述第一数据的发送过程同理,在此不再赘述。需要说明的是,步骤502中AP向STA1发送第一数据和步骤503中STA2向AP发送第二数据是同时进行的,也即,第一数据和第二数据的发送时间相同。
504、STA1接收AP发送的第一数据。
本公开实施例中,通过步骤502中AP向STA1发送第一数据,使得STA1可以接收到该第一数据。
505、AP接收STA2发送的第二数据。
本公开实施例中,通过步骤503中STA2向AP发送第二数据,使得AP可以接收到该第二数据。
需要说明的是,当第一数据和第二数据的发送时间相同、传输所需要的时间也相同时,第一数据和第二数据可以被同时接收到,即步骤504中STA1接收第一数据和步骤505中AP接收第二数据可以是同时进行的。
506、STA1向AP发送第一数据的确认帧。
本公开实施例中,STA1在接收到第一数据后,作为对该第一数据的响应,向AP发送第一数据的确认帧。
507、AP向STA2发送第二数据的确认帧。
本公开实施例中,AP在接收到第二数据后,作为对该第二数据的响应,AP可以向STA2发送第二数据的确认帧。
需要说明的是,步骤506中STA1向AP发送第一数据的确认帧和步骤507中AP向STA2发送第二数据的确认帧可以是同时进行的,也可以是按照指定先后顺序进行的。具体地,第二数据的确认帧和第一数据的确认帧的发送过程包括但不限于以下几种可能实现方式:
第一种可能实现方式中,全双工传输协议中预先配置有预设时间间隔,相应地,STA1在接收到第一数据后隔该预设时间间隔向AP发送第一数据的确认帧;AP在接收到第二数据后隔该预设时间间隔向STA2发送第二数据的确认帧。
该方式是全双工传输协议中规定了STA1和AP在接收到数据后隔相同时间间隔(如SIFS)发送确认帧,使得STA1和AP可以同时进行确认帧的发送,节省了空口传输时间。
可以理解的是,该方式是以全双工传输协议中规定了一个预设时间间隔,STA1和AP在接收到数据后隔相同时间间隔发送确认帧为例进行说明,实际上,全双工传输协议中可以规定两个预设时间间隔,如第一预设时间间隔和第二预设时间间隔。相应地,STA1在接收到第一数据后隔第一预设时间间隔向AP发送第一数据的确认帧;AP在接收到第二数据后隔第二预设时间间隔向STA2发送第二数据的确认帧。也即,STA1和AP在接收到数据后隔不同时间间隔发送确认帧。
需要说明的是,该方式是以预设时间间隔由全双工传输协议预先配置为例进行说明,实际上该预设时间间隔还可以由其他方式确定,例如,FD触发帧中可以包括时间间隔字段,该时间间隔字段用于指示该预设时间间隔。本公开实施例对此不做限定。
第二种可能实现方式中,全双工传输协议中预先配置有第二数据的确认帧和第一数据的确认帧的发送先后顺序以及第二数据的确认帧和第一数据的确认帧的发送时间差,相应地,STA1可以根据该发送先后顺序以及发送时间差,向AP发送第一数据的确认帧;AP可以根据该发送先后顺序以及发送时间差,向STA2发送第二数据的确认帧。
该方式是根据预先设置的确认帧发送先后顺序以及发送时间差,向STA2发送第二数据的确认帧的过程,该方式下,全双工传输协议中规定了哪类确认帧(第二数据的确认帧或第一数据的确认帧)先发送以及两类确认帧的发送时间差,使得STA1和AP可以根据全双工传输协议规定的先后顺序以及发送时间差进行确认帧的发送。
需要说明的是,该方式是以确认帧发送先后顺序以及发送时间差由全双工传输协议预先配置为例进行说明,实际上还可以由其他方式确定,如下述第四种可能实现方式。本公开实施例对此不做限定。
第三种可能实现方式,FD触发帧还包括第二数据的确认帧和第一数据的确认帧的发送时间,相应地,STA1可以根据该发送时间,向AP发送第一数据的确认帧;AP可以根据该发送时间,向STA2发送第二数据的确认帧。
参见图7,图7是本公开实施例提供的一种FD触发帧的结构示意图,该FD触发帧包括帧控制字段,时长/标识字段,下行接收STA地址(如STA1的MAC地址)、上行发送STA地址(如STA2的MAC地址)、上行确认帧发送时间、下行确认帧发送时间、发送端地址(如AP的MAC地址)、长度字段以及帧校验序列字段。其中,上行确认帧发送时间即是第一数据的确认帧的发送时间,下行确认帧发送时间即是第二数据的确认帧的发送时间。
该方式是AP向STA1和STA2发送的FD触发帧指示了STA1和AP在接收到数据后发送确认帧的具体时间,使得STA1和AP可以根据FD触发帧指示的发送时间进行确认帧的发送。
第四种可能实现方式,全双工传输协议中预先配置有第二数据的确认帧和第一数据的确认帧的发送先后顺序,且FD触发帧还包括第二数据的确认帧和第一数据的确认帧的发送时间差,相应地,STA1可以根据该发送先后顺序以及发送时间差,向AP发送第一数据的确认帧;AP可以根据该发送先后顺序以及发送时间差,向STA2发送第二数据的确认帧。
该方式是全双工传输协议中规定了哪类确认帧先发送,且FD触发帧指示了两类确认帧的发送时间差,使得STA1和AP可以根据全双工传输协议规定的先后顺序以及FD触发帧指示的发送时间差进行确认帧的发送。
STA1和AP可以通过上述任一种可能实现方式进行确认帧的发送,由于AP发送的数据和STA2发送的数据在传输过程中所用的时间一致,使得STA1和AP接收到数据的时间一致,也即上下行不同传输方向的第一数据和第二数据可以同时完成传输过程。这样,无论STA1和AP谁先回复确认帧,都可以避免先发送的确认帧与还未完成传输的数据发送碰撞导致确认帧无法被正确接收的问题,也可以避免由于STA1和AP先后接收到数据而导致发送确认帧的信道被第三方STA抢占的问题。
508、AP接收STA1发送的第一数据的确认帧。
本公开实施例中,通过步骤506中STA1向AP发送第一数据的确认帧,使得AP可以接收到该第一数据的确认帧。
509、STA2接收AP发送的第二数据的确认帧。
本公开实施例中,通过步骤507中AP向STA2发送第二数据的确认帧,使得STA2可以接收到该第二数据的确认帧。
通过上述步骤508和步骤509,AP和STA2在接收到其发送的数据的确认帧后,即完成了本次数据传输过程。
需要说明的是,本公开实施例是以AP与STA之间的通信为例进行说明,实际上,上述步骤501至步骤509提供的数据传输方法同样适用于AP与AP之间的通信或STA与STA之间的通信,例如,上述AP与STA1和STA2之间的通信过程可以适用于AP与AP 1和AP 2以及全双工STA(如图3中的STA 302)与STA1和STA2之间的通信过程。
本公开实施例提供的方法,针对只有AP支持全双工的通信场景,通过在发送数据之前,AP向STA1和STA2发送一个包括长度字段的触发帧。该长度字段指示全双工中的上行和下行数据传输所需要的时间相同,使得STA2发送的数据到达AP的时间和AP发送的数据到达STA1的时间一致,上下行不同传输方向的数据传输同时结束。这样,AP和STA1可以同时响应确认帧或以指定先后顺序响应确认帧,既避免了确认帧无法被正确接收的问题,也避免了信道资源被抢占的问题,保障了AP和STA之间正确的数据传输。
