CN109746064B - 一种梯度磁场微流控芯片 - Google Patents

一种梯度磁场微流控芯片 Download PDF

Info

Publication number
CN109746064B
CN109746064B CN201910088561.4A CN201910088561A CN109746064B CN 109746064 B CN109746064 B CN 109746064B CN 201910088561 A CN201910088561 A CN 201910088561A CN 109746064 B CN109746064 B CN 109746064B
Authority
CN
China
Prior art keywords
nickel
magnetic field
cover plate
magnetic
fluid channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910088561.4A
Other languages
English (en)
Other versions
CN109746064A (zh
Inventor
汤曼
张琴韵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Textile University
Original Assignee
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Textile University filed Critical Wuhan Textile University
Priority to CN201910088561.4A priority Critical patent/CN109746064B/zh
Publication of CN109746064A publication Critical patent/CN109746064A/zh
Application granted granted Critical
Publication of CN109746064B publication Critical patent/CN109746064B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明公开了一种梯度磁场微流控芯片,包括盖片和基片,盖片位于基片的正上方,基片的一表面上镀有导电薄膜,基片镀有导电薄膜的表面上设有具有磁性梯度变化的磁性结构,盖片下表面上设有流体沟道,流体沟道上与磁性结构对应的位置处设有捕获区,捕获区呈膨大状,盖片的两端分别设有注入口和排出口,注入口和排出口分别与流体沟道连通,磁性结构的磁场强度从注入口至排出口的方向依次减少或增加,基片和磁性结构均与盖片通过粘结剂层密封连接。该微流控芯片结构简单,便于制作,成本低廉,能够对不同磁力组分进行分选,进而能够对不同蛋白表达量的循环肿瘤细胞进行分型。

Description

一种梯度磁场微流控芯片
技术领域
本发明涉及生物检测技术领域,具体涉及一种梯度磁场微流控芯片及其制备方法,该微流控芯片可用作为肿瘤分型诊断、辅助治疗及生化分析研究的工具。
背景技术
磁控微流控芯片中磁场力的大小受通道表面电荷、溶液pH值、离子强度和温度等条件的限制小,而且磁场可以不与通道内的物质直接接触而实现控制,极大降低了交叉污染的可能。由于磁性粒子与周围介质之间的磁化率有很大差别,因此,利用磁场可以将其方便地与周围介质分离,这一特性使其在微流控芯片分离富集方面的优势显得尤为突出。随着微电子机械***技术的进步,在微流控芯片中加工微尺度甚至阵列电磁线圈和磁体成为可能,通过磁力捕获磁珠也具有很广泛的运用前景。
磁场的强度是磁珠能否被捕获的一个影响因素,此外磁场的梯度也会对捕获力产生很大的影响。如在一个均匀磁场中,由于磁场的梯度为零,无论磁场强度有多高磁珠仍不能被磁场所捕获,而在一个磁场强度较弱的情况下,增强磁场梯度,可以获得足够大的磁珠捕获力,利用这一原理采用电镀工艺在微流体芯片内部加工出微型镍结构,通过外加磁场磁化微型镍柱进行磁珠捕获,该方法避免了电磁器件的热效应问题,也可以在芯片局部对磁珠进行比较有效的操控(张志凌,余旭,庞代文.发明专利:一种微磁场控制的微流控芯片及其制作方法.专利号:ZL201010196067.9,授权公告日:2012.07.04.)。如专利CN105772123A。施加电流后产生磁场,通过调节电流的大小可以灵活调控磁场强度,同时通过控制电流的开关可以控制磁场的有无,集成度高,但增大电流也会产生焦耳热问题,影响实验结果的准确性。并且目前缺乏简单有效的方法调控磁场的梯度变化,对不同磁性大小的组分进行精确的操控。
发明内容
为了解决上述现有技术存在的问题,本发明提供了一种梯度磁场微流控芯片及其制备方法,该微流控芯片结构简单,便于制作,成本低廉,能够对不同磁力组分进行分选,进而能够对不同蛋白表达量的循环肿瘤细胞进行分型。
实现本发明上述目的所采用的技术方案为:
一种梯度磁场微流控芯片,包括盖片和基片,盖片位于基片的正上方,基片的一表面上镀有导电薄膜,基片镀有导电薄膜的表面上设有具有磁性梯度变化的磁性结构,盖片下表面上设有流体沟道,流体沟道上与磁性结构对应的位置处设有捕获区,捕获区呈膨大状,盖片的两端分别设有注入口和排出口,注入口和排出口分别与流体沟道连通,磁性结构的磁场强度从注入口至排出口的方向依次减少或增加,基片和磁性结构均与盖片通过粘结剂层密封连接。
所述的磁性结构包括多个镍阵列,多个镍阵列沿流体沟道的延伸方向依次排列,镍阵列由多个均匀密布且相互平行的镍条构成,各镍条均垂直于流体沟道的延伸方向,各镍条在竖直方向的投影相同,相邻镍阵列中的任意两镍条相互平行,磁性结构呈楔形,磁性结构中镍条的高度从注入口至排出口的方向依次增加,捕获区的个数与镍阵列的个数相同,各捕获区位于对应的镍阵列的正上方。
所述的镍条由多个均匀密布的镍块构成,相邻两镍条中的镍块呈锯齿状分布。
各镍块呈方形,所有镍块的宽度和长度均相等。
磁性结构中镍块的高度为10-60μm,距离注入口最近的镍条中镍块的高度为10μm,距离排出口最近的镍条中镍块的高度为60μm。
所述的捕获区和流体沟道均呈方形,捕获区的宽度大于流体沟道的宽度。
所述的导电薄膜为氧化铟锡膜,盖片的材质为聚二甲基硅氧烷。
本发明的梯度磁场微流控芯片的工作原理为:
在外加磁场的诱导下,磁性结构会诱导产生梯度变化的磁场,磁场强度从注入口到排出口的方向依次增强,液体中不同细胞上的标志物含量不同,导致不同细胞上的磁球结合量不同,因而具有不同的磁性,液体在通过流体沟道时,具有不同磁性的细胞在流体通道不同位置被捕获,从而实现循环肿瘤细胞亚型的分型。
与现有技术相比,本发明的有益效果和优点在于:
1、本发明的微流控芯片在检测液体样品时,由于磁性结构高度的梯度变化,使诱导产生的磁场呈梯度分布。
2、将液体样本从注入口注入,目标细胞在流体沟道中通过时由于不同肿瘤细胞表面蛋白表达量不同,导致结合的磁珠量不同,从而不同目标细胞实现分区捕获。
3、利用本发明的微流控芯片进行液体样品的分离和富集,受外界因素干扰较小,不易堵塞流体沟道。
4、本发明的微流控芯片结构简单,易于制作加工,制作成本低,而且捕获时间短、捕获效率高。
附图说明
图1为梯度磁场微流控芯片的结构示意图(透视图)。
图2为图1的主视图。
图3为图1的俯视图。
图4为盖片的结构示意图。
其中、1-盖片、2-基片、3-注入口、4-排出口、5-镍阵列、6-流体沟道、7-粘结剂层、8-捕获区、9-镍条、10-镍块。
具体实施方式
下面结合附图对本发明进行详细说明。
本发明提供的梯度磁场微流控芯片的结构示意图如图1、图2和图3所示,包括盖片1和基片2,盖片1和基片2均呈方形,盖片1位于基片2的正上方。
盖片1的材质为聚二甲基硅氧烷,如图4所示,盖片1下表面上沿其长度方向设有方形的流体沟道6,本实施例中,流体沟道的长度为50mm。流体沟道6上沿其长度方向依次设有两个捕获区8,捕获区8相对流体沟道6呈膨大状。捕获区8呈方形,捕获区8的深度和流体沟道6的深度相同,捕获区8的宽度大于流体沟道6的宽度。本实施例中,捕获区的长度为3mm,宽度为2mm。盖片1的两端分别设有注入口3和排出口4,注入口3和排出口4分别与流体沟道6的两端连通。本实施例中,两个捕获区分别距离注入口25mm和30mm。
基片2为ITO导电玻璃,如图2和图3所示,基片2的氧化铟锡膜上镀有具有磁性梯度变化的磁性结构。磁性结构包括两个镍阵列5,两镍阵列5沿基片的长度方向依次排列,两捕获区8分别位于两镍阵列5的正上方。镍阵列5由多个沿基片长度方向均匀密布且相互平行的镍条9构成,各镍条9均垂直于流体沟道6。
镍条9由多个均匀密布的镍块10构成,相邻两镍条9中的镍块10呈锯齿状分布。各镍块10呈方形,所有镍块10的宽度和长度均相等。磁性结构呈楔形,磁性结构中镍条9的高度从注入口至排出口的方向依次增加。磁性结构中镍条9的高度为10-60μm,距离注入口最近的镍条9中镍块10的高度为10μm,距离排出口最近的镍条9中镍块10的高度为60μm。
基片2和磁性结构均与盖片1通过粘结剂层7密封连接。
试验一、本发明的梯度磁场微流控芯片的分离试验
试验方法:
1、将一玻璃片的两端分别固定两块磁铁,然后将本发明的梯度磁场微流控芯片放置在玻璃片上,使磁性结构位于两个磁铁的正中间位置处;
2、取20mL直径为10μm的Affimag SLE磁性微球和20mL直径为380nm的Affimag SLE磁性微球进行混合,得到混合尺寸的的磁球混合液。3、向磁球混合液加入160mL的DI水,得到200mL的磁球混合液;
4、将200mL磁球混合液以10μL/Min的速度从注入口注入流体通道中,并用显微镜进行观察。
实验结果:
直径为10μm磁球在离注入口较近的捕获区聚集,直径为380nm磁球在离注入口较远的捕获区聚集。

Claims (6)

1.一种梯度磁场微流控芯片,包括盖片和基片,盖片位于基片的正上方,其特征在于:基片的一表面上镀有导电薄膜,基片镀有导电薄膜的表面上设有具有磁性梯度变化的磁性结构,磁性结构包括多个镍阵列,多个镍阵列沿流体沟道的延伸方向依次排列,镍阵列由多个均匀密布且相互平行的镍条构成,各镍条均垂直于流体沟道的延伸方向,各镍条在竖直方向的投影相同,相邻镍阵列中的任意两镍条相互平行,磁性结构呈楔形,磁性结构中镍条的高度从注入口至排出口的方向依次增加;
盖片下表面上设有流体沟道,流体沟道上与磁性结构对应的位置处设有捕获区,捕获区呈膨大状,捕获区的个数与镍阵列的个数相同,各捕获区位于对应的镍阵列的正上方,盖片的两端分别设有注入口和排出口,注入口和排出口分别与流体沟道连通,磁性结构的磁场强度从注入口至排出口的方向依次减少或增加,基片和磁性结构均与盖片通过粘结剂层密封连接。
2.据权利要求1所 述的梯度磁场微流控芯片,其特征在于:所述的镍条由多个均匀密布的镍块构成,相邻两镍条中的镍块呈锯齿状分布。
3.据权利要求2所 述的梯度磁场微流控芯片,其特征在于:各镍块呈方形,所有镍块的宽度和长度均相等。
4.据权利要求2所述的梯度磁场微流控芯片,其特征在于:磁性结构中距离注入口最近的镍条中镍块的高度较低,距离排出口最近的镍条中镍块的较高。
5.据权利要求1所述的梯度磁场微流控芯片,其特征在于:所述的捕获区和流体沟道均呈方形,捕获区的宽度大于流体沟道的宽度。
6.据权利要求1所述的梯度磁场微流控芯片,其特征在于:所述的导电薄膜为氧化铟锡膜,盖片的材质为聚二甲基硅氧烷。
CN201910088561.4A 2019-01-28 2019-01-28 一种梯度磁场微流控芯片 Active CN109746064B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910088561.4A CN109746064B (zh) 2019-01-28 2019-01-28 一种梯度磁场微流控芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910088561.4A CN109746064B (zh) 2019-01-28 2019-01-28 一种梯度磁场微流控芯片

Publications (2)

Publication Number Publication Date
CN109746064A CN109746064A (zh) 2019-05-14
CN109746064B true CN109746064B (zh) 2021-10-15

Family

ID=66407063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910088561.4A Active CN109746064B (zh) 2019-01-28 2019-01-28 一种梯度磁场微流控芯片

Country Status (1)

Country Link
CN (1) CN109746064B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169849A (zh) * 2019-12-16 2021-01-05 武汉纺织大学 一种宽尺度磁性材料同时分离捕获的微流控芯片
CN114471752A (zh) * 2020-10-27 2022-05-13 京东方科技集团股份有限公司 一种芯片及其制备方法
CN113101989A (zh) * 2021-03-30 2021-07-13 苏州大学 一种细胞捕获与拉伸一体式的阵列化微流控芯片
CN113588957B (zh) * 2021-07-16 2023-06-30 中国农业大学 微生物分离检测***及检测方法
CN116121063B (zh) * 2022-12-30 2023-08-04 山东大学 一种实现磁场调控与温度监测的生物芯片及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040009614A1 (en) * 2000-05-12 2004-01-15 Ahn Chong H Magnetic bead-based arrays
US20070059781A1 (en) * 2005-09-15 2007-03-15 Ravi Kapur System for size based separation and analysis
WO2009008925A2 (en) * 2007-04-05 2009-01-15 The Regents Of The University Of California A particle-based microfluidic device for providing high magnetic field gradients
WO2009047714A1 (en) * 2007-10-11 2009-04-16 Koninklijke Philips Electronics N. V. Magnetic manipulation device for magnetic beads
PL2440941T3 (pl) * 2009-06-10 2017-10-31 Cynvenio Biosystems Inc Sposoby i urządzenia z przepływem laminarnym
US20110117577A1 (en) * 2009-10-20 2011-05-19 Agency For Science, Technology And Research Microfluidic system for trapping and detection of a biological entity in a sample
CN101879467B (zh) * 2010-06-04 2012-07-04 武汉大学 一种微磁场控制的微流控芯片及其制作方法
WO2012139517A1 (zh) * 2011-04-13 2012-10-18 深圳华大基因科技有限公司 微流控装置及其用途
CN103387935A (zh) * 2012-05-09 2013-11-13 中国人民解放军军械工程学院 细胞捕获微流控阵列芯片
CN102703300B (zh) * 2012-05-16 2013-10-09 西北工业大学 一种用于细胞分选的多分选区结构及其使用方法
CN103305416A (zh) * 2013-05-17 2013-09-18 宁波美晶医疗技术有限公司 一种基于可调磁场的肿瘤细胞免疫筛选***
US10335789B2 (en) * 2013-07-26 2019-07-02 The Trustees Of The University Of Pennsylvania Magnetic separation filters for microfluidic devices
WO2016087397A1 (en) * 2014-12-02 2016-06-09 Koninklijke Philips N.V. Dispersion and accumulation of magnetic particles in a microfluidic system
CN104689906B (zh) * 2015-03-18 2016-09-07 延边大学 利用电磁场的柱内分离微尺度磁性物质的方法
CN105701309B (zh) * 2016-01-29 2018-11-27 昆明理工大学 一种分析检测磁介质磁力捕获磁性颗粒特征的方法
US11173488B2 (en) * 2016-04-22 2021-11-16 Purdue Research Foundation High-throughput particle capture and analysis
CN206052034U (zh) * 2016-07-20 2017-03-29 国家纳米科学中心 用于表达egfr的单细胞分选和多基因位点检测的微流控芯片
CN106754240B (zh) * 2016-11-24 2019-02-19 国家纳米科学中心 用于捕获和鉴定循环肿瘤细胞的微流控芯片
CN106777598B (zh) * 2016-12-02 2020-01-14 中南大学 任意磁化率分布复杂磁性体磁场梯度张量数值模拟方法
CN107012068A (zh) * 2017-05-05 2017-08-04 广州高盛实验仪器科技有限公司 一种单细胞捕获方法
CN107308998B (zh) * 2017-06-23 2019-06-25 延边大学 一种磁场辅助微流控碳纳米纤维尺寸排阻色谱分离方法
CN108031549B (zh) * 2017-11-29 2019-05-31 华中科技大学 一种用于多种粒子连续分离的磁分离装置及方法

Also Published As

Publication number Publication date
CN109746064A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
CN109746064B (zh) 一种梯度磁场微流控芯片
CN108290166B (zh) 用于处理流体的电磁组合件
US8137523B2 (en) Apparatus for and method of separating polarizable analyte using dielectrophoresis
Wu et al. A planar dielectrophoresis-based chip for high-throughput cell pairing
Luo et al. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation
EP2646798B1 (en) Microanalysis of cellular function
US9090663B2 (en) Systems and methods for the capture and separation of microparticles
KR100624460B1 (ko) 나노 내지 마이크로 크기의 포어가 형성되어 있는 막을 포함하는 미세유동장치 및 그를 이용하여 분극성 물질을 분리하는 방법
Ramadan et al. Magnetic-based microfluidic platform for biomolecular separation
CN110918139B (zh) 微流控芯片、含有该微流控芯片的装置及样本浓缩的方法
CN101879467A (zh) 一种微磁场控制的微流控芯片及其制作方法
JP2004535292A (ja) 磁気微粒子の湿式分離の方法、素子及び装置
Han et al. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array
US20080011608A1 (en) Device for Dielectrophoretic Separation of Particles Contained in a Fluid
CA3047751A1 (en) Multi-planar microelectrode array device and methods of making and using same
JPWO2002023180A1 (ja) 抽出装置及び化学分析装置
US20220379312A1 (en) Magnetic sorting microfluidic chip and manufacturing method therefor
CN106622408A (zh) 一种基于mhd控制的微流控芯片
KR100931303B1 (ko) 기울어진 기판을 이용한 미세 입자 정렬 및 분리용 미세유체 칩
KR100606614B1 (ko) 연속적인 생화학적 미소입자 분석기
US20230132614A1 (en) Electromagnetic assemblies for processing fluids
US20200171509A1 (en) Devices and methods for one-step static or continuous magnetic separation
CN103018310A (zh) 用于实现多次进样的毛细管芯片电泳结构及其实现方法
CN110193386A (zh) 一种基于介电电泳/电浸润效应的微流芯片
CN203083967U (zh) 用于实现多次进样的毛细管芯片电泳结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant