CN109719393A - 热弧与激光复合热源金属化合物纳米粉体的连续生产方法 - Google Patents

热弧与激光复合热源金属化合物纳米粉体的连续生产方法 Download PDF

Info

Publication number
CN109719393A
CN109719393A CN201910075651.XA CN201910075651A CN109719393A CN 109719393 A CN109719393 A CN 109719393A CN 201910075651 A CN201910075651 A CN 201910075651A CN 109719393 A CN109719393 A CN 109719393A
Authority
CN
China
Prior art keywords
cavity
target
laser
power supply
composite heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910075651.XA
Other languages
English (en)
Inventor
黄昊
黄子岸
吴爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910075651.XA priority Critical patent/CN109719393A/zh
Publication of CN109719393A publication Critical patent/CN109719393A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及纳米粉体生产技术领域,具体是热弧与激光复合热源金属化合物纳米粉体的连续生产方法。通过利用热弧与激光复合热源蒸发多腔体纳米粉体制备装置,将激光功率与热弧功率均增加,通过对激光与热弧功率的控制,来改变阳极的蒸发效率,通过控制腔体中的温度梯度,形成不同粒径的纳米粉体,可实现连续生产。本发明可实现多种不同成分粉体的同时制备,避免了粉体制备过程中的相互污染,提高了粉体的纯度,生产效率大大提高、成本降低,在产业上可以实现不同腔体之间不断切换、持续蒸发纳米粉体的生产效果,在真空***满足持续工作的前提下可以实现连续化生产。