参见图8,图8是本公开实施例提供的一种信道保护流程的示意图,如图8所示,AP先发送FD RTS帧,然后STA1和STA2同时回复CTS帧,使得CTS帧的发送时间相同。另外,该CTS帧采用与FD RTS帧相同的扰码初始状态和调制编码参数,使得STA1和STA2发送的CTS帧包含的内容相同。该信道保护流程可以在图5所示实施例中的步骤501之前进行,下面将结合图9所示的实施例进行具体描述。
图9是本公开实施例提供的一种数据传输方法的流程示意图。该数据传输方法应用于只有AP支持全双工的场景,参见图9,该数据传输方法包括以下步骤:
901、AP发送FD RTS帧。
本公开实施例中,AP可以在进行数据传输之前,向STA1和STA2发送FD RTS帧。参见图10,图10是本公开实施例提供的一种FD RTS帧的结构示意图,该FD RTS帧包括帧控制字段、时长/标识字段、下行接收STA地址(如STA1的MAC地址)、上行发送STA地址(如STA2的MAC地址)、发送端地址(如AP的MAC地址)和帧校验序列字段。
需要说明的是,图10所示的FD RTS帧只是本公开实施例的一个示例,该FD RTS帧还可以是其他形式,例如,FD RTS帧可以为802.11ax多STARTS帧的变体,同样包含共有信息字段,以及多个STA信息字段,但每个STA信息字段包括上行/下行标识。
902、当接收到该FD RTS帧时,STA1向AP发送第一CTS帧。
其中,第一CTS帧可以采用与该FD RTS帧相同的扰码初始状态和调制编码参数。
本公开实施例中,STA1可以在接收到FD RTS帧时,向AP发送第一CTS帧。当然,STA1也可以在接收到FD RTS帧后隔预设时间间隔(如SIFS)发送该第一CTS帧,其中,该预设时间间隔可以由全双工传输协议规定。
903、当接收到该FD RTS帧时,STA2向AP发送第二CTS帧。
其中,第二CTS帧可以采用与该FD RTS帧相同的扰码初始状态和调制编码参数。
本公开实施例中,STA2可以在接收到FD RTS帧时,向AP发送第二CTS帧。与第一CTS帧同理,STA2也可以在接收到FD RTS帧后隔预设时间间隔(如SIFS)发送该第二CTS帧。
需要说明的是,步骤902中STA1向AP发送第一CTS帧和步骤903中STA2向AP发送第二CTS帧可以是同时进行的,也即,第一CTS帧和第二CTS帧的发送时间相同。另外,由于第一CTS帧和第二CTS帧均采用与FD RTS帧相同的扰码初始状态和调制编码参数,因此,第一CTS帧和第二CTS帧包含的内容相同。
904、AP接收STA1发送的第一CTS帧和STA2发送的第二CTS帧,该第一CTS帧和该第二CTS帧的发送时间相同且包含的内容相同。
本公开实施例中,针对STA1和STA2同时向AP发送CTS帧,使得AP可以同时接收到包含相同内容的第一CTS帧和第二CTS帧。相比于现有技术的信道保护流程中STA1和STA2按顺序发送CTS帧,浪费空口传输时间以及容易出现某个STA没有回复CTS帧导致信道保护失败的情况,本公开的信道保护流程中多个STA同时发送CTS帧即节省了空口传输时间,也避免了多个STA轮流发送CTS帧的不可靠性,提高了信道保护的成功率。
另外,上述STA1和STA2也可以拓展为STA集1和STA集2,其中STA集1和STA集2分别包含多个STA。
上述步骤901至步骤904是信道保护的过程,在进行信道保护后,AP和STA之间可以进行数据传输,具体过程参见后续步骤905。
905、AP与STA1和STA2进行数据传输。
本公开实施例中,该步骤905可以包括图5所示实施例中的步骤501至步骤509。当然,该步骤905也可以不包括FD触发帧的发送过程,而仅包括数据传输的过程。也即,在FDRTS/CTS帧交换后,即通过FD RTS/CTS帧对信道进行保护后,AP可以直接发送数据给STA1,同时STA2发送数据给AP。在收到数据后,STA1向AP回复确认帧,AP向STA2回复确认帧。
需要说明的是,本公开实施例是以AP与STA之间的通信为例进行说明,实际上,上述步骤901至步骤905提供的数据传输方法同样适用于AP与AP之间的通信或STA与STA之间的通信,例如,上述AP与STA1和STA2之间的通信过程可以适用于AP与AP 1和AP 2以及全双工STA(如图3中的STA 302)与STA1和STA2之间的通信过程。
本公开实施例提供的方法,针对只有AP支持全双工的通信场景,通过在数据传输之前进行FD RTS/CTS的信道保护流程,且STA1和STA2在接收到FD RTS帧后同时向AP发送CTS帧,使得AP可以同时接收到这两类STA发送的CTS帧。相比于现有技术在进行信道保护时STA1和STA2按顺序发送CTS帧,浪费空口传输时间以及容易出现由于某个STA没有回复CTS帧导致信道保护失败的情况,本公开中多个STA同时发送CTS帧的信道保护方案既节省了空口传输时间,也避免了多个STA轮流发送CTS帧的不可靠性,加强了信道保护的鲁棒性。
参见图11,图11是本公开实施例提供的一种AP和STA都支持全双工的通信流程的示意图,如图11所示,AP先向STA发送FD触发帧;STA接收到FD触发帧后,隔预设时间间隔(如SIFS)发送数据给AP,此时AP同时发送数据给STA;STA和AP在接收到数据后进行确认帧的发送。下面将结合图12所示的实施例进行具体描述。
图12是本公开实施例提供的一种数据传输方法的流程示意图。该数据传输方法应用于AP和STA都支持全双工的场景。参见图12,该数据传输方法包括以下步骤:
1201、AP发送全双工FD触发帧,该FD触发帧包括长度字段,该长度字段用于指示进行数据传输所需要的时间。
本公开实施例中,AP可以在进行数据传输之前,向全双工STA发送FD触发帧,以指示进行数据传输所需要的时间。其中,该全双工STA是指一次数据传输过程中同时接收数据,并且发送数据的STA,如图3中的STA 302。
参见图13,图13是本公开实施例提供的一种FD触发帧的结构示意图,该FD触发帧包括帧控制字段,时长/标识字段,STA地址、发送端地址、长度字段以及帧校验序列字段。其中,STA地址可以是接收该FD触发帧的STA的MAC地址,发送端地址可以是发送该FD触发帧的AP的MAC地址。
1202、AP在发送FD触发帧后隔预设时间间隔向全双工STA发送第一数据。
1203、全双工STA在接收到FD触发帧后隔预设时间间隔向AP发送第二数据。
1204、全双工STA接收AP发送的第一数据。
1205、AP接收全双工STA发送的第二数据。
1206、全双工STA向AP发送第一数据的确认帧。
1207、AP向全双工STA发送第二数据的确认帧。
