CN109772325A - Cu2+Doped hollow-structure microsphere Fenton catalyst and preparation method and application thereof - Google Patents

Cu2+Doped hollow-structure microsphere Fenton catalyst and preparation method and application thereof Download PDF

Info

Publication number
CN109772325A
CN109772325A CN201910155666.7A CN201910155666A CN109772325A CN 109772325 A CN109772325 A CN 109772325A CN 201910155666 A CN201910155666 A CN 201910155666A CN 109772325 A CN109772325 A CN 109772325A
Authority
CN
China
Prior art keywords
microballoon
preparation
hollow structure
sio
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910155666.7A
Other languages
Chinese (zh)
Inventor
张冶
肖松
楚增勇
李公义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201910155666.7A priority Critical patent/CN109772325A/en
Publication of CN109772325A publication Critical patent/CN109772325A/en
Pending legal-status Critical Current

Links

Abstract

The invention relates to Cu2+The preparation method of the doped hollow structure microsphere Fenton catalyst comprises the following steps: s1, mixing SiO2@TiO2Dispersing the core-shell structure microspheres in NaOH solution for heating reaction, cooling, washing and drying to obtain Na2Ti3O7Microspheres with hollow structures; s2, mixing Na2Ti3O7The hollow structure microspheres are dispersed in Cu-containing microspheres2+Stirring in the aqueous solution of (1), centrifuging, washing with water, and drying to obtain Cu2+The doped hollow structure microsphere Fenton catalyst. The method is simple to operate, the prepared hollow-structure microsphere solid-phase Fenton catalyst is wide in application range, and the Cu is2+And (5) stably doping.

Description

A kind of Cu2+Hollow structure microballoon fenton catalyst of doping and preparation method thereof and Using
Technical field
The present invention relates to the synthesis field of solid phase fenton catalyst more particularly to a kind of Cu2+The hollow structure microballoon of doping Fenton catalyst and its preparation method and application.
Background technique
The world today, with the propulsion of economic fast development and industrial process, water pollution problems is got worse.In recent years Fenton oxidation water treatment technology is comparatively fast developed, and attacks organic contamination using the hydroxyl radical free radical (OH) of strong oxidizing property Organic molecule is gradually degraded as small-molecule substance, such as carbon dioxide, water and inorganic salts by object, and realizing efficiently removal has The purpose of machine pollutant.
Fenton catalysis oxidation water treatment technology key is the research and development of efficient stable catalyst, is catalyzed reaction in traditional Fenton In, catalyst is free metal ion, although catalytic efficiency is higher, exists and is difficult to recycle, metal ion hydrogen easy to form Oxide sludge causes secondary pollution problems.To overcome disadvantage of the conventional homogeneous fenton catalyst in practical water process, grind Metal ion immobilization is formed metal oxide, metal simple-substance, the solid-phase catalysts such as metal ion mixing by the persons of studying carefully, then and H2O2Heterogeneous Fenton-like system is constituted, the recycling and reusing of catalyst is realized.
Current domestic and international developed heterogeneous fenton catalyst is mostly iron-based solid-phase catalyst, such as ferriferous oxide and metal Composite oxides, iron ion or ferriferous oxide are carried on molecular sieve etc., and there are living under the conditions of the usual soda acid of water body (pH > 6) The low problem of property.Some results of study show copper have with redox characteristic as iron phase, can also be catalyzed H2O2It decomposes and generates OH, and there is the broader pH scope of application, there is preferable catalytic performance under neutral temperate condition.
Said from the appearance structure of catalyst material, hollow structure material compared with block materials have lower density and Bigger specific surface area, internal " huge " space are even more to provide wide platform, energy for material filling, transport and reaction It is enough to increase the active site and improve mass transfer velocity that catalysis is reacted, promote the catalytic performance of material.
In conclusion being opened to improve the scope of application of Fenton oxidation reaction and the treatment effect to organic pollutants Sending out novel has the copper-based catalysts of hollow structure, such as Cu2+The hollow structure catalyst of doping, is of great significance, but how Realize Cu2+The regulation of stabilization doping and doping content be still current difficult point, be rarely reported.
Summary of the invention
The technical problem to be solved by the present invention is to overcome the deficiencies in the prior art, a kind of easy to operate, catalysis is provided and is applicable in The wide Cu of range2+Stablize the hollow structure microballoon fenton catalyst and its preparation method and application of doping.
In order to solve the above technical problems, the invention adopts the following technical scheme:
A kind of Cu2+The preparation method of the hollow structure microballoon fenton catalyst of doping, comprising the following steps:
S1, by SiO2@TiO2Core-shell structure microballoon, which is scattered in NaOH solution, carries out heating reaction, through cooling, washing, drying Afterwards, Na is obtained2Ti3O7Hollow structure microballoon;
S2, by Na2Ti3O7Hollow structure microballoon is scattered in containing Cu2+Aqueous solution in stir, through centrifugation, washing, drying, obtain To Cu2+The hollow structure microballoon fenton catalyst of doping.
As further improvement to above-mentioned technical proposal:
In the step S2, the Na2Ti3O7The concentration of hollow structure microballoon is the g/L of 8 g/L~12, described to contain Cu2+'s Aqueous solution and Na2Ti3O7The molar ratio of hollow structure microballoon is 1: 0.06~10;The time of the stirring is the h of 2 h~10.
It is described to contain Cu2+Aqueous solution be Cu (NO3)2Solution or CuCl2Solution.
In the step S1, the SiO2@TiO2Concentration after core-shell structure microballoon is dispersed in NaOH solution is 8 g/L ~14 g/L, the concentration of the NaOH solution are the mol/L of 2 mol/L~5;The temperature of heating reaction is 120 DEG C~160 DEG C, when Between be the h of 8 h~16.
Preferably, the NaOH and SiO2@TiO2The molar ratio of core-shell structure microballoon is greater than 2.
The SiO2@TiO2The preparation step of core-shell structure microballoon is as follows:
By SiO2Microballoon, which is added into dehydrated alcohol, to be uniformly mixed, and ammonium hydroxide is added and stirs evenly, adds titanium source and is hydrolyzed instead It answers, is centrifuged, obtains SiO2@TiO2Core-shell structure microballoon.
The SiO2Mass concentration of the microballoon in dehydrated alcohol is the g/L of 1.0 g/L~1.5;The temperature of the stirring It is 40 DEG C~50 DEG C, the time is 20~60 min;The time of the hydrolysis is the h of 8 h~24;The titanium source is metatitanic acid four Butyl ester.
The SiO2The preparation step of microballoon is as follows: silicon source being divided into silicon source I and silicon source II, silicon is added dropwise into alkaline solution Source I, is stirred to react, and adds silicon source II and continues to react, and centrifugation obtains SiO2Microballoon, the volume of the silicon source I and silicon source II Than being 1: 7~10.
The alkaline solution is the mixed solution of deionized water, isopropanol and ammonium hydroxide, and the silicon source is ethyl orthosilicate, institute The volume ratio for stating ethyl orthosilicate, deionized water, isopropanol and ammonium hydroxide is 1: 4.2: 11.3: 2.3.
The inventive concept total as one, the present invention also provides a kind of Cu2+The hollow structure microballoon fenton catalyst of doping, It is prepared by aforementioned preparation process.
The inventive concept total as one, the present invention also provides a kind of Cu that aforementioned preparation process is prepared2+Doping The application in degradation of organic dyes field in water of hollow structure microballoon fenton catalyst.
Compared with the prior art, the advantages of the present invention are as follows:
The present invention has hollow structure Na using hard template method preparation2Ti3O7Hollow structure microballoon, passes through Cu2+With Na2Ti3O7In Na+It swaps to obtain Cu2+The microballoon of the hollow structure of doping, Cu2+It is acted on by chemical bonding and stable is present in material In, this method is simply controllable, and the pattern of material is held essentially constant after ion exchange, still has hollow structure, wherein Cu2+It mixes Miscellaneous content can be by changing Cu2+With Na2Ti3O7Molar ratio regulated and controled.
Cu of the invention2+The hollow structure microballoon fenton catalyst of doping handles organic contamination in water in neutral conditions Excellent property is presented when object, overcomes iron-based solid phase fenton catalyst under the conditions of the usual soda acid of water body (pH > 6) The low problem of activity, applied widely, hollow structure can increase the active site of catalysis reaction and improve mass transfer velocity, to mentioning Material catalytic performance is risen to be of great significance.
Detailed description of the invention
Fig. 1 is SiO in the embodiment of the present invention 12The scanning electron microscope (SEM) photograph of microballoon.
Fig. 2 is SiO in the embodiment of the present invention 12@TiO2The scanning electron microscope (SEM) photograph of core-shell structure microballoon.
Fig. 3 is Na in the embodiment of the present invention 12Ti3O7The scanning electron microscope (SEM) photograph of hollow structure microballoon.
Fig. 4 is Cu in the embodiment of the present invention 12+The scanning electron microscope (SEM) photograph of doped hollow structure microspheres.
Fig. 5 be ultraviolet-visible absorption spectroscopy in the embodiment of the present invention 1 in organic dyestuff methyl orange solution degradation process and The corresponding dye solution color of different time points.
Specific embodiment
The present invention is described in further details below with reference to Figure of description and specific embodiment, in following embodiment Used material and instrument are commercially available.
Embodiment 1
A kind of Cu of the invention2+The preparation method of the hollow structure microballoon fenton catalyst of doping, specifically includes the following steps:
(1) hard template SiO2The preparation of microballoon: 23.5 mL water, 63.3 mL isopropanols and 13 mL ammonium hydroxide are mixed and are added 250 ML conical flask is simultaneously stirred at room temperature, and 0.6 mL ethyl orthosilicate (TEOS) is added dropwise, and is stirred to react 5 mL after 0.5 h TEOS solution is added drop-wise in reaction system, the reaction was continued 2 h.Product is collected by centrifugation.
Fig. 1 is SiO in the present embodiment2The scanning electron microscope (SEM) photograph of microballoon, as can be seen from Figure SiO2The diameter of microballoon 300~ Uniform in size between 400 nm, surface is smooth.
(2) SiO2@TiO2The preparation of core-shell structure microballoon: by 0.1 g SiO2Microballoon is added in 80 mL dehydrated alcohols, 20 min of ultrasound, are added 0.4 mL ammonium hydroxide, and 0.8 mL butyl titanate (TBOT) is added drop-wise to by 45 DEG C of 20 min of stirring in water bath In mixed solution, the reaction was continued 8 h.Product is collected by centrifugation.Obtain SiO of the size between 500~600 nm2@TiO2Nucleocapsid knot Structure microballoon.
Fig. 2 a, 2b are the present embodiment SiO respectively2@TiO2The scanning nuclear microprobe figure of core-shell structure microballoon, can from Fig. 2 Find out, relative to SiO2Microballoon, SiO2@TiO2Core-shell structure microsphere diameter becomes larger, and size has bright between 500~600 nm Aobvious core-shell structure.
(3) Na2Ti3O7The preparation of hollow structure microballoon: by 0.1 g SiO2@TiO2Core-shell structure microballoon evenly spreads to 8 ML NaOH concentration is to be placed in 140 DEG C of baking ovens and react 12 hours in 2 mol/L solution.It is centrifugated and produces after being cooled to room temperature Object is washed 5 times, is dried to obtain Na2Ti3O7Hollow structure microballoon.The purpose of washing is to remove remaining OH-, avoid to subsequent reality It tests and impacts.In the present embodiment, NaOH in addition to SiO2Reaction, and also while and TiO2Reaction obtains Na2Ti3O7
Fig. 3 a, Fig. 3 b are Na in the present embodiment respectively2Ti3O7The scanning nuclear microprobe figure of hollow structure microballoon, from Fig. 3 In can be seen that, Na2Ti3O7Microballoon has apparent hollow structure, relative to SiO2@TiO2Core-shell structure microballoon, Na2Ti3O7Microballoon Surface becomes coarse by smooth, Na2Ti3O7Microstructure, be conducive to next step Cu2+It is compound with material.
(4) Cu2+The preparation of the hollow structure microballoon fenton catalyst of doping: 0.1 g Na is taken2Ti3O7Hollow structure microballoon, It is added to 10 mL1 mol/L CuCl2In aqueous solution, stir 2 hours.Product is collected by centrifugation, washes 5 times, is dried to obtain Cu2+It mixes Miscellaneous hollow structure microballoon fenton catalyst.
In the prior art, metal ion is that TiO is carried on by way of physical absorption2The surface of nanometer cup catalyst, It is sticked to the surface of clothes similar to dust, is easier to be desorbed.And in the present invention, Cu2+Be by way of ion exchange, with Na2Ti3O7In Na+Exchange, similar on the clothes that decorative pattern is embroidered on, there are the effect of chemical bonding, Cu2+Stable presence In the surface and inside of material, and Cu2+Doping content can be by changing Cu2+With Na2Ti3O7Molar ratio regulated and controled.
Fig. 4 is the present embodiment Cu2+The scanning electron microscope (SEM) photograph of the hollow structure microballoon fenton catalyst of doping.It can from Fig. 4 Out, Cu2+The hollow structure microballoon fenton catalyst and Na of doping2Ti3O7Hollow structure microballoon pattern is similar, illustrates to hand in ion After changing, the spherical morphology and hollow structure of microballoon do not have significant change.
By Cu in the present embodiment2+Degradation of the hollow structure microballoon fenton catalyst of doping for organic dyestuff in water, tool Steps are as follows for body:
(1) by 20 mg Cu2+It is the organic of 10 mg/L that the hollow structure microballoon fenton catalyst of doping, which is added to 40 mL concentration, In methyl orange aqueous solution, the H that 0.8 mL concentration is 30%wt is added after stirring 0.5 h2O2
(2) H is added2O2At the time of be zero point, the concentration of the moment dyestuff is as reaction initial concentration, by 0 min, 20 Min, 40 min, 60 min, the sampling of 90 min time intervals remove solid sample with 0.45 μm of membrane filtration, using it is ultraviolet can See that absorption spectrum determines the concentration of residual dye in solution.It takes pictures under identical light condition, obtains dye solution color Situation of change.
Fig. 5 is that ultraviolet-visible absorption spectroscopy in organic dyestuff methyl orange solution degradation process and different time points are corresponding Solution colour.It can be seen that from Fig. 5 a, characteristic absorption peaks of the methyl orange solution at 463 nm are with the extension of reaction time It is substantially reduced, can be seen that in Fig. 5 b, the color of solution obviously shoals.
Embodiment 2
The present embodiment is roughly the same with embodiment 1, the difference is that:
Step (4) Cu2+The preparation of doped hollow structure microspheres fenton catalyst: 0.1 g Na is taken2Ti3O7Hollow structure microballoon, It is added to 10 mL, 0.05 mol/L CuCl2In aqueous solution, stir 2 hours.Product is collected by centrifugation, washes 5 times, is dried to obtain Cu2+The hollow structure microballoon fenton catalyst of doping.
Embodiment 3
The present embodiment is roughly the same with embodiment 1, the difference is that:
Step (4) Cu2+The preparation of doped hollow structure microspheres fenton catalyst: 0.1 g Na is taken2Ti3O7Hollow structure microballoon, It is added to 10 mL, 0.01 mol/L CuCl2In aqueous solution, stir 2 hours.Product is collected by centrifugation, washes 5 times, is dried to obtain Cu2+The hollow structure microballoon fenton catalyst of doping.
Although the present invention has been disclosed as a preferred embodiment, however, it is not intended to limit the invention.It is any to be familiar with ability The technical staff in domain, without deviating from the scope of the technical scheme of the present invention, all using the technology contents pair of the disclosure above Technical solution of the present invention makes many possible changes and modifications or equivalent example modified to equivalent change.Therefore, all Without departing from the content of technical solution of the present invention, according to the present invention technical spirit any simple modification made to the above embodiment, Equivalent variations and modification, all shall fall within the protection scope of the technical scheme of the invention.

Claims (10)

1. a kind of Cu2+The preparation method of the hollow structure microballoon fenton catalyst of doping, it is characterised in that: the following steps are included:
S1, by SiO2@TiO2Core-shell structure microballoon, which is scattered in NaOH solution, carries out heating reaction, after cooling, washing, drying, Obtain Na2Ti3O7Hollow structure microballoon;
S2, by Na2Ti3O7Hollow structure microballoon is scattered in containing Cu2+Aqueous solution in stir, through centrifugation, washing, drying, obtain Cu2+The hollow structure microballoon fenton catalyst of doping.
2. preparation method according to claim 1, it is characterised in that: in the step S2, the Na2Ti3O7Hollow structure The concentration of microballoon is the g/L of 8 g/L~12, described to contain Cu2+Aqueous solution and Na2Ti3O7The molar ratio of hollow structure microballoon is 1 : 0.06~10;The time of the stirring is the h of 2 h~10.
3. preparation method according to claim 2, it is characterised in that: described to contain Cu2+Aqueous solution be Cu (NO3)2Solution Or CuCl2Solution.
4. preparation method according to claim 2, it is characterised in that: in the step S1, the SiO2@TiO2Nucleocapsid knot Concentration after structure microballoon is dispersed in NaOH solution is the g/L of 8 g/L~14, and the concentration of the NaOH solution is 2 mol/L~5 mol/L;The temperature of heating reaction is 120 DEG C~160 DEG C, and the time is the h of 8 h~16.
5. preparation method according to any one of claim 1 to 4, it is characterised in that: the SiO2@TiO2Core-shell structure The preparation step of microballoon is as follows:
By SiO2Microballoon, which is added into dehydrated alcohol, to be uniformly mixed, and ammonium hydroxide is added and stirs evenly, adds titanium source and is hydrolyzed instead It answers, is centrifuged, obtains SiO2@TiO2Core-shell structure microballoon.
6. preparation method according to claim 5, it is characterised in that: the SiO2Quality of the microballoon in dehydrated alcohol Concentration is the g/L of 1.0 g/L~1.5;The temperature of the stirring is 40 DEG C~50 DEG C, and the time is 20~60 min, the hydrolysis The time of reaction is the h of 8 h~24;The titanium source is butyl titanate.
7. preparation method according to claim 6, it is characterised in that: the SiO2The preparation step of microballoon is as follows: by silicon source It is divided into silicon source I and silicon source II, silicon source I is added dropwise into alkaline solution, is stirred to react, adds silicon source II and continue to react, from The heart obtains SiO2The volume ratio of microballoon, the silicon source I and silicon source II is 1: 7~10.
8. preparation method according to claim 7, it is characterised in that: the alkaline solution be deionized water, isopropanol and The mixed solution of ammonium hydroxide, the silicon source be ethyl orthosilicate, the ethyl orthosilicate, deionized water, isopropanol and ammonium hydroxide body Product is than being 1: 4.2: 11.3: 2.3.
9. a kind of Cu2+The hollow structure microballoon fenton catalyst of doping, it is characterised in that: prepared by any one of claim 1 to 8 Method is prepared.
10. a kind of according to claim 1 to the Cu that any one of 8 preparation methods are prepared2+The hollow structure microballoon Fenton of doping The catalyst application in degradation of organic dyes field in water.
CN201910155666.7A 2019-03-01 2019-03-01 Cu2+Doped hollow-structure microsphere Fenton catalyst and preparation method and application thereof Pending CN109772325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910155666.7A CN109772325A (en) 2019-03-01 2019-03-01 Cu2+Doped hollow-structure microsphere Fenton catalyst and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910155666.7A CN109772325A (en) 2019-03-01 2019-03-01 Cu2+Doped hollow-structure microsphere Fenton catalyst and preparation method and application thereof

Publications (1)

Publication Number Publication Date
CN109772325A true CN109772325A (en) 2019-05-21

Family

ID=66485960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910155666.7A Pending CN109772325A (en) 2019-03-01 2019-03-01 Cu2+Doped hollow-structure microsphere Fenton catalyst and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN109772325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583138A (en) * 2022-03-18 2022-06-03 杭州怡莱珂科技有限公司 Sodium ion carrier-carbon composite powder, self-isolation electrode and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941736A (en) * 2010-10-21 2011-01-12 北京科技大学 Preparation method of echinoid titanium dioxide microspheres in single/double layer cavity structure
WO2017062197A1 (en) * 2015-10-08 2017-04-13 Nanotek Instruments, Inc. Continuous process for producing electrodes and alkali metal batteries having ultra-high energy densities
CN106745205A (en) * 2016-11-23 2017-05-31 吕梁学院 A kind of synthetic method of bar-shaped Mg2+ doping SrTiO3
CN107335418A (en) * 2017-06-20 2017-11-10 浙江工业大学 A kind of novel hollow TiO2Application after the preparation method and its carried metal of nanometer cup catalyst
CN108993570A (en) * 2018-07-30 2018-12-14 南京工业大学 A kind of preparation method and application of Copper-cladding Aluminum Bar graphite phase carbon nitride composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941736A (en) * 2010-10-21 2011-01-12 北京科技大学 Preparation method of echinoid titanium dioxide microspheres in single/double layer cavity structure
CN101941736B (en) * 2010-10-21 2012-07-25 北京科技大学 Preparation method of single/double layer cavity structure and echinoid titanium dioxide microspheres
WO2017062197A1 (en) * 2015-10-08 2017-04-13 Nanotek Instruments, Inc. Continuous process for producing electrodes and alkali metal batteries having ultra-high energy densities
CN106745205A (en) * 2016-11-23 2017-05-31 吕梁学院 A kind of synthetic method of bar-shaped Mg2+ doping SrTiO3
CN107335418A (en) * 2017-06-20 2017-11-10 浙江工业大学 A kind of novel hollow TiO2Application after the preparation method and its carried metal of nanometer cup catalyst
CN108993570A (en) * 2018-07-30 2018-12-14 南京工业大学 A kind of preparation method and application of Copper-cladding Aluminum Bar graphite phase carbon nitride composite material

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUNDEBOINA,R ET AL.: ""Synthesis of Cu2+ and Ag+ doped Na2Ti3O7 by a facile ion-exchange method as visible-light-driven photocatalysts"", 《CERAMICS INTERNATIONAL》 *
PEDRO FARDIM: "《纤维化学和技术 化学制浆 1 第7卷 中文版》", 30 June 2017, 北京:中国轻工出版社 *
ZHANG YE ET AL.: ""Synthesis of hierarchical hollow sodium titanate microspheres and their application for selective removal of organic dyes"", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
周毅: ""层状三钛酸盐光催化剂的掺杂与插层改性研究"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583138A (en) * 2022-03-18 2022-06-03 杭州怡莱珂科技有限公司 Sodium ion carrier-carbon composite powder, self-isolation electrode and preparation method

Similar Documents

Publication Publication Date Title
CN106179262B (en) Composite material and preparation method and purposes with absorption-visible light photocatalytic degradation synergistic effect
CN107486110A (en) A kind of method of efficient degradation methylene blue
CN109796019A (en) A kind of hollow silicon dioxide nanosphere and its preparation method and application
CN109126853A (en) A kind of counter opal g-C with carbon defects3N4The preparation method of photochemical catalyst
CN108295907A (en) A kind of compounded visible light photocatalyst Ag2CO3/TiO2/UiO-66-(COOH)2Preparation method and applications
CN101613537A (en) A kind of preparation method of nano silicon dioxide coated by nano titanium dioxide
CN107970878B (en) Preparation method of phosphate group functionalized hollow mesoporous silica microspheres
CN106000474B (en) A kind of porphyrin/titanium dioxide uniformly organizes the preparation method and applications of nanosphere altogether
CN109529775A (en) A kind of synthetic method and absorption property of graphene oxide-lanthanum hydroxide composite material
CN108033432A (en) A kind of cage structure material g-C3N4Preparation method and applications
CN109289851A (en) One-step synthesis prepares Fe3O4The method of/mesoporous carbon composite material and its catalyzing oxidizing degrading sulfamethazine
CN109603910B (en) Preparation method and application of photothermal enhanced degradation chemical warfare agent simulant nano core-shell compound and composite fiber membrane thereof
CN110194465A (en) Preparation method of nanometer hierarchical pore TS-1 molecular sieve and products thereof and application
CN103525805B (en) A kind of reproducible magnetic immobilized zymophore and preparation method thereof
CN108786792A (en) A kind of metal/semiconductor composite photo-catalyst and its preparation and application
CN107500303A (en) A kind of mesoporous magnesium silicate microballoon and its hydro-thermal thermal transition preparation method
CN109999844A (en) A kind of MoS2/ show severity special graceful stone class Fenton composite catalyst, preparation method and application
CN108033485A (en) A kind of one-step synthesis method TiO2The efficient hydrogen manufacturing of microballoon and the method for degradation of contaminant
CN109772325A (en) Cu2+Doped hollow-structure microsphere Fenton catalyst and preparation method and application thereof
CN107497455A (en) A kind of preparation method and applications of the ultra-thin Bismuth tungstate nano-sheet photochemical catalyst of Determination of Trace Sulfur surface modification
CN107930611A (en) A kind of carbon dots titanium dioxide hollow microballoon composite nano-catalyst and preparation method and application
CN106964352B (en) Novel photocatalysis material TiO2@Fe2O3、SrTiO3@Fe2O3Preparation and application
CN106957417B (en) A kind of method that galapectite graphene oxide complex catalysts prepare poly-epsilon-caprolactone
CN113428894A (en) Method for circularly preparing nano flower-shaped titanium dioxide by using chloride ion liquid
CN110237870A (en) A kind of polyphenyl phenol/composite titania material and preparation method and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190521

RJ01 Rejection of invention patent application after publication