Description

热弧与激光复合热源金属化合物纳米粉体的连续生产方法
技术领域
本发明涉及纳米粉体生产技术领域,具体是一种金属化合物纳米粉体连续生产方法。
背景技术
直流电弧等离子体是制备纳米粒子,特别是“核/壳”型金属(合金)纳米复合粒子、碳相关材料及陶瓷纳米材料的一种有效热源,目前采用此方法初步实现了宏量生产,例如中国专利申请:一种多源直流电弧自动化纳米粉体生产***及方法(201410189518.4),但对于大规模工业化生产,还存在着许多技术问题,主要表现在如何高效率、低成本、高纯度、无污染、连续化的制备纳米粉体。
现有金属化合物纳米粉体制备设备及工艺主要都是针对纳米粉体在单腔体即单生成室中生成、分级、捕集和处理,这种单腔体的粉体制备设备及工艺存在以下缺陷:
1、生产效率较低,成本较高
目前,单腔体的粉体制备设备及工艺,在完成真空抽取、粉体生成及处理、真空保持等循环过程中,大部分时间用于抽真空和真空保持并循环此过程,一次制备过程中用于此真空抽取和真空保持的时间占到50%-70%,而实际粉体生产时间为15-20%,整体而言,生产效率较低,同时由于真空抽取和真空保持并反复重复此过程,将消耗大量的能源,使得成本大大增加。
2、纯度较低、存在交叉污染
单腔体的粉体制备设备及工艺,在制备完成一直材料的纳米粉体制备后,如果再制备其他材料的粉体,至少存在2种粉体之间的相互污染,从而降低纳米粉体的纯度。
3、无法实现真正意义上的连续化生产
目前的单腔体的粉体制备设备及工艺,虽然可以通过阳极材料的持续送料和供给,实现一定程度上的连续化生产,但是受制于阳极材料的尺寸,在材料持续送料和供给过程中会存在不够连续的问题,同时由于连续送料对腔体真空度的影响,这种方法在大规模工业化生产上无法在保证产品质量的前提下实现连续化生产,在不久将来逐步淘汰。
目前,激光热源主要应用于材料加工领域,通过激光热源和电弧的复合方法实现增材制造,例如中国专利申请:一种激光-复合焊枪(201510144976.0)。本发明首次应用激光和电弧热源复合的方法实现纳米粉体的产业化生产,实现了激光热源和电弧等离子体的有效配合,提高了纳米粉体的生产效率。已有激光-电弧复合热源蒸发的激光类型主要包括:CO2气体激光束、YAG固体激光束或二极管激光束,采用连续或者脉冲输出模式;电弧类型主要包括:TIG电弧、MIG电弧、MAG电弧或等离子弧,可采用直流或者直流脉冲模式。
发明内容
本发明的目的在于提供热弧与激光复合热源金属化合物纳米粉体的连续生产方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
热弧与激光复合热源金属化合物纳米粉体的连续生产方法,其特征在于:包括以下步骤:
(1)、放置靶材:在不同的独立腔体的阳极固定器上安装相同成分或不同成分的单金属或金属合金靶材为阳极,以熔点高于3000℃的金属为阴极,靶材的上方的腔体内壁上开口处密封安装砷化镓玻璃,并对砷化镓玻璃进行冷却;
(2)、抽真空:关闭各独立腔体的舱门,打开各独立腔体的真空阀门,对所有的腔体抽真空至真空度不高于10-4Pa,关闭各独立腔体的真空阀门;
(3)、充入工作气体:打开各独立腔体的进气阀门,按照靶材的属性通入工作气体:靶材为金属化合物时,通入工作气体氢气;靶材为单金属时,通入工作气体氢气和反应气体;
(4)、起弧:在阴极与阳极之间通入直流电压起弧,在电弧作用下阳极开始熔化蒸发成原子态,反应气体在电弧作用下裂解成原子态;
(5)、导入激光:将外部激光光源通过砷化镓玻璃导入腔体内,调节激光功率并对准靶材;
(6)、热弧与激光复合热源蒸发:将激光功率增加至靶材蒸发功率,同时增加电弧功率,靶材开始蒸发,通过对热弧与激光复合热源的功率控制,来改变阳极的蒸发效率;
(7)、形成粉体:金属原子与反应气体原子反应生成金属化合物,控制腔体中的温度梯度为25000-37000K/m,形成不同粒径的金属化合物纳米粉体;