需要说明的是,步骤1206中全双工STA向AP发送第一数据的确认帧和步骤1207中AP向全双工STA发送第二数据的确认帧的过程与图5所示实施例中的步骤507同理,当采用第三种可能实现方式进行确认帧的发送时,FD触发帧还包括第二数据的确认帧和第一数据的确认帧的发送时间。
参见图14,图14是本公开实施例提供的一种FD触发帧的结构示意图,该FD触发帧包括帧控制字段,时长/标识字段,STA地址(如STA的MAC地址)、上行确认帧发送时间、下行确认帧发送时间、发送端地址(如AP的MAC地址)、长度字段以及帧校验序列字段。其中,上行确认帧发送时间即是第一数据的确认帧的发送时间,下行确认帧发送时间即是第二数据的确认帧的发送时间。
1208、AP接收全双工STA发送的第一数据的确认帧。
1209、全双工STA接收AP发送的第二数据的确认帧。
上述步骤1201至步骤1209与图5所示实施例中的步骤501至步骤509同理,在此不再赘述。
需要说明的是,本公开实施例是以AP与STA之间的通信为例进行说明,实际上,上述步骤1201至步骤1209提供的数据传输方法同样适用于AP与AP之间的通信或STA与STA之间的通信。
本公开实施例提供的方法,针对AP和STA都支持全双工的通信场景,通过在发送数据之前,AP向STA发送一个包括长度字段的触发帧。该长度字段指示全双工中的上行和下行数据传输所需要的时间相同,使得STA发送的数据到达AP的时间和AP发送的数据到达STA的时间一致,上下行不同传输方向的数据传输同时结束。这样,AP和STA可以同时响应确认帧或以指定先后顺序响应确认帧,既避免了确认帧无法被正确接收的问题,也避免了信道资源被抢占的问题,保障了AP和STA之间正确的数据传输。
针对图5所示实施例中只有AP支持全双工的通信流程,以及图11中AP和STA都支持全双工的通信流程中,都是AP抢占信道,然后全双工传输过程中参与数据发送的STA都获得发送机会,该STA可以是半双工STA,如图5所示实施例中的STA2,也可以是全双工STA,如图12所示实施例中的STA。然而,相对于其他未参与全双工传输的STA在获得数据发送机会方面是不公平的。基于公平性原则,本公开实施例提出全双工传输过程中参与数据发送的STA在接收到数据的确认帧后,使用FD EDCA参数更新已有EDCA参数,以降低信道接入的优先级。该参数更新过程可以在图5所示实施例中的步骤509或图12所示实施例中的步骤1209之后进行,下面将结合图15所示的实施例进行具体描述。
图15是本公开实施例提供的一种数据传输方法的流程示意图。该数据传输方法应用于只有AP支持全双工的场景或AP和STA都支持全双工的场景。参见图15,该数据传输方法包括以下步骤:
1501、AP发送全双工FD触发帧,该FD触发帧包括长度字段,该长度字段用于指示进行数据传输所需要的时间。
本公开实施例中,AP可以在进行数据传输之前,向STA发送FD触发帧,以指示进行数据传输所需要的时间。针对只有AP支持全双工的通信场景,该STA可以是图5所示实施例中的STA2。此情况下,该步骤1501与图5所示实施例中的步骤501同理。
针对AP和STA都支持全双工的通信场景,该STA可以是图12所示实施例中的STA。此情况下,该步骤1501与图12所示实施例中的步骤1201同理,在此不再赘述。
1502、STA在接收到FD触发帧后隔预设时间间隔向AP发送数据。
其中,该数据可以是图5所示实施例中的第二数据,也可以是图12所示实施例中的第二数据。
该步骤1502与图5所示实施例中的步骤503和图12所示实施例中的步骤1203同理,在此不再赘述。
需要说明的是,本公开实施例仅以STA向AP发送数据为例进行说明,实际上,STA向AP发送数据的同时,AP也会向STA发送数据,也即,本公开实施例还可以包括如下步骤:AP在发送FD触发帧后隔预设时间间隔向STA发送数据,如图5所示实施例中的步骤502和图12所示实施例中的步骤1202。
1503、AP接收STA发送的数据。
该步骤1503与图5所示实施例中的步骤505和图12所示实施例中的步骤1205同理,在此不再赘述。
需要说明的是,本公开实施例仅以AP接收STA发送的数据为例进行说明,实际上,AP接收STA发送的数据的同时,STA也会接收AP发送的数据,也即,本公开实施例还可以包括如下步骤:STA接收AP发送的数据,如图5所示实施例中的步骤504和图12所示实施例中的步骤1204。
1504、AP向STA发送数据的确认帧。
其中,该确认帧可以是图5所示实施例中第二数据的确认帧,也可以是图12所示实施例中第二数据的确认帧。
该步骤1504与图5所示实施例中的步骤507和图12所示实施例中的步骤1207同理,在此不再赘述。
需要说明的是,本公开实施例仅以AP向STA发送确认帧为例进行说明,实际上,STA也会向AP发送确认帧,也即,本公开实施例还可以包括如下步骤:STA向AP发送确认帧,如图5所示实施例中的步骤506和图12所示实施例中的步骤1206。
1505、STA接收AP发送的确认帧。
本公开实施例中,通过步骤1504中AP向STA发送确认帧,使得STA可以接收到该确认帧。
需要说明的是,本公开实施例仅以STA接收AP发送的确认帧为例进行说明,实际上,AP也会接收STA发送的确认帧,也即,本公开实施例还可以包括如下步骤:AP接收STA发送的确认帧,如图5所示实施例中的步骤508和图12所示实施例中的步骤1208。
通过上述步骤1501至步骤1505,STA在接收到AP发送的确认帧后,即完成了本次全双工通信过程。该步骤1501至步骤1505仅示出了全双工传输过程中参与数据发送的STA与AP之间的通信步骤,本实施例并不限于步骤1501至步骤1505指示全双工通信的实施方式,还可以是其他全双工实施方式,例如,当该参与数据发送的STA是图5所示实施例中的STA2时,该通信过程还可以包括图5所示实施例中的STA1与AP之间的通信步骤,即该通信过程包括上述步骤501至步骤509;当该参与数据发送的STA是图12所示实施例中的STA时,该通信过程包括上述步骤1201至步骤1209。
全双工成功通信后,参与数据发送的STA可以执行后续步骤1506至步骤1508。
1506、STA使用FD EDCA参数更新已有EDCA参数,该已有EDCA参数包括CWmin[AC]、CWmax[AC]、AIFSN[AC]和FD EDCATimer[AC]。
其中,该FD EDCATimer[AC]用于指示该STA多长时间之后恢复至更新之前的EDCA参数,也即,该步骤1506的参数更新并不是永久性的,而只是在一定时间段内更新。
在一种可能实现方式中,该FD EDCA参数以元素的形式携带于AP发送的管理帧中,其中,该管理帧可以是信标帧、关联响应帧。例如,STA在接收AP发送的确认帧时或接收AP发送的确认帧之前,还可以接收AP发送的管理帧,使得STA可以从该管理帧中获取该FD EDCA参数。
