CN109724887A - 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析方法 - Google Patents

循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析方法 Download PDF

Info

Publication number
CN109724887A
CN109724887A CN201910113502.8A CN201910113502A CN109724887A CN 109724887 A CN109724887 A CN 109724887A CN 201910113502 A CN201910113502 A CN 201910113502A CN 109724887 A CN109724887 A CN 109724887A
Authority
CN
China
Prior art keywords
bridge pier
test specimen
chloride ion
seismic
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910113502.8A
Other languages
English (en)
Inventor
王旭
钱骥
何俊宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Jiaotong University
Original Assignee
Chongqing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Jiaotong University filed Critical Chongqing Jiaotong University
Priority to CN201910113502.8A priority Critical patent/CN109724887A/zh
Publication of CN109724887A publication Critical patent/CN109724887A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,属于桥梁抗震性能分析技术领域,该方法包含如下步骤:制备RC桥墩试件,并将所述RC桥墩试件放入模拟腐蚀环境,测量所述RC桥墩试件的氯离子浓度分布;对放入模拟环境腐蚀后的RC桥墩试件进行拟静力加载推覆试验,分析试验结果,获取模拟环境腐蚀后的RC桥墩试件的抗震性能力学指标;根据所述氯离子浓度分布和抗震性能力学指标对RC桥墩试件的地震易损性进行分析。本发明方法能够实现氯离子腐蚀与疲劳荷载耦合作用下结构的长期性能试验。同时本发明考虑了RC墩柱在氯离子腐蚀的同时还承受会对其产生疲劳损伤的车辆循环荷载工况,能够准确揭示RC墩柱抗震性能的实际退化规律。

Description

循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法
技术领域
本发明属于桥梁抗震性能分析技术领域,具体涉及一种循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法。
背景技术
桥梁是交通运输生命线***的重要组成部分,其抗震性能的优劣,成为震后救援工作的重要保障。现阶段,桥梁结构的抗震性能研究未考虑周边环境因素的影响。特殊环境下长期服役混凝土桥梁在例如氯离子侵蚀、冻融循环等极端环境作用下,其抗震性能会随时间产生衰变,结构的实际抗震性能往往远低于结构的设计抗震性能。此时,长期服役桥梁抗震性能会被严重高估,一旦出现地震灾害,往往难以抵御,导致严重的结构破坏,最终造成大量的人员及经济损失。
近海地区混凝土桥梁结构长期遭受氯离子的侵蚀作用。混凝土遭受氯化物的侵蚀后会形成大量可溶性盐类,并在混凝土的孔隙中反复积聚,引起膨胀性反应,促使混凝土的孔隙加大、出现裂缝,并加大侵蚀通道,最终导致钢筋腐蚀。
与此同时,桥梁运营时车辆循环荷载会对RC结构产生疲劳损伤,往复荷载产生的疲劳损伤会加剧混凝土内裂缝的加速发展,同时盐溶液环境中的氯离子会通过裂缝渗入到钢筋表面,引起钢筋的急剧锈蚀,破坏混凝土和钢筋的表面粘结效应。在锈胀达到一定程度后,混凝土保护层剥落,部分钢筋裸露于空气中,失去混凝土保护的钢筋在循环荷载作用下的疲劳损伤急剧发展,直至钢筋断裂破坏。
然而,实际在对桥梁结构抗震性能的依时分析中,往往只考虑氯离子腐蚀等环境因素对于结构抗震性能的退化影响,却忽略掉桥梁运营阶段时车辆循环荷载的影响。
发明内容
有鉴于此,本发明的目的在于提供一种循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,提出一种轴向循环荷载作用下RC墩柱的氯离子腐蚀试验方法,探究RC墩柱的氯离子渗透机理,并获取RC桥梁的地震易损性曲线,以指导RC桥梁结构的抗震设计。
为达到上述目的,本发明提供如下技术方案:
循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,该方法包含如下步骤:
制备RC桥墩试件,并将所述RC桥墩试件放入模拟腐蚀环境,测量所述RC桥墩试件的氯离子浓度分布;
对放入模拟环境腐蚀后的RC桥墩试件进行拟静力加载推覆试验,分析试验结果,获取模拟环境腐蚀后的RC桥墩试件的抗震性能力学指标;
根据所述氯离子浓度分布和抗震性能力学指标对RC桥墩试件的地震易损性进行分析。
可选的,所述根据所述氯离子浓度分布和抗震性能力学指标对RC桥墩的地震易损性进行分析之前,该方法还包含:
对传统纤维梁单元进行拆分和集成,获得RC桥墩梁柱的非线性梁单元,并对所述非线性梁单元进行验证。
可选的,所述制备RC桥墩试件,并将所述RC桥墩试件放入模拟腐蚀环境,测量所述RC桥墩试件的氯离子浓度分布具体包含如下步骤:
制备多根RC桥墩试件,多根所述的RC桥墩试件几何参数一致;
将多根所述RC桥墩试件放置于含氯离子的盐溶液中静置指定时间;
将多根在氯离子的盐溶液中静置后的RC桥墩试件移置结构疲劳***加载箱内,进行轴压和轴拉的循环疲劳加载;
改变氯离子腐蚀时间和循环疲劳荷载幅,测量不同氯离子腐蚀时间和循环疲劳荷载幅条件下的RC桥墩试件的氯离子浓度;
建立RC桥墩试件在轴向循环荷载作用下的氯离子渗透微观模型。
可选的,所述对放入模拟环境腐蚀后的RC桥墩试件进行拟静力加载推覆试验,分析试验结果,获取模拟环境腐蚀后的RC桥墩试件的抗震性能力学指标,包含如下步骤:
模拟桥墩边界条件,并通过所述边界条件固定放入模拟环境腐蚀后的RC桥墩试件;
对固定后的RC桥墩试件施加轴向载荷;
采集试验信息,建立RC桥墩试件的精细有限元模型,辅助分析拟静力试验结果;