(8)、金属纳米粉体收集:待其中任一个阳极靶材消耗完成,关闭该腔体对应激光光源,关闭该腔体中电弧,静置12-24小时,取出该腔体中的金属化合物纳米粉体;
(9)、换靶材:清理已完成粉体取出的腔体,放入与该腔体之前放入的靶材相同成分的单金属或金属合金靶材,关闭该腔体舱门,打开该腔体的真空阀门,对该腔体抽真空至真空度不高于10-4Pa,关闭该腔体的真空阀门,打开该腔体的进气阀门,按照靶材的属性通入工作气体:靶材为金属化合物时,通入工作气体氢气;靶材为单金属时,通入工作气体氢气和反应气体,在阴极与阳极之间通入直流电压起弧,在电弧作用下阳极开始熔化蒸发成原子态,反应气体在电弧作用下裂解成原子态;
(10)、连续生产:重复上述第(4)-(9)的工艺步骤,实现连续生产。
所述步骤(1)中熔点高于3000℃的金属为钨、铂或钼;砷化镓玻璃厚度为3-5mm。
所述步骤(3)或步骤(9)中通入氢气气压为0.1大气压,反应气体气压为0.2-0.3大气压。
所述步骤(3)或步骤(9)中通入的反应气体为氧气、氮气、氨气、烷类气体或硫化氢气体。反应气体为氧气时,得到的是金属氧化物纳米粉体;反应气体为氮气或氨气时,得到的是金属氮化物纳米粉体;反应气体为烷类气体时,得到的是金属碳化物纳米粉体;反应气体为硫化氢气体时,得到的是金属硫化物纳米粉体;
所述步骤(4)或步骤(9)中直流电压为50-180V。
所述步骤(5)中调节激光功率为300-400W。
步骤(6)中激光功率为500-3000W,电弧功率为500-600W,蒸发效率范围在0.6-0.95 之间变化。蒸发效率定义为η=P/P0,η的范围根据不同的金属,范围在0.6-0.95之间变化,其中,镁、铝、钙、锌为0.9-0.95,铁、钴、镍为0.8-0.9,钼、铌、钽为0.6-0.8。
所述步骤(7)金属化合物纳米粉体的粒径为30-120nm。
所述步骤(7)中控制腔体中的温度梯度的方法是:通过控制冷却水的流量或在腔体中放置液氮冷却管,来控制腔体中温度梯度。
通过控制冷却水的流量或在腔体中放置液氮冷却管,来改变腔体中温度梯度,激光与靶材表面的作用温度为3000-5000K,腔体壁的温度为300K,温度梯度为7000-14000K/m,不同的温度梯度下,纳米粒子直径不同,7000-9000K/m,粒径为90-120nm,9000-11000K/m、粒径为60-90nm,110000-14000K/m,粒径为30-60nm。
与现有技术相比,本发明的有益效果是:
1、实现多种不同成分粉体的同时制备
多个不同的独立腔体之间相互独立,在不同的腔体中可以蒸发制备不同成分的纳米粉体,实现了不同粉体在一个设备上同时制备的功能。
2、避免了粉体制备过程中的相互污染,提高了粉体的纯度
每个独立腔体中可以制备同一种成分的纳米粉体,防止了一个腔体中制备不同粉体而产生的相互污染,进一步提高了纳米粉体的纯度。
3、生产效率大大提高、成本降低
多个腔体同时使用同一套抽真空***,真空***可以不用反复开启和关闭,大大降低了生产中抽真空的时间,生产效率提高了至少30%,生产成本至少降低了20%。
4、实现连续化生产
这种多腔体连续的生产工艺,在产业上可以实现不同腔体之间不断切换、持续蒸发纳米粉体的生产效果,在真空***满足持续工作的前提下可以实现连续化生产。
具体实施方式
下面将结合本发明实施例中,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
热弧与激光复合热源金属化合物纳米粉体的连续生产方法,包括以下步骤:
(1)、放置靶材:在不同的独立腔体的阳极固定器上安装相同成分的单金属靶材为阳极,以熔点高于3000℃的金属为钨为阴极,靶材的上方的腔体内壁上开口处密封安装厚度为3mm的砷化镓玻璃,并对砷化镓玻璃进行冷却;