另外,STA本地存储的该已有EDCA参数可以包含在已有EDCA参数集元素结构中的FD AC参数记录字段中。每个FD AC参数记录字段中均包括该已有EDCA参数,即CWmin[AC]、CWmax[AC]、AIFSN[AC]和FD EDCATimer[AC]等4个参数。该已有EDCA参数集元素结构与FDEDCA参数集元素结构相同,即包含的字段相同,只是具体的参数不同。
参见图16,图16是本公开实施例提供的一种FD EDCA参数集元素结构的示意图,该FD AC参数记录包括FD AC_BE参数记录、FD AC_BK参数记录、FD AC_VI参数记录以及FD AC_VO参数记录。例如,图16中的FD AC_BE参数记录、FD AC_BK参数记录、FD AC_VI参数记录以及FD AC_VO参数记录均包括上述4个参数。
在一种可能实现方式中,该FD EDCA参数的信道接入优先级小于该已有EDCA参数,这样STA在使用FD EDCA参数更新已有EDCA参数后,可以降低该STA信道接入的优先级,使得该STA与其他未参与全双工的STA在发送机会发面拥有公平性。其中,优先级具体降低多少可以由AP根据当前通信***的传输状况决定。
1507、根据更新后的FD EDCATimer[AC],确定本次更新的有效时长。
本公开实施例中,STA在执行步骤1506中的更新过程后,可以将更新后的FDEDCATimer[AC]的值确定为本次更新的有效时长,并执行后续步骤1508。
1508、当本次更新的时长达到该有效时长时,将该已有EDCA参数恢复至本次更新前的状态。
本公开实施例中,STA仅在该有效时长内保持更新后的EDCA参数,也即只降低STA一段时间内的信道接入优先级,使得该STA在一段时间内与其他未参与全双工的STA拥有公平的发送机会。
上述步骤1507至步骤1508是可选步骤,也即,STA可以通过执行步骤1507至步骤1508实现一段时间内的更新,也可以不执行步骤1507至步骤1508,而在下次接收到AP发送的确认帧后再通过步骤1505至步骤1506实现更新。
需要说明的是,本公开实施例是以AP与STA之间的通信为例进行说明,实际上,上述步骤1501至步骤1508提供的数据传输方法同样适用于AP与AP之间的通信或STA与STA之间的通信。
本公开实施例提供的方法,针对全双工传输过程中参与数据发送的STA,通过在完成数据发送后,使用AP提供的FD EDCA参数更新自己现有的EDCA参数,从而降低信道接入的优先级,保证了参与全双工传输的STA和未参与全双工传输的STA在发送机会方面的公平性。
图17是本公开实施例提供的一种数据传输装置的结构示意图。参照图17,该装置包括发送模块1701和接收模块1702:
该发送模块1701,用于发送FD触发帧,该FD触发帧包括长度字段,该长度字段用于指示进行数据传输所需要的时间;
该发送模块1701,还用于在发送该FD触发帧后隔预设时间间隔向待接收数据的STA发送第一数据;
该接收模块1702,用于接收发送数据的STA发送的第二数据,该第二数据由该发送数据的STA在接收到该FD触发帧后隔该预设时间间隔发送;
该发送模块1701,还用于向该发送数据的STA发送该第二数据的确认帧;
该接收模块1702,还用于接收该待接收数据的STA发送的该第一数据的确认帧。
在一种可能实现方式中,该发送模块1701用于执行上述步骤507和步骤1207中发送确认帧的过程。
在一种可能实现方式中,该长度字段与上行PPDU或下行PPDU中传统前导码中传统信令字段中的长度字段相同。
在一种可能实现方式中,参见图18,该装置还包括填充模块1703:
该填充模块1703,用于执行上述步骤502和步骤1202中发送第一数据的过程以及步骤1202和步骤1203中发送第二数据的过程。
在一种可能实现方式中,该待接收数据的STA和该发送数据的STA为同一个STA。
需要说明的是,发送模块1701可以通过电子设备的发送器实现,接收模块1702可以通过电子设备的接收器实现,填充模块1703可以通过电子设备的处理器实现。
图19是本公开实施例提供的一种数据传输装置的结构示意图。参照图19,该装置包括接收模块1901和传输模块1902:
接收模块1901,用于接收FD触发帧,该FD触发帧包括长度字段,该长度字段用于指示进行数据传输所需要的时间;
传输模块1902,用于与发送该FD触发帧的设备进行数据传输。
在一种可能实现方式中,该传输模块1902用于执行上述步骤504中STA1接收第一数据的过程以及步骤506中发送第一数据的确认帧的过程。
在一种可能实现方式中,该传输模块1902用于执行上述步骤506中发送第一数据的确认帧的过程。
在一种可能实现方式中,该传输模块1902用于执行上述步骤506中发送第一数据的确认帧的过程。
在一种可能实现方式中,该传输模块1902用于执行上述步骤503中STA2发送第二数据的过程以及步骤509中接收第二数据的确认帧的过程。
在一种可能实现方式中,该传输模块1902用于执行上述步骤1193中发送第二数据的过程、步骤1194中接收第一数据的过程、步骤1196中发送第一数据的确认帧的过程以及步骤1199中接收第二数据的确认帧的过程。
在一种可能实现方式中,该长度字段与上行PPDU或下行PPDU中传统前导码中传统信令字段中的长度字段相同。
在一种可能实现方式中,参见图20,该装置还包括:
填充模块1903,用于执行上述步骤502和步骤1192中发送第一数据的过程以及步骤1192和步骤1193中发送第二数据的过程。
需要说明的是,接收模块1901可以通过电子设备的接收器实现,传输模块1902可以通过电子设备的发送器或接收器实现,填充模块1903可以通过电子设备的处理器实现。
图21是本公开实施例提供的一种数据传输装置的结构示意图。参照图21,该装置包括发送模块2101、接收模块2102和传输模块2103:
发送模块2101,用于发送FD RTS帧;
接收模块2102,用于接收待接收数据的STA发送的第一CTS帧和待发送数据的STA发送的第二CTS帧,该第一CTS帧和该第二CTS帧的发送时间相同且包含的内容相同;
传输模块2103,用于与该待接收数据的STA和该待发送数据的STA进行数据传输。
在一种可能实现方式中,该第一CTS帧和该第二CTS帧采用与该FD RTS帧相同的扰码初始状态和调制编码参数。
需要说明的是,发送模块2101可以通过电子设备的发送器实现,接收模块2102可以通过电子设备的接收器实现,传输模块2103可以通过电子设备的发送器和接收器实现。
图22是本公开实施例提供的一种数据传输装置的结构示意图。参照图22,该装置包括接收模块2201、接收模块2202和传输模块2203:
接收模块2201,用于接收FD RTS帧;
发送模块2202,用于向发送该FD RTS帧的设备发送允许发送CTS帧;