根据所述试验结果获取模拟环境腐蚀后的RC桥墩试件的抗震性能力学指标。
可选的,所述根据所述氯离子浓度分布和抗震性能力学指标对RC桥墩试件的地震易损性进行分析,包含如下步骤:
根据所述非线性梁单元,建立车辆循环荷载和氯离子腐蚀耦合影响的全桥非线性有限元模型;
选取地震波,选用位移延性比作为桥梁损伤指标,并根据所述地震波和损伤指标进行全桥弹塑性时程分析;
根据所述时程分析获得的数据进行回归分析,以地震动参数为自变量,建立结构反应的超越概率函数;
绘制所选地震动参数为自变量的地震易损性曲线,对所述地震易损性曲线进行参数分析,获得车辆循环荷载和氯离子腐蚀耦合影响的RC桥梁地震易损性曲线集合,分析RC桥梁地震易损性的变化规律。
可选的,所述超越概率函数的超越概率的计算公式为:
式中,Pf为超过某一极限状态的概率,Sd为结构的地震需求,Sc为结构的抗震能力,βc为结构抗震能力的对数正态分布的标准差,βd为地震需求的对数正态分布的标准差,Φ为正态分布。
可选的,所述将多根所述RC桥墩试件放置于含氯离子的盐溶液中静置指定时间具体为,将多根所述RC桥墩试件放置于初始浓度为5%的NaCl溶液中,静置48小时。
可选的,所述改变氯离子腐蚀时间和循环疲劳荷载幅包含如下步骤:
通过所述结构疲劳***调节疲劳荷载幅分别为0.05、0.1、0.15的轴压极限承载力和0.05、0.1、0.15的轴拉极限承载力;
通过调整含氯离子的盐溶液中的电流大小,分别达到10%、20%以及30%的腐蚀程度。
可选的,所述对固定后的RC桥墩试件施加轴向载荷,具体为:
通过液压千斤顶对固定后的RC桥墩试件施加轴向载荷,试验过程中控制轴压比或轴拉比为0.1。
可选的,所述抗震性能力学指标包含刚度、承载力、位移延性、塑性铰的位置和大小以及各区域的耗能能力。
本发明的有益效果在于:本发明采用复杂环境下结构疲试验***,提出RC墩柱在轴向循环荷载作用下的氯离子腐蚀试验方法。能够实现氯离子腐蚀与疲劳荷载耦合作用下结构的长期性能试验,填补了之前的技术缺陷。
本发明考虑了RC墩柱在氯离子腐蚀的同时还承受会对其产生疲劳损伤的车辆循环荷载工况,能够准确揭示RC墩柱抗震性能的实际退化规律。
本发明提出不同氯离子腐蚀时间、不同疲劳应力幅所对应的地震易损性曲线集合,为结构体系长期性能的评估和地震作用下的安全评价提供全面而可靠的设计依据。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明实施例流程图;
图2为本发明轴向循环荷载作用下RC墩柱的结构疲劳试验***;
图3为本发明实施例轴向循环荷载和氯离子腐蚀耦合作用后RC墩柱的拟静力试验***。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
本发明为一种循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,如图1所示,该方法包含如下步骤:
S1制备RC桥墩试件,并将所述RC桥墩试件放入模拟腐蚀环境,测量所述RC桥墩试件的氯离子浓度分布。
S2对放入模拟环境腐蚀后的RC桥墩试件进行拟静力加载推覆试验,分析试验结果,获取模拟环境腐蚀后的RC桥墩试件的抗震性能力学指标。
S3对传统纤维梁单元进行拆分和集成,获得RC桥墩梁柱的非线性梁单元,并对所述非线性梁单元进行验证。
S4根据所述氯离子浓度分布和抗震性能力学指标对RC桥墩试件的地震易损性进行分析。
其中,制备RC桥墩试件,并将所述RC桥墩试件放入模拟腐蚀环境,测量所述RC桥墩试件的氯离子浓度分布,具体为
S11制备多根RC桥墩试件,多根所述的RC桥墩试件几何参数一致;
本实施例中设计28根RC桥墩试件,RC桥墩试件参数如表1所示:
表1 RC墩柱试件几何参数
28根RC桥墩试件的几何参数一致,试验的变化参数为疲劳荷载幅和氯离子腐蚀时间。
S12将多根所述RC桥墩试件放置于含氯离子的盐溶液中静置指定时间;
如图2所示,本发明方法基于轴向循环荷载作用下RC墩柱的结构疲劳试验***,该试验***包含,RC墩柱1,地梁13,锚栓12,作动器31,力传感器32,直流电源2,正极21,负极22,不锈钢网片23,试验箱11,RC墩柱1的一端设置在地梁13上组成RC桥墩试件,RC桥墩试件通过锚栓12固定在试验箱11底部,试验箱1中可以放下整个RC桥墩试件,可以在试验箱中加入含氯离子的盐溶液,如图2中的溶液平面没过RC桥墩试件一定高度,RC墩柱1另一端上设置有力传感器32和作动器31,为了加速腐蚀,本发明实施例通过电化学来加速腐蚀速度,如图2所示,加入了直流电源2,直流电源的正极21设置在RC墩柱1上,直流电压的负极22设置在溶液中,直流电源的负极设置有不锈钢网片,用于扩展负极与溶液的接触面积。
S12具体为将试件放置于初始浓度为5%的NaCl溶液中48h后,移置结构疲劳***加载箱内进行轴压和轴拉的疲劳加载。
S13将多根在氯离子的盐溶液中静置后的RC桥墩试件移置结构疲劳***加载箱内,进行轴压和轴拉的循环疲劳加载。
S13具体为,将多根在氯离子的盐溶液中静置后的RC桥墩试件移置结构疲劳***加载箱内,疲劳荷载幅分别为0.05、0.1、0.15的轴压极限承载力和0.05、0.1、0.15的轴拉极限承载力。氯离子腐蚀时间可通过电化学加速腐蚀的方法来达到短期模拟实际的效果,通过调整NaCl溶液中电流的大小,以分别达到10%、20%、30%的腐蚀程度,具体的试验参数和设计如表2所示,
表2试件数量和特征
S14改变氯离子腐蚀时间和循环疲劳荷载幅,测量不同氯离子腐蚀时间和循环疲劳荷载幅条件下的RC桥墩试件的氯离子浓度;
对于RC桥墩试件内氯离子浓度的测量,本实施例采用X射线光电子能谱分析(XPS)方法实时监控测量氯离子在RC试件中的浓度分布,以Fick第二定律为理论基础,分析氯离子扩散系数在时间和空间维度上的分布规律。
S15建立RC桥墩试件在轴向循环荷载作用下的氯离子渗透微观模型。
本实施例中采用COMSOL有限差分大型通用软件建立RC墩柱试件内在轴向循环荷载作用下的氯离子渗透微观模型,通过试验标定模型的重要参数,确保模型的可行性和适用性。
为获得大尺寸墩柱试件的本构关系,同时设计大量材性试件。材性试件与大尺寸墩柱试件具有相同的纵筋和箍筋配筋率,相同的疲劳加载工况和相同的腐蚀条件。本发明实施例在试验进行的过程中每隔5天破坏1批材性试件,测定氯离子腐蚀和循环荷载耦合作用下的混凝土、钢筋和界面的强度和变形指标,以获得在轴向循环荷载与氯离子腐蚀耦合作用下混凝土、钢筋和界面粘结的本构关系。
步骤S2对放入模拟环境腐蚀后的RC桥墩试件进行拟静力加载推覆试验,分析试验结果,获取模拟环境腐蚀后的RC桥墩试件的抗震性能力学指标,具体为:
S21模拟桥墩边界条件,并通过所述边界条件固定放入模拟环境腐蚀后的RC桥墩试件;
S22对固定后的RC桥墩试件施加轴向载荷;
针对步骤S1中轴向循环加载和氯离子腐蚀耦合作用后的RC桥墩试件进行拟静力加载推覆试验,试验加载***如图3所示,包含RC墩柱1,地梁13,锚栓12,作动器31,力传感器32,反力墙5,依次连接的反力横梁61,滚轴支撑62,力传感器63,液压千斤顶64连接铰65,RC墩柱1的一端设置在地梁13上组成RC桥墩试件,RC桥墩试件通过锚栓12固定在地面4上。作动器31和力传感器32设置在了RC桥墩试件的径向,并且另一端设置在反力墙5上。
RC桥墩试件通过四根锚栓12与地面4牢靠连接,以模拟桥墩的边界条件,轴向荷载通过液压千斤顶施加,在试验过程中控制轴压比或轴拉比为0.1,水平位移通过MTS电液伺服作动器施加。
S23采集试验信息,建立RC桥墩试件的精细有限元模型,辅助分析拟静力试验结果;
S24根据所述试验结果获取模拟环境腐蚀后的RC桥墩试件的抗震性能力学指标。
可选的,本发明实施例采用ABAQUS软件建立RC墩柱的精细有限元模型辅助分析拟静力试验结果。
可选的,通过拟静力试验获取RC墩柱试件在轴向循环荷载和氯离子腐蚀耦合作用后的抗震性能力学指标的退化时变历程,力学指标包括刚度、承载力、位移延性、塑性铰的位置和大小以及各区域的耗能能力。
步骤S3对传统纤维梁单元进行拆分和集成,获得RC桥墩梁柱的非线性梁单元,并对所述非线性梁单元进行验证,具体包含如下步骤:
本发明实施例的非线性梁单元在每个迭代步内进行“先拆分再集成”的运算过程,具体为“单元层次→截面层次→材料层次→截面层次→单元层次”。为获得非线性梁单元,本发明实施例重点针对该计算过程进行改进和补充,具体为针对单元、截面和材料层次上进行改进和升级。
具体包含:
S31在单元层次方面,将传统纤维梁的单个的轴向和转角自由度分别补充为混凝土和钢筋各自具有独立的轴向和转角自由度,确定单元刚度矩阵的维数和具体形式;
S32在截面层次方面,在单元刚度矩阵自由度维数扩充的基础上,基于经典的平截面假定构建变形协调矩阵,实现广义应变向量和纤维应变列阵之间的拆分与集成;
S33在材料层次方面,编入步骤S1预先得到的考虑氯离子腐蚀和疲劳损伤耦合作用下混凝土、钢筋和界面滑移的本构关系,以考虑材料依时退化的特性。
S34最后通过RC墩柱非线性梁单元模型计算结果与步骤S2中抗震性能试验结果的对比,验证非线性梁单元的准确性与适用性。
S4根据所述氯离子浓度分布和抗震性能力学指标对RC桥墩试件的地震易损性进行分析,具体包含:
S41根据所述非线性梁单元,建立车辆循环荷载和氯离子腐蚀耦合影响的全桥非线性有限元模型;
采用步骤S3中获得的RC墩柱非线性梁单元,建立车辆循环荷载和氯离子腐蚀耦合影响下全桥的非线性有限元模型。
S42选取地震波,选用位移延性比作为桥梁损伤指标,并根据所述地震波和损伤指标进行全桥弹塑性时程分析;
考虑不同震级和不同场地的差异,选取合适地震波;确立桥梁损伤指标,本实施例采用位移延性比为损伤指标,以OpenSees为平台进行全桥的弹塑性时程分析。
S43根据所述时程分析获得的数据进行回归分析,以地震动参数为自变量,建立结构反应的超越概率函数;
对时程分析得到的数据进行回归分析,以地震动参数(例如地面峰值加速度)为自变量,建立结构反应的超越概率函数,本发明实施例将结构能力和结构在地震作用下的需求描述为对数正态分布,超越概率计算公式为
式中,Pf为超过某一极限状态的概率,Sd为结构的地震需求,Sc为结构的抗震能力,βc为结构抗震能力的对数正态分布的标准差,βd为地震需求的对数正态分布的标准差,Φ为正态分布。
S44绘制所选地震动参数为自变量的地震易损性曲线,对所述地震易损性曲线进行参数分析,获得车辆循环荷载和氯离子腐蚀耦合影响的RC桥梁地震易损性曲线集合,分析RC桥梁地震易损性的变化规律。
绘制以所选地震动参数为变量的地震易损性曲线。进而对所得地震易损性曲线进行参数分析,最终得出不同疲劳应力幅、不同氯离子腐蚀时间对应的RC桥梁的不同地震易损性曲线集合,分析当轴向循环荷载应力幅和氯离子腐蚀时间分别变化时RC桥梁地震易损性的变化规律。
本发明方法对于混凝土、钢筋和界面粘结滑移关系考虑轴向循环荷载造成的疲劳损伤和氯离子腐蚀耦合作用下的时变本构关系,在单元、截面和材料层次上升级传统纤维梁单元,本发明RC墩柱考虑轴向循环荷载和氯离子腐蚀耦合作用的非线性梁单元,与现有技术相比,本发明梁单元具有更高的精度和更好的适用性。
本发明方法以非线性梁单元为基础,建立钢筋混凝土全桥结构的杆系有限元模型,提出不同氯离子腐蚀时间、不同疲劳应力幅所对应的地震易损性曲线集合,为结构体系长期性能的评估和地震作用下的安全评价提供全面而可靠的设计依据。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (10)

1.循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,其特征在于:该方法包含如下步骤:
制备RC桥墩试件,并将所述RC桥墩试件放入模拟腐蚀环境,测量所述RC桥墩试件的氯离子浓度分布;
对放入模拟环境腐蚀后的RC桥墩试件进行拟静力加载推覆试验,分析试验结果,获取模拟环境腐蚀后的RC桥墩试件的抗震性能力学指标;
根据所述氯离子浓度分布和抗震性能力学指标对RC桥墩试件的地震易损性进行分析。
2.根据权利要求1所述的循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,其特征在于:所述根据所述氯离子浓度分布和抗震性能力学指标对RC桥墩的地震易损性进行分析之前,该方法还包含:
对传统纤维梁单元进行拆分和集成,获得RC桥墩梁柱的非线性梁单元,并对所述非线性梁单元进行验证。
3.根据权利要求1所述的循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,其特征在于:所述制备RC桥墩试件,并将所述RC桥墩试件放入模拟腐蚀环境,测量所述RC桥墩试件的氯离子浓度分布具体包含如下步骤:
制备多根RC桥墩试件,多根所述的RC桥墩试件几何参数一致;
将多根所述RC桥墩试件放置于含氯离子的盐溶液中静置指定时间;
将多根在氯离子的盐溶液中静置后的RC桥墩试件移置结构疲劳***加载箱内,进行轴压和轴拉的循环疲劳加载;
改变氯离子腐蚀时间和循环疲劳荷载幅,测量不同氯离子腐蚀时间和循环疲劳荷载幅条件下的RC桥墩试件的氯离子浓度;
建立RC桥墩试件在轴向循环荷载作用下的氯离子渗透微观模型。
4.根据权利要求1所述的循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,其特征在于:所述对放入模拟环境腐蚀后的RC桥墩试件进行拟静力加载推覆试验,分析试验结果,获取模拟环境腐蚀后的RC桥墩试件的抗震性能力学指标,包含如下步骤:
模拟桥墩边界条件,并通过所述边界条件固定放入模拟环境腐蚀后的RC桥墩试件;
对固定后的RC桥墩试件施加轴向载荷;
采集试验信息,建立RC桥墩试件的精细有限元模型,辅助分析拟静力试验结果;
根据所述试验结果获取模拟环境腐蚀后的RC桥墩试件的抗震性能力学指标。
5.根据权利要求2所述的循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,其特征在于:所述根据所述氯离子浓度分布和抗震性能力学指标对RC桥墩试件的地震易损性进行分析,包含如下步骤:
根据所述非线性梁单元,建立车辆循环荷载和氯离子腐蚀耦合影响的全桥非线性有限元模型;
选取地震波,选用位移延性比作为桥梁损伤指标,并根据所述地震波和损伤指标进行全桥弹塑性时程分析;
根据所述时程分析获得的数据进行回归分析,以地震动参数为自变量,建立结构反应的超越概率函数;
绘制所选地震动参数为自变量的地震易损性曲线,对所述地震易损性曲线进行参数分析,获得车辆循环荷载和氯离子腐蚀耦合影响的RC桥梁地震易损性曲线集合,分析RC桥梁地震易损性的变化规律。
6.根据权利要求5所述的循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,其特征在于:
所述超越概率函数的超越概率的计算公式为:
式中,Pf为超过某一极限状态的概率,Sd为结构的地震需求,Sc为结构的抗震能力,βc为结构抗震能力的对数正态分布的标准差,βd为地震需求的对数正态分布的标准差,Φ为正态分布。
7.根据权利要求3所述的循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,其特征在于:所述将多根所述RC桥墩试件放置于含氯离子的盐溶液中静置指定时间具体为,将多根所述RC桥墩试件放置于初始浓度为5%的NaCl溶液中,静置48小时。
8.根据权利要求3所述的循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,其特征在于:所述改变氯离子腐蚀时间和循环疲劳荷载幅包含如下步骤:
通过所述结构疲劳***调节疲劳荷载幅分别为0.05、0.1、0.15的轴压极限承载力和0.05、0.1、0.15的轴拉极限承载力;
通过调整含氯离子的盐溶液中的电流大小,分别达到10%、20%以及30%的腐蚀程度。
9.根据权利要求4所述的循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,其特征在于:所述对固定后的RC桥墩试件施加轴向载荷,具体为:
通过液压千斤顶对固定后的RC桥墩试件施加轴向载荷,试验过程中控制轴压比或轴拉比为0.1。
10.根据权利要求4所述的循环载荷与氯离子腐蚀耦合的RC桥墩抗震性能分析方法,其特征在于:所述抗震性能力学指标包含刚度、承载力、位移延性、塑性铰的位置和大小以及各区域的耗能能力。
CN201910113502.8A 2019-02-14 2019-02-14 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析方法 Pending CN109724887A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910113502.8A CN109724887A (zh) 2019-02-14 2019-02-14 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910113502.8A CN109724887A (zh) 2019-02-14 2019-02-14 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析方法

Publications (1)

Publication Number Publication Date
CN109724887A true CN109724887A (zh) 2019-05-07

Family

ID=66301446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910113502.8A Pending CN109724887A (zh) 2019-02-14 2019-02-14 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析方法

Country Status (1)

Country Link
CN (1) CN109724887A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337363A (zh) * 2020-03-30 2020-06-26 哈尔滨工程大学 一种热电材料性能测试的装置和方法
CN111413224A (zh) * 2020-05-18 2020-07-14 上海工程技术大学 一种对桥梁墩柱可加轴压的***试验反力架装置
CN112033888A (zh) * 2020-09-09 2020-12-04 江苏开放大学(江苏城市职业学院) 动力荷载与氯盐侵蚀耦合的立面分区腐蚀桥墩损伤程度评价方法
CN112197926A (zh) * 2020-10-08 2021-01-08 天津大学 考虑腐蚀环境与荷载历史影响的结构件抗震性能试验方法
CN114186460A (zh) * 2021-12-09 2022-03-15 中交公路长大桥建设国家工程研究中心有限公司 一种桥梁地震-冲刷灾害耦合作用下的危险性分析方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020299A2 (en) * 1999-09-16 2001-03-22 Ut-Battelle, Llc Nonlinear structural crack growth monitoring
WO2002006764A1 (en) * 2000-07-19 2002-01-24 Kelly Robert G Embeddable corrosion monitoring-instrument for steel reinforced structures
CN101074995A (zh) * 2007-05-17 2007-11-21 杨仕升 建筑物抗震能力的评估方法及其应用
CN103398908A (zh) * 2013-08-06 2013-11-20 清华大学 钢-混凝土组合柱的抗震抗扭试验加载装置及制作方法
CN103743587A (zh) * 2014-01-03 2014-04-23 中交四航工程研究院有限公司 海洋环境与动载耦合试验设备***
CN204649550U (zh) * 2015-06-09 2015-09-16 成都市伺服液压设备有限公司 用于建筑材料抗震性能测试的水平加载装置
CN204679269U (zh) * 2015-06-12 2015-09-30 中国人民解放军理工大学 一种拟静力试验装置
CN105136592A (zh) * 2015-05-14 2015-12-09 华北水利水电大学 一种判断桥墩抗震性能的方法
CN205317436U (zh) * 2015-12-10 2016-06-15 新余学院 一种桥梁墩柱抗震承载测试装置
CN105865734A (zh) * 2016-04-28 2016-08-17 福州大学 用于试验钢筋混凝土桥墩抗震性能的加载装置及使用方法
CN206038456U (zh) * 2016-09-28 2017-03-22 中国矿业大学 一种加载带窗口的墙体拟静力实验装置
CN106644330A (zh) * 2015-10-29 2017-05-10 中国电力科学研究院 一种变电站复合材料套管抗震极限承载力参数的标定方法
CN107229810A (zh) * 2017-07-19 2017-10-03 交通运输部公路科学研究所 一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法
CN107238568A (zh) * 2017-03-31 2017-10-10 浙江大学 基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法及加载装置
CN107246035A (zh) * 2017-07-19 2017-10-13 交通运输部公路科学研究所 一种跨海大桥主墩混凝土桩基础损伤分析方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020299A2 (en) * 1999-09-16 2001-03-22 Ut-Battelle, Llc Nonlinear structural crack growth monitoring
WO2002006764A1 (en) * 2000-07-19 2002-01-24 Kelly Robert G Embeddable corrosion monitoring-instrument for steel reinforced structures
CN101074995A (zh) * 2007-05-17 2007-11-21 杨仕升 建筑物抗震能力的评估方法及其应用
CN103398908A (zh) * 2013-08-06 2013-11-20 清华大学 钢-混凝土组合柱的抗震抗扭试验加载装置及制作方法
CN103743587A (zh) * 2014-01-03 2014-04-23 中交四航工程研究院有限公司 海洋环境与动载耦合试验设备***
CN105136592A (zh) * 2015-05-14 2015-12-09 华北水利水电大学 一种判断桥墩抗震性能的方法
CN204649550U (zh) * 2015-06-09 2015-09-16 成都市伺服液压设备有限公司 用于建筑材料抗震性能测试的水平加载装置
CN204679269U (zh) * 2015-06-12 2015-09-30 中国人民解放军理工大学 一种拟静力试验装置
CN106644330A (zh) * 2015-10-29 2017-05-10 中国电力科学研究院 一种变电站复合材料套管抗震极限承载力参数的标定方法
CN205317436U (zh) * 2015-12-10 2016-06-15 新余学院 一种桥梁墩柱抗震承载测试装置
CN105865734A (zh) * 2016-04-28 2016-08-17 福州大学 用于试验钢筋混凝土桥墩抗震性能的加载装置及使用方法
CN206038456U (zh) * 2016-09-28 2017-03-22 中国矿业大学 一种加载带窗口的墙体拟静力实验装置
CN107238568A (zh) * 2017-03-31 2017-10-10 浙江大学 基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法及加载装置
CN107229810A (zh) * 2017-07-19 2017-10-03 交通运输部公路科学研究所 一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法
CN107246035A (zh) * 2017-07-19 2017-10-13 交通运输部公路科学研究所 一种跨海大桥主墩混凝土桩基础损伤分析方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CONGQI FANG ET AL.: ""Corrosion influence on bond in reinforced concrete"", 《CEMENT AND CONCRETE RESEARCH》 *
CONGQI FANG ET AL.: ""Performance of corroded bridge piers under cyclic loading"", 《CONGQI FANG ET AL.》 *
KAVEH ANDISHEH: ""SEISMIC PERFORMANCE OF CORRODED REINFORCED CONCRETE BRIDGE PIERS"", 《UNIVERSITY OF CANTERBURY学位论文》 *
班亚云: ""考虑近海耐久性损伤的混凝土梁桥时变地震易损性分析"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
陈孝新: ""既有混凝土框架结构抗震性能和评估"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337363A (zh) * 2020-03-30 2020-06-26 哈尔滨工程大学 一种热电材料性能测试的装置和方法
CN111337363B (zh) * 2020-03-30 2022-04-05 哈尔滨工程大学 一种热电材料性能测试的装置和方法
CN111413224A (zh) * 2020-05-18 2020-07-14 上海工程技术大学 一种对桥梁墩柱可加轴压的***试验反力架装置
CN112033888A (zh) * 2020-09-09 2020-12-04 江苏开放大学(江苏城市职业学院) 动力荷载与氯盐侵蚀耦合的立面分区腐蚀桥墩损伤程度评价方法
CN112197926A (zh) * 2020-10-08 2021-01-08 天津大学 考虑腐蚀环境与荷载历史影响的结构件抗震性能试验方法
CN112197926B (zh) * 2020-10-08 2023-02-14 天津大学 考虑腐蚀环境与荷载历史影响的结构件抗震性能试验方法
CN114186460A (zh) * 2021-12-09 2022-03-15 中交公路长大桥建设国家工程研究中心有限公司 一种桥梁地震-冲刷灾害耦合作用下的危险性分析方法
CN114186460B (zh) * 2021-12-09 2024-04-30 中交公路长大桥建设国家工程研究中心有限公司 一种桥梁地震-冲刷灾害耦合作用下的危险性分析方法

Similar Documents

Publication Publication Date Title
CN109724887A (zh) 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析方法
Darmawan et al. Effect of pitting corrosion on capacity of prestressing wires
CN103399049B (zh) 基于导电聚合物拉敏效应的混凝土开裂监测方法
Kashani et al. Structural capacity assessment of corroded RC bridge piers
Vanama et al. Improved degradation relations for the tensile properties of naturally and artificially corroded steel rebars
Sadeghian et al. The modified compression field theory: then and now
CN110132718A (zh) 基于隧道衬砌变形特征的结构剩余承载力测定方法及***
Luo et al. Seismic behavior of corroded reinforced concrete column joints under low-cyclic repeated loading
Zhang et al. Experimental and numerical study on seismic performance of corroded steel frames in chloride environment
CN109724886A (zh) 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析***
CN113297769A (zh) 海上风电数字孪生试桩试验***及建立方法
Enzell et al. Post-peak behavior of concrete dams based on nonlinear finite element analyses
Koçer et al. Analytical study on the effect of corrosion to the construction performance
Xu et al. Cyclic behavior of steel frame joints in the offshore atmospheric environment
Elawadi Time-dependent response of flat plate structures under high sustained load
Deng et al. Curvature response of bridge pier subjected to earthquake action in a saline soil environment
Yang et al. Study on low-cycle hysteresis properties of seawater corroded steel considering loading history effects
Realpe Seismic performance and displacement capacity of RCFST drilled shafts
Lautrou et al. A fatigue crack initiation approach for naval welded joints
Sadeghi et al. Local and microscopic damage indices applicable to RC structures and concretes subjected to cyclic loading
Patil et al. Influence of corrosion on flexural strength of concrete
Singh Parametric study on structural behaviour of mast tower
Jung Performance of shape memory alloy rehabilitated bridge columns under sequential earthquakes
Saouma et al. Deterministic analyses of concrete dams: examples
Mahmoud et al. Effect of Type of Replacement Fill Beneath Strip Footing on Its Behavior

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190507

RJ01 Rejection of invention patent application after publication