(2)、抽真空:关闭各独立腔体的舱门,打开各独立腔体的真空阀门,对所有的腔体抽真空至真空度不高于10-4Pa,关闭各独立腔体的真空阀门;
(3)、充入工作气体:打开各独立腔体的进气阀门,通入工作气体氢气和反应气体;通入氢气气压为0.1大气压,反应气体气压为0.2-0.3大气压;通入的反应气体为氧气,得到的是金属氧化物纳米粉体;
(4)、起弧:在阴极与阳极之间通入50V直流电压起弧,在电弧作用下阳极开始熔化蒸发成原子态,反应气体在电弧作用下裂解成原子态;
(5)、导入激光:将外部激光光源通过砷化镓玻璃导入腔体内,调节激光功率300W并对准靶材;
(6)、热弧与激光复合热源蒸发:将激光功率增加至靶材蒸发功率,同时增加电弧功率,靶材开始蒸发,通过对热弧与激光复合热源的功率控制,来改变阳极的蒸发效率;激光功率为500W,电弧功率为500W,蒸发效率范围在0.6-0.95之间变化。蒸发效率定义为η=P/P0,η的范围根据不同的金属,范围在0.6-0.95之间变化,其中,镁、铝、钙、锌为0.9-0.95,铁、钴、镍为0.8-0.9,钼、铌、钽为0.6-0.8;
(7)、形成粉体:金属原子与反应气体原子反应生成金属化合物,控制腔体中的温度梯度为25000K/m,形成粒径为30-120nm的金属化合物纳米粉体;通过控制冷却水的流量或在腔体中放置液氮冷却管,来改变腔体中温度梯度,激光与靶材表面的作用温度为3000K,腔体壁的温度为300K,温度梯度为7000-9000K/m,粒径为90-120nm;
(8)、金属纳米粉体收集:待其中任一个阳极靶材消耗完成,关闭该腔体对应激光光源,关闭该腔体中电弧,静置12小时,取出该腔体中的金属化合物纳米粉体;
(9)、换靶材:清理已完成粉体取出的腔体,放入与该腔体之前放入的靶材相同成分的单金属或金属合金靶材,关闭该腔体舱门,打开该腔体的真空阀门,对该腔体抽真空至真空度不高于10-4Pa,关闭该腔体的真空阀门,打开该腔体的进气阀门,按照靶材的属性通入工作气体;
(10)、连续生产:重复上述第(4)-(9)的工艺步骤,实现连续生产。
实施例2
热弧与激光复合热源金属化合物纳米粉体的连续生产方法,包括以下步骤:
(1)、放置靶材:在不同的独立腔体的阳极固定器上安装不同成分的金属合金靶材为阳极,以熔点高于3000℃的金属铂为阴极,靶材的上方的腔体内壁上开口处密封安装厚度为4mm的砷化镓玻璃,并对砷化镓玻璃进行冷却;
(2)、抽真空:关闭各独立腔体的舱门,打开各独立腔体的真空阀门,对所有的腔体抽真空至真空度不高于10-4Pa,关闭各独立腔体的真空阀门;
(3)、充入工作气体:打开各独立腔体的进气阀门,通入工作气体氢气;通入氢气气压为0.1大气压;
(4)、起弧:在阴极与阳极之间通入115V直流电压起弧,在电弧作用下阳极开始熔化蒸发成原子态,反应气体在电弧作用下裂解成原子态;
(5)、导入激光:将外部激光光源通过砷化镓玻璃导入腔体内,调节激光功率350W并对准靶材;
(6)、热弧与激光复合热源蒸发:将激光功率增加至靶材蒸发功率,同时增加电弧功率,靶材开始蒸发,通过对热弧与激光复合热源的功率控制,来改变阳极的蒸发效率;激光功率为1750W,电弧功率为550W,蒸发效率范围在0.6-0.95之间变化。蒸发效率定义为η=P/P0,η的范围根据不同的金属,范围在0.6-0.95之间变化,其中,镁、铝、钙、锌为0.9-0.95,铁、钴、镍为0.8-0.9,钼、铌、钽为0.6-0.8;
(7)、形成粉体:金属原子与反应气体原子反应生成金属化合物,控制腔体中的温度梯度为31000K/m,形成粒径为30-120nm的金属化合物纳米粉体;通过控制冷却水的流量或在腔体中放置液氮冷却管,来改变腔体中温度梯度,激光与靶材表面的作用温度为4000K,腔体壁的温度为300K,温度梯度为9000-11000K/m、粒径为60-90nm;
(8)、金属纳米粉体收集:待其中任一个阳极靶材消耗完成,关闭该腔体对应激光光源,关闭该腔体中电弧,静置18小时,取出该腔体中的金属化合物纳米粉体;
(9)、换靶材:清理已完成粉体取出的腔体,放入与该腔体之前放入的靶材相同成分的单金属或金属合金靶材,关闭该腔体舱门,打开该腔体的真空阀门,对该腔体抽真空至真空度不高于10-4Pa,关闭该腔体的真空阀门,打开该腔体的进气阀门,按照靶材的属性通入工作气体:靶材为金属化合物时,通入工作气体氢气;靶材为单金属时,通入工作气体氢气和反应气体,在阴极与阳极之间通入直流电压起弧,在电弧作用下阳极开始熔化蒸发成原子态,反应气体在电弧作用下裂解成原子态;
(10)、连续生产:重复上述第(4)-(9)的工艺步骤,实现连续生产。
实施例3
热弧与激光复合热源金属化合物纳米粉体的连续生产方法,包括以下步骤:
(1)、放置靶材:在不同的独立腔体的阳极固定器上安装不同成分的单金属靶材为阳极,以熔点高于3000℃的金属钼为阴极,靶材的上方的腔体内壁上开口处密封安装厚度为5mm的砷化镓玻璃,并对砷化镓玻璃进行冷却;
(2)、抽真空:关闭各独立腔体的舱门,打开各独立腔体的真空阀门,对所有的腔体抽真空至真空度不高于10-4Pa,关闭各独立腔体的真空阀门;
(3)、充入工作气体:打开各独立腔体的进气阀门,通入工作气体氢气和反应气体;通入氢气气压为0.1大气压,反应气体气压为0.3大气压;通入的反应气体为氮气或氨气时,得到的是金属氮化物纳米粉体;
(4)、起弧:在阴极与阳极之间通入180V直流电压起弧,在电弧作用下阳极开始熔化蒸发成原子态,反应气体在电弧作用下裂解成原子态;
(5)、导入激光:将外部激光光源通过砷化镓玻璃导入腔体内,调节激光功率400W并对准靶材;
(6)、热弧与激光复合热源蒸发:将激光功率增加至靶材蒸发功率,同时增加电弧功率,靶材开始蒸发,通过对热弧与激光复合热源的功率控制,来改变阳极的蒸发效率;激光功率为3000W,电弧功率为600W,蒸发效率范围在0.6-0.95之间变化。蒸发效率定义为η=P/P0,η的范围根据不同的金属,范围在0.6-0.95之间变化,其中,镁、铝、钙、锌为0.9-0.95,铁、钴、镍为0.8-0.9,钼、铌、钽为0.6-0.8;
(7)、形成粉体:金属原子与反应气体原子反应生成金属化合物,控制腔体中的温度梯度为37000K/m,形成粒径为30-120nm的金属化合物纳米粉体;通过控制冷却水的流量或在腔体中放置液氮冷却管,来改变腔体中温度梯度,激光与靶材表面的作用温度为5000K,腔体壁的温度为300K,温度梯度为110000-14000K/m,粒径为30-60nm;
(8)、金属纳米粉体收集:待其中任一个阳极靶材消耗完成,关闭该腔体对应激光光源,关闭该腔体中电弧,静置24小时,取出该腔体中的金属化合物纳米粉体;
(9)、换靶材:清理已完成粉体取出的腔体,放入与该腔体之前放入的靶材相同成分的单金属或金属合金靶材,关闭该腔体舱门,打开该腔体的真空阀门,对该腔体抽真空至真空度不高于10-4Pa,关闭该腔体的真空阀门,打开该腔体的进气阀门,按照靶材的属性通入工作气体:靶材为金属化合物时,通入工作气体氢气;靶材为单金属时,通入工作气体氢气和反应气体,在阴极与阳极之间通入直流电压起弧,在电弧作用下阳极开始熔化蒸发成原子态,反应气体在电弧作用下裂解成原子态;
(10)、连续生产:重复上述第(4)-(9)的工艺步骤,实现连续生产。
实施例4
本实施例中所述热弧与激光复合热源金属化合物纳米粉体的连续生产方法的各步骤均与实施例1中相同,不同点为:
反应气体为烷类气体,得到的是金属碳化物纳米粉体。
实施例5
本实施例中所述热弧与激光复合热源金属化合物纳米粉体的连续生产方法的各步骤均与实施例1中相同,不同点为:
反应气体为硫化氢气体,得到的是金属硫化物纳米粉体。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (9)

1.热弧与激光复合热源金属化合物纳米粉体的连续生产方法,其特征在于:包括以下步骤:
(1)、放置靶材:在不同的独立腔体的阳极固定器上安装相同成分或不同成分的单金属或金属合金靶材为阳极,以熔点高于3000℃的金属为阴极,靶材的上方的腔体内壁上开口处密封安装砷化镓玻璃,并对砷化镓玻璃进行冷却;
(2)、抽真空:关闭各独立腔体的舱门,打开各独立腔体的真空阀门,对所有的腔体抽真空至真空度不高于10-4Pa,关闭各独立腔体的真空阀门;
(3)、充入工作气体:打开各独立腔体的进气阀门,按照靶材的属性通入工作气体:靶材为金属化合物时,通入工作气体氢气;靶材为单金属时,通入工作气体氢气和反应气体;
(4)、起弧:在阴极与阳极之间通入直流电压起弧,在电弧作用下阳极开始熔化蒸发成原子态,反应气体在电弧作用下裂解成原子态;
(5)、导入激光:将外部激光光源通过砷化镓玻璃导入腔体内,调节激光功率并对准靶材;
(6)、热弧与激光复合热源蒸发:将激光功率增加至靶材蒸发功率,同时增加电弧功率,靶材开始蒸发,通过对热弧与激光复合热源的功率控制,来改变阳极的蒸发效率;
(7)、形成粉体:金属原子与反应气体原子反应生成金属化合物,控制腔体中的温度梯度为25000-37000K/m,形成不同粒径的金属化合物纳米粉体;
(8)、金属纳米粉体收集:待其中任一个阳极靶材消耗完成,关闭该腔体对应激光光源,关闭该腔体中电弧,静置12-24小时,取出该腔体中的金属化合物纳米粉体;
(9)、换靶材:清理已完成粉体取出的腔体,放入与该腔体之前放入的靶材相同成分的单金属或金属合金靶材,关闭该腔体舱门,打开该腔体的真空阀门,对该腔体抽真空至真空度不高于10-4Pa,关闭该腔体的真空阀门,打开该腔体的进气阀门,按照靶材的属性通入工作气体:靶材为金属化合物时,通入工作气体氢气;靶材为单金属时,通入工作气体氢气和反应气体,在阴极与阳极之间通入直流电压起弧,在电弧作用下阳极开始熔化蒸发成原子态,反应气体在电弧作用下裂解成原子态;
(10)、连续生产:重复上述第(4)-(9)的工艺步骤,实现连续生产。
2.根据权利要求1所述的热弧与激光复合热源金属化合物纳米粉体的连续生产方法,其特征在于:所述步骤(1)中熔点高于3000℃的金属为钨、铂或钼;砷化镓玻璃厚度为3-5mm。
3.根据权利要求1所述的热弧与激光复合热源金属化合物纳米粉体的连续生产方法,其特征在于:所述步骤(3)或步骤(9)中通入氢气气压为0.1大气压,反应气体气压为0.2-0.3大气压。
4.根据权利要求1所述的热弧与激光复合热源金属化合物纳米粉体的连续生产方法,其特征在于:所述步骤(3)或步骤(9)中通入的反应气体为氧气、氮气、氨气、烷类气体或硫化氢气体。
5.根据权利要求1所述的热弧与激光复合热源金属化合物纳米粉体的连续生产方法,其特征在于:所述步骤(4)或步骤(9)中直流电压为50-180V。
6.根据权利要求1所述的热弧与激光复合热源金属化合物纳米粉体的连续生产方法,其特征在于:所述步骤(5)中调节激光功率为300-400W。
7.根据权利要求1所述的热弧与激光复合热源金属化合物纳米粉体的连续生产方法,其特征在于:所述步骤(6)中激光功率为500-3000W,电弧功率为500-600W,蒸发效率范围在0.6-0.95之间变化。
8.根据权利要求1所述的热弧与激光复合热源金属化合物纳米粉体的连续生产方法,其特征在于:所述步骤(7)纳米粉体的粒径为30-120nm。
9.根据权利要求1所述的热弧与激光复合热源金属化合物纳米粉体的连续生产方法,其特征在于:所述步骤(7)中控制腔体中的温度梯度的方法是:通过控制冷却水的流量或在腔体中放置液氮冷却管,来控制腔体中温度梯度。
CN201910075651.XA 2019-01-25 2019-01-25 热弧与激光复合热源金属化合物纳米粉体的连续生产方法 Pending CN109719393A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910075651.XA CN109719393A (zh) 2019-01-25 2019-01-25 热弧与激光复合热源金属化合物纳米粉体的连续生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910075651.XA CN109719393A (zh) 2019-01-25 2019-01-25 热弧与激光复合热源金属化合物纳米粉体的连续生产方法

Publications (1)

Publication Number Publication Date
CN109719393A true CN109719393A (zh) 2019-05-07

Family

ID=66301154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910075651.XA Pending CN109719393A (zh) 2019-01-25 2019-01-25 热弧与激光复合热源金属化合物纳米粉体的连续生产方法

Country Status (1)

Country Link
CN (1) CN109719393A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228608A (ja) * 1984-04-27 1985-11-13 Hitachi Ltd 超微粒子の製造方法と製造装置
JPS6254005A (ja) * 1985-09-02 1987-03-09 Hitachi Ltd 超微粒子の製造方法
CN1559729A (zh) * 2004-02-23 2005-01-05 大连理工大学 一种自动控制直流电弧金属纳米粉生产设备及方法
CN101269834A (zh) * 2008-05-19 2008-09-24 昆明理工大学 等离子电弧一步法制备纳米ito粉末的方法
CN103962566A (zh) * 2014-05-05 2014-08-06 大连理工大学 一种多源直流电弧自动化纳米粉体生产***及方法
CN104213076A (zh) * 2014-08-27 2014-12-17 慕恩慈沃迪 Pvd与hipims制备超硬dlc涂层方法及设备
CN104708204A (zh) * 2015-03-30 2015-06-17 大连理工大学 一种激光-电弧复合焊枪
CN106044849A (zh) * 2016-06-08 2016-10-26 中国船舶重工集团公司第七二五研究所 采用直流等离子体法制备纳米金属氧化物粉的工艺
CN109012527A (zh) * 2018-10-03 2018-12-18 张家港衡德新材料科技有限公司 一种用液态或气态前驱体生产纳米材料的设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228608A (ja) * 1984-04-27 1985-11-13 Hitachi Ltd 超微粒子の製造方法と製造装置
JPS6254005A (ja) * 1985-09-02 1987-03-09 Hitachi Ltd 超微粒子の製造方法
CN1559729A (zh) * 2004-02-23 2005-01-05 大连理工大学 一种自动控制直流电弧金属纳米粉生产设备及方法
CN101269834A (zh) * 2008-05-19 2008-09-24 昆明理工大学 等离子电弧一步法制备纳米ito粉末的方法
CN103962566A (zh) * 2014-05-05 2014-08-06 大连理工大学 一种多源直流电弧自动化纳米粉体生产***及方法
CN104213076A (zh) * 2014-08-27 2014-12-17 慕恩慈沃迪 Pvd与hipims制备超硬dlc涂层方法及设备
CN104708204A (zh) * 2015-03-30 2015-06-17 大连理工大学 一种激光-电弧复合焊枪
CN106044849A (zh) * 2016-06-08 2016-10-26 中国船舶重工集团公司第七二五研究所 采用直流等离子体法制备纳米金属氧化物粉的工艺
CN109012527A (zh) * 2018-10-03 2018-12-18 张家港衡德新材料科技有限公司 一种用液态或气态前驱体生产纳米材料的设备

Similar Documents

Publication Publication Date Title
US7261779B2 (en) System, method, and apparatus for continuous synthesis of single-walled carbon nanotubes
EP2573047B1 (en) Method for producing onion-like carbon
CN102251224A (zh) 一种在SiC纤维表面沉积薄膜的装置及方法
CN109576679A (zh) 一种燃料电池双极板碳涂层连续沉积***及其应用
CN202139478U (zh) 一种在SiC纤维表面沉积薄膜的装置
Ayesh et al. Mechanisms of Ti nanocluster formation by inert gas condensation
CN103469164B (zh) 一种实现等离子体激活电子束物理气相沉积的装置和方法
CN109719393A (zh) 热弧与激光复合热源金属化合物纳米粉体的连续生产方法
CN102672189A (zh) 一种球形钨粉的制备方法
CN109759708A (zh) 热弧与激光复合热源蒸发金属/碳纳米粉体连续生产方法
JP2007299686A (ja) 電解質膜の形成方法、成膜装置及び固体燃料電池
CN109809366A (zh) 激光蒸发多腔体金属化合物纳米粉体的连续生产方法
CN111195732A (zh) 一种制备金属粉体的***及方法
CN108580886B (zh) 一种金属颗粒表面包覆氧化铝的方法
CN108411266B (zh) 一种金属表面生长金属碳化物的方法
CN106544627A (zh) 一种抗高温热腐蚀复合涂层及其制备方法
KR101537216B1 (ko) 플라즈마 아크 방전법을 이용한 실리콘 분말의 제조방법
CN216712225U (zh) 一种灯丝辅阳离化多弧离子镀结构装置
CN209830275U (zh) 一种制备金属粉体的***
CN109877334A (zh) 热弧蒸发多腔体金属/碳纳米粉体连续生产方法
CN109759601A (zh) 激光蒸发多腔体金属/碳纳米粉体连续生产方法
CN109718732A (zh) 热弧蒸发多腔体金属化合物纳米粉体的连续生产方法
CN103086406A (zh) 一种氧化镁纳米带-碳纳米管复合材料的制备方法
CN100395180C (zh) 碳纳米管制备方法和其设备
RU2542912C2 (ru) Способ получения интерметаллического антиэмиссионного покрытия на сеточных электродах генераторных ламп

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190507

RJ01 Rejection of invention patent application after publication