传输模块2203,用于与该设备进行数据传输。
在一种可能实现方式中,该CTS帧采用与该FD RTS帧相同的扰码初始状态和调制编码参数。
需要说明的是,接收模块2201可以通过电子设备的接收器实现,发送模块2202可以通过电子设备的发送器实现,传输模块2203通过电子设备的发送器或接收器实现。
需要说明的是:上述实施例提供的数据传输装置在传输数据时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的数据传输装置与数据传输方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图23是本公开实施例提供的一种数据传输装置的结构示意图。参照图23,该装置包括发送模块2301、接收模块2302和更新模块2303:
发送模块2301,用于在接收FD触发帧后向发送该FD触发帧的设备发送数据;
接收模块2302,用于接收该设备发送的该数据的确认帧;
更新模块2303,用于使用全双工增强式分布式信道接入FD EDCA参数更新已有EDCA参数,该已有EDCA参数包括竞争窗口CWmin[AC]、CWmax[AC]、仲裁帧间距数目AIFSN[AC]和FD EDCATimer[AC]。
在一种可能实现方式中,该FD EDCA参数的信道接入优先级小于该已有EDCA参数。
在一种可能实现方式中,参见图24,该装置还包括:
确定模块2304,用于执行上述步骤1503中确定有效时长的过程;
恢复模块2305,用于执行上述步骤1504中恢复更新前的状态的过程。
在一种可能实现方式中,该已有EDCA参数包含在已有EDCA参数集元素结构中的FDAC参数记录字段中,该已有EDCA参数集元素结构与FD EDCA参数集元素结构相同。
在一种可能实现方式中,该FD AC参数记录包括FD AC_BE参数记录、FD AC_BK参数记录、FD AC_VI参数记录以及FD AC_VO参数记录。
在一种可能实现方式中,该FD EDCA参数以元素的形式携带于该AP发送的管理帧中;参见图25,该装置还包括:
该接收模块2302,还用于执行上述步骤1506中接收管理帧的过程;
获取模块2306,用于执行上述步骤1506中获取FD EDCA参数的过程。
需要说明的是,发送模块2301可以通过电子设备的发送器实现,接收模块2302可以通过电子设备的接收器实现,更新模块2303、确定模块2304、恢复模块2305以及确定模板2306可以通过电子设备的处理器实现。
图26是本公开实施例提供的一种数据传输装置的结构示意图。参照图26,该装置包括发送模块2601和接收模块2602:
发送模块2601,用于发送全双工FD触发帧,该FD触发帧包括长度字段,该长度字段用于指示进行数据传输所需要的时间;
接收模块2602,用于接收STA发送的数据,该数据由该STA在接收到该FD触发帧后隔预设时间间隔发送;
该发送模块2601,还用于向该STA发送该数据的确认帧。
在一种可能实现方式中,该发送模块2601,还用于执行上述步骤1504中发送管理帧的过程。
需要说明的是,发送模块2601可以通过电子设备的发送器实现,接收模块2602可以通过电子设备的接收器实现。
图27是本公开实施例提供的一种电子设备2700的结构示意图。该电子设备2700可以被提供为AP或STA。参见图27,该电子设备2700可以包括处理器2710和存储器2720,还可以包括收发器2730。该存储器2720存储有计算机程序,处理器2710用于执行存储器2720上所存放的计算机程序。当电子设备2700被提供为AP时,该计算机程序执行上述各个实施例中AP侧的数据传输方法,当电子设备2700被提供为STA时,该计算机程序执行上述各个实施例中STA侧的数据传输方法。
处理器2710从其它元素接收到命令,解密接收到的命令,根据解密的命令执行计算或数据处理。存储器2720可以包括程序模块,例如内核(kernel),中间件(middleware),应用程序编程接口(application programming interface,API)和应用。该程序模块可以是有软件、固件或硬件、或其中的至少两种组成。
当该电子设备2700被提供为AP时,处理器2710控制收发器2730执行:发送FD触发帧,该FD触发帧包括长度字段,该长度字段用于指示进行数据传输所需要的时间;在发送该FD触发帧后隔预设时间间隔向待接收数据的STA发送第一数据;接收发送数据的STA发送的第二数据,该第二数据由该发送数据的STA在接收到该FD触发帧后隔该预设时间间隔发送;向该发送数据的STA发送该第二数据的确认帧;接收该待接收数据的STA发送的该第一数据的确认帧。
在一种可能实现方式中,处理器2710控制收发器执行:在接收到该第二数据后隔该预设时间间隔向该发送数据的STA发送该第二数据的确认帧。
在一种可能实现方式中,处理器2710控制收发器执行:根据预先设置的确认帧发送先后顺序以及发送时间差,向该发送数据的STA发送该第二数据的确认帧。
在一种可能实现方式中,该长度字段与上行PPDU或下行PPDU中传统前导码中传统信令字段中的长度字段相同。
在一种可能实现方式中,处理器2710执行:当待传输的数据传输所需要的时间小于该长度字段对应的时间时,向该待传输的数据中填充默认值或随机值,使得该待传输的数据传输所需要的时间等于该FD触发帧中长度字段对应的时间。
在一种可能实现方式中,该待接收数据的STA和该发送数据的STA为同一个STA。
或者,当该电子设备2700被提供为AP时,处理器2710控制收发器2730执行:发送FDRTS帧;接收待接收数据的STA发送的第一CTS帧和待发送数据的STA发送的第二CTS帧,该第一CTS帧和该第二CTS帧的发送时间相同且包含的内容相同;与该待接收数据的STA和该待发送数据的STA进行数据传输。
在一种可能实现方式中,该第一CTS帧和该第二CTS帧采用与该FD RTS帧相同的扰码初始状态和调制编码参数。
或者,当该电子设备2700被提供为AP时,处理器2710控制收发器2730执行:发送FD触发帧,该FD触发帧包括长度字段,该长度字段用于指示进行数据传输所需要的时间;接收STA发送的数据,该数据由该STA在接收到该FD触发帧后隔预设时间间隔发送;向该STA发送该数据的确认帧。
在一种可能实现方式中,处理器2710还控制收发器2730执行:向该STA发送管理帧,该管理帧携带FD EDCA参数,该FD EDCA参数用于更新该STA的已有EDCA参数。
当该电子设备2700被提供为STA时,处理器2710控制收发器2730执行:接收FD触发帧,该FD触发帧包括长度字段,该长度字段用于指示进行数据传输所需要的时间;与发送该FD触发帧的设备进行数据传输。
在一种可能实现方式中,处理器2710控制收发器2730执行:接收该设备发送的第一数据,该第一数据由该设备在发送该FD触发帧后隔预设时间间隔发送;向该设备发送该第一数据的确认帧。
在一种可能实现方式中,处理器2710控制收发器2730执行:在接收到该第一数据后隔该预设时间间隔向该设备发送该第一数据的确认帧。
在一种可能实现方式中,处理器2710控制收发器2730执行:根据预先设置的确认帧发送先后顺序以及发送时间差,向该设备发送该第一数据的确认帧。
在一种可能实现方式中,处理器2710控制收发器2730执行:在接收到该FD触发帧后隔预设时间间隔向该设备发送第二数据;接收该设备发送的该第二数据的确认帧。
在一种可能实现方式中,处理器2710控制收发器2730执行:在接收到该FD触发帧后隔预设时间间隔向该设备发送该第二数据;接收该设备发送的该第一数据;向该设备发送该第一数据的确认帧;接收该设备发送的该第二数据的确认帧。
在一种可能实现方式中,该长度字段与上行PPDU或下行PPDU中传统前导码中传统信令字段中的长度字段相同。
在一种可能实现方式中,处理器2710执行:当待传输的数据传输所需要的时间小于该长度字段对应的时间时,向该待传输的数据中填充默认值或随机值,使得该待传输的数据传输所需要的时间等于该长度字段对应的时间。
或者,当该电子设备2700被提供为STA时,处理器2710控制收发器2730执行:接收FD RTS帧;向发送该FD RTS帧的设备发送CTS帧;与该设备进行数据传输。
在一种可能实现方式中,该CTS帧采用与该FD RTS帧相同的扰码初始状态和调制编码参数。
或者,当该电子设备2700被提供为STA时,处理器2710控制收发器2730执行:在接收FD触发帧后向发送该FD触发帧的设备发送数据;接收该设备发送的该数据的确认帧;处理器2710执行:使用FD EDCA参数更新已有EDCA参数,该已有EDCA参数包括CWmin[AC]、CWmax[AC]、AIFSN[AC]和FD EDCATimer[AC]。
在一种可能实现方式中,该FD EDCA参数的信道接入优先级小于该已有EDCA参数。
在一种可能实现方式中,处理器2710还执行:根据更新后的该FD EDCATimer[AC],确定本次更新的有效时长;当本次更新的时长达到该有效时长时,将该已有EDCA参数恢复至本次更新前的状态。
在一种可能实现方式中,该已有EDCA参数包含在已有EDCA参数集元素结构中的FDAC参数记录字段中,该已有EDCA参数集元素结构与FD EDCA参数集元素结构相同。
在一种可能实现方式中,该FD AC参数记录包括FD AC_BE参数记录、FD AC_BK参数记录、FD AC_VI参数记录以及FD AC_VO参数记录。
在一种可能实现方式中,处理器2710还控制收发器2730执行:接收该设备发送的该管理帧;处理器2710还执行:从该管理帧中获取该FD EDCA参数。
该电子设备2700的具体结构和各个结构的功能可以随技术发展或者实际设计需求而有所增减,本公开实施例对此不做赘述。
在示例性实施例中,还提供了一种数据传输***,在一种可能的实现方式中,该***包括:
图17对应的实施例中的数据传输装置和图19对应的实施例中的数据传输装置,或者图21对应的实施例中的数据传输装置和图22对应的实施例中的数据传输装置,或者图23对应的实施例中的数据传输装置和图26对应的实施例中的数据传输装置。
在另一种可能的实现方式中,该***包括:图27对应的实施例中的电子设备。
在示例性实施例中,还提供了一种计算机可读存储介质,例如存储有计算机程序的存储器,上述计算机程序由处理器加载并执行以完成上述图5、图9、图12和图15对应的实施例中的数据传输方法。例如,计算机可读存储介质可以是只读存储器(read-onlymemory,ROM)、随机存取存储器(random-access memory,RAM)、只读光盘(compact discread-only memory,CD-ROM)、磁带、软盘和光数据存储设备等。
在示例性实施例中,还提供了一种芯片,该芯片包括处理器和/或程序指令,当该芯片运行时,实现上述图5、图9、图12和图15对应的实施例中的数据传输方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (24)

1.一种数据传输方法,其特征在于,所述方法包括:
发送全双工FD触发帧,所述FD触发帧包括长度字段,所述长度字段用于指示进行数据传输所需要的时间;
在发送所述FD触发帧后隔预设时间间隔向待接收数据的站点发送第一数据;
接收发送数据的站点发送的第二数据,所述第二数据由所述发送数据的站点在接收到所述FD触发帧后隔所述预设时间间隔发送;
向所述发送数据的站点发送所述第二数据的确认帧;
接收所述待接收数据的站点发送的所述第一数据的确认帧。
2.根据权利要求1所述的方法,其特征在于,所述向所述发送数据的站点发送所述第二数据的确认帧,包括:
在接收到所述第二数据后隔所述预设时间间隔向所述发送数据的站点发送所述第二数据的确认帧。
3.根据权利要求1所述的方法,其特征在于,所述向所述发送数据的站点发送所述第二数据的确认帧,包括:
根据预先设置的确认帧发送先后顺序以及发送时间差,向所述发送数据的站点发送所述第二数据的确认帧。
4.根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
当待传输的数据传输所需要的时间小于所述长度字段对应的时间时,向所述待传输的数据中填充默认值或随机值,使得所述待传输的数据传输所需要的时间等于所述长度字段对应的时间。
5.根据权利要求1至4任一项所述的方法,其特征在于,所述待接收数据的站点和所述发送数据的站点为同一个站点。
6.一种数据传输方法,其特征在于,所述方法包括:
接收全双工FD触发帧,所述FD触发帧包括长度字段,所述长度字段用于指示进行数据传输所需要的时间;
与发送所述FD触发帧的设备进行数据传输。
7.根据权利要求6所述的方法,其特征在于,所述与发送所述FD触发帧的设备进行数据传输,包括:
接收所述设备发送的第一数据,所述第一数据由所述设备在发送所述FD触发帧后隔预设时间间隔发送;
向所述设备发送所述第一数据的确认帧。
8.根据权利要求7所述的方法,其特征在于,所述向所述设备发送所述第一数据的确认帧,包括:
在接收到所述第一数据后隔所述预设时间间隔向所述设备发送所述第一数据的确认帧。
9.根据权利要求7所述的方法,其特征在于,所述向所述设备发送所述第一数据的确认帧,包括:
根据预先设置的确认帧发送先后顺序以及发送时间差,向所述设备发送所述第一数据的确认帧。
10.根据权利要求6所述的方法,其特征在于,所述与发送所述FD触发帧的设备进行数据传输,包括:
在接收到所述FD触发帧后隔预设时间间隔向所述设备发送第二数据;
接收所述设备发送的所述第二数据的确认帧。
11.根据权利要求6所述的方法,其特征在于,所述与所述发送FD触发帧的设备进行数据传输,包括:
在接收到所述FD触发帧后隔预设时间间隔向所述设备发送所述第二数据;
接收所述设备发送的所述第一数据;
向所述设备发送所述第一数据的确认帧;
接收所述设备发送的所述第二数据的确认帧。
12.根据权利要求6至11任一项所述的方法,其特征在于,所述方法还包括:
当待传输的数据传输所需要的时间小于所述长度字段对应的时间时,向所述待传输的数据中填充默认值或随机值,使得所述待传输的数据传输所需要的时间等于所述长度字段对应的时间。
13.一种数据传输装置,其特征在于,所述装置包括发送模块和接收模块:
所述发送模块,用于发送全双工FD触发帧,所述FD触发帧包括长度字段,所述长度字段用于指示进行数据传输所需要的时间;
所述发送模块,还用于在发送所述FD触发帧后隔预设时间间隔向待接收数据的站点发送第一数据;
所述接收模块,用于接收发送数据的站点发送的第二数据,所述第二数据由所述发送数据的站点在接收到所述FD触发帧后隔所述预设时间间隔发送;
所述发送模块,还用于向所述发送数据的站点发送所述第二数据的确认帧;
所述接收模块,还用于接收所述待接收数据的站点发送的所述第一数据的确认帧。
14.根据权利要求13所述的装置,其特征在于,所述发送模块用于在接收到所述第二数据后隔所述预设时间间隔向所述发送数据的站点发送所述第二数据的确认帧。
15.根据权利要求13所述的装置,其特征在于,所述发送模块用于根据预先设置的确认帧发送先后顺序以及发送时间差,向所述发送数据的站点发送所述第二数据的确认帧。
16.根据权利要求13至15任一项所述的装置,其特征在于,所述装置还包括填充模块:
所述填充模块,用于当待传输的数据传输所需要的时间小于所述长度字段对应的时间时,向所述待传输的数据中填充默认值或随机值,使得所述待传输的数据传输所需要的时间等于所述长度字段对应的时间。
17.根据权利要求13至16任一项所述的装置,其特征在于,所述待接收数据的站点和所述发送数据的站点为同一个站点。
18.一种数据传输装置,其特征在于,所述装置包括:
接收模块,用于接收全双工FD触发帧,所述FD触发帧包括长度字段,所述长度字段用于指示进行数据传输所需要的时间;
传输模块,用于与发送所述FD触发帧的设备进行数据传输。
19.根据权利要求18所述的装置,其特征在于,所述传输模块用于接收所述设备发送的第一数据,所述第一数据由所述设备在发送所述FD触发帧后隔预设时间间隔发送;向所述设备发送所述第一数据的确认帧。
20.根据权利要求19所述的装置,其特征在于,所述传输模块用于在接收到所述第一数据后隔所述预设时间间隔向所述设备发送所述第一数据的确认帧。
21.根据权利要求19所述的装置,其特征在于,所述传输模块用于根据预先设置的确认帧发送先后顺序以及发送时间差,向所述设备发送所述第一数据的确认帧。
22.根据权利要求18所述的装置,其特征在于,所述传输模块用于在接收到所述FD触发帧后隔预设时间间隔向所述设备发送第二数据;接收所述设备发送的所述第二数据的确认帧。
23.根据权利要求18所述的装置,其特征在于,所述传输模块用于在接收到所述FD触发帧后隔预设时间间隔向所述设备发送所述第二数据;接收所述设备发送的所述第一数据;向所述设备发送所述第一数据的确认帧;接收所述设备发送的所述第二数据的确认帧。
24.根据权利要求18至23任一项所述的装置,其特征在于,所述装置还包括:
填充模块,用于当待传输的数据传输所需要的时间小于所述长度字段对应的时间时,向所述待传输的数据中填充默认值或随机值,使得所述待传输的数据传输所需要的时间等于所述长度字段对应的时间。
CN201711147135.0A 2017-11-17 2017-11-17 数据传输方法及装置 Active CN109803392B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711147135.0A CN109803392B (zh) 2017-11-17 2017-11-17 数据传输方法及装置
CN202111284914.1A CN114222367A (zh) 2017-11-17 2017-11-17 数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711147135.0A CN109803392B (zh) 2017-11-17 2017-11-17 数据传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111284914.1A Division CN114222367A (zh) 2017-11-17 2017-11-17 数据传输方法及装置

Publications (2)

Publication Number Publication Date
CN109803392A true CN109803392A (zh) 2019-05-24
CN109803392B CN109803392B (zh) 2021-11-19

Family

ID=66556013

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201711147135.0A Active CN109803392B (zh) 2017-11-17 2017-11-17 数据传输方法及装置
CN202111284914.1A Pending CN114222367A (zh) 2017-11-17 2017-11-17 数据传输方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202111284914.1A Pending CN114222367A (zh) 2017-11-17 2017-11-17 数据传输方法及装置

Country Status (1)

Country Link
CN (2) CN109803392B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543356A (zh) * 2020-04-17 2021-10-22 华为技术有限公司 WiFi通信方法及电子设备
CN116347566A (zh) * 2020-08-21 2023-06-27 华为技术有限公司 Ppdu的上行参数指示方法及相关装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104408A (zh) * 2009-12-20 2011-06-22 英特尔公司 与一组无线通信设备同时进行通信的设备、***和方法
CN105556909A (zh) * 2013-09-16 2016-05-04 高通股份有限公司 用于无线网络上的全双工通信的***和方法
US20170026162A1 (en) * 2015-07-23 2017-01-26 Kabushiki Kaisha Toshiba Wireless communication device
CN106413112A (zh) * 2015-08-03 2017-02-15 上海宽带技术及应用工程研究中心 基于业务优先级改进的分布式接入方法
CN106416412A (zh) * 2014-05-26 2017-02-15 韦勒斯标准与技术协会公司 用于同时数据传送和接收的无线通信方法及使用该方法的无线通信装置
CN106535293A (zh) * 2015-09-09 2017-03-22 华为技术有限公司 主动扫描处理方法和相关装置以及通信***
CN106656429A (zh) * 2015-11-03 2017-05-10 华为技术有限公司 无线通信方法和设备
CN107148795A (zh) * 2014-10-29 2017-09-08 高通股份有限公司 用于无线网络中的多用户通信的方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104408A (zh) * 2009-12-20 2011-06-22 英特尔公司 与一组无线通信设备同时进行通信的设备、***和方法
CN105556909A (zh) * 2013-09-16 2016-05-04 高通股份有限公司 用于无线网络上的全双工通信的***和方法
CN106416412A (zh) * 2014-05-26 2017-02-15 韦勒斯标准与技术协会公司 用于同时数据传送和接收的无线通信方法及使用该方法的无线通信装置
CN107148795A (zh) * 2014-10-29 2017-09-08 高通股份有限公司 用于无线网络中的多用户通信的方法和装置
US20170026162A1 (en) * 2015-07-23 2017-01-26 Kabushiki Kaisha Toshiba Wireless communication device
CN106413112A (zh) * 2015-08-03 2017-02-15 上海宽带技术及应用工程研究中心 基于业务优先级改进的分布式接入方法
CN106535293A (zh) * 2015-09-09 2017-03-22 华为技术有限公司 主动扫描处理方法和相关装置以及通信***
CN106656429A (zh) * 2015-11-03 2017-05-10 华为技术有限公司 无线通信方法和设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543356A (zh) * 2020-04-17 2021-10-22 华为技术有限公司 WiFi通信方法及电子设备
CN113543356B (zh) * 2020-04-17 2024-02-09 华为技术有限公司 WiFi通信方法及电子设备
CN116347566A (zh) * 2020-08-21 2023-06-27 华为技术有限公司 Ppdu的上行参数指示方法及相关装置
CN116347566B (zh) * 2020-08-21 2024-03-01 华为技术有限公司 Ppdu的上行参数指示方法及相关装置
US11930493B2 (en) 2020-08-21 2024-03-12 Huawei Technologies Co., Ltd. Method for indicating uplink parameter of PPDU and related apparatus

Also Published As

Publication number Publication date
CN109803392B (zh) 2021-11-19
CN114222367A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
US10542557B2 (en) System and method for digital communications with interference avoidance
CN105659683B (zh) 用于设置循环前缀长度的***和方法
CN104995983B (zh) 在wlan***中根据其带宽发送/接收帧的方法和设备
CN102845101B (zh) 无线局域网中的组传输
CN104185217B (zh) 并行数据传输处理方法及装置
CN106717053A (zh) 无线通信用集成电路、无线通信终端以及无线通信方法
CN110062477A (zh) 一种接入方法及装置
CN106465418A (zh) 用于同时数据传输的无线通信方法和使用该方法的无线通信终端
CN102326440A (zh) 使用两种类型信道的无线接入的竞争
CN106576248A (zh) 无线通信***、无线通信方法、协作控制装置、终端装置、以及许可频带基站装置
CN103052077B (zh) 一种无线局域网obss站点空分干扰避免方法
Hu et al. Hybrid MAC protocol design and optimization for full duplex Wi-Fi networks
CN111030793B (zh) 一种无线局域网中触发帧传输的方法和装置
CN108432328A (zh) 无线通信装置以及终端装置
CN109510695A (zh) 无线通信装置以及无线通信方法
CN104219017B (zh) 一种物理层数据包传输方法以及接入节点
CN108141892A (zh) 用于选择用于多用户传输的增强型分布式信道接入参数的方法和装置
CN106304390A (zh) 一种信道接入方法、站点和***
CN105813131A (zh) 数据发送方法、获取方法、发送装置及获取装置
CN109803392A (zh) 数据传输方法及装置
US10028298B2 (en) System and method for indicating periodic allocations
JP2020202571A (ja) 移動通信システム、移動局装置および通信方法
WO2016167310A1 (ja) 端末装置、通信方法及び通信システム
CN107182127B (zh) 数据发送方法及装置
EP3389312B1 (en) Determination of a transmission opportunity by an access point

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant