CN109681325A - 零碳排放的天然气-超临界co2联合循环发电工艺 - Google Patents

零碳排放的天然气-超临界co2联合循环发电工艺 Download PDF

Info

Publication number
CN109681325A
CN109681325A CN201910034260.3A CN201910034260A CN109681325A CN 109681325 A CN109681325 A CN 109681325A CN 201910034260 A CN201910034260 A CN 201910034260A CN 109681325 A CN109681325 A CN 109681325A
Authority
CN
China
Prior art keywords
supercritical
natural gas
gas
power generation
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910034260.3A
Other languages
English (en)
Other versions
CN109681325B (zh
Inventor
田原宇
乔英云
***
孙兰义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201910034260.3A priority Critical patent/CN109681325B/zh
Publication of CN109681325A publication Critical patent/CN109681325A/zh
Application granted granted Critical
Publication of CN109681325B publication Critical patent/CN109681325B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明提供零碳排放的天然气‑超临界CO2联合循环发电工艺,冷换后的加压空气进入空分装置,液氧用于燃烧发电,液氮膨胀汽化发电并作为冷却剂与加压空气换热;天然气与氧气和循环水蒸气共同进入燃气轮机燃烧推动压气机和发电机高速旋转,压气机压缩空气到0.5‑0.8MPa,发电机产生电力;高温燃烧烟气再超临界CO2发电,其冷却剂为加压液氧;中温烟气再与高压水换热生成循环水蒸气,冷却后烟气脱水和蒸馏分离CO2,部分水加压返回生成高压蒸汽循环用于燃气轮机燃烧控温,CO2产品外售。

Description

零碳排放的天然气-超临界CO2联合循环发电工艺
1.技术领域
本发明提供零碳排放的天然气-超临界CO2联合循环发电工艺,属于天然气利用领域。
2.背景技术
天然气作为世界的主要清洁能源之一,使用方便,特别适合作为分布式能源和燃气发电。燃用天然气气几乎无粉尘(PM2.5)排放,SO2排放极低,经低氮燃烧器和烟气脱硝装置后NOx排放非常低,CO2等温室气体排放也是燃煤电厂的一半左右,环保优势十分突出。
燃用天然气发电常规都采用燃气-蒸汽联合循环方式,联合循环发电由布雷顿循环与朗肯循环组成,当今燃气轮机进气温度可高达1300℃以上,排烟温度500~600℃,简单循环热效率高达45%~50%;余热锅炉为进一步回收余热,提高热效率,一般为双压或三压***。尤其当代大型9F级燃气-蒸汽联合循环发电热效率高达58%~60%,远高于燃煤发电热效率。燃煤发电机组热效率即使超超临界600MW级、1000MW级机组,一般为46%~48%,两类机组发电热效率相差10~20个百分点。
常规天然气联合发电流程为压气机从外界大气环境吸入空气,并经过轴流式压气机逐级压缩使之增压到2.8MPa,同时空气温度也相应提高;过量的2.8MPa压缩空气被压送到燃烧室与喷入的天然气混合燃烧生成高温高压烟气;然后高温高压烟气再进入到透平中膨胀做功,推动透平带动压气机和发电机一起高速旋转,实现了天然气的化学能部分转化为机械功,并输出电功;高温燃烧烟气再通过废热蒸汽锅炉得到高压蒸汽用于汽轮机发电,最后烟气通过脱硝后以超低排放标准外排;调峰时通过燃气轮机负荷变化来调整。这样,燃气轮机就把燃料的化学能转化为热能,又把部分热能转变成机械能。通常在燃气轮机中,压气机是由燃气透平膨胀做功来带动的,它是透平的负载。在简单循环中,透平发出的机械功有1/2到2/3左右用来带动压气机,其余的1/3左右的机械功用来驱动发电机。在燃气轮机起动的时候,首先需要外界动力,一般是起动机带动压气机,直到燃气透平发出的机械功大于压气机消耗的机械功时,外界起动机脱扣,燃气轮机才能自身独立工作。但现有天然气联合发电技术存在着CO2捕集利用成本高、高耗水、发电效率有待进一步提高、排烟温度高、NOx减量困难等缺陷。
3.发明内容
本发明的目的就是为了克服传统天然气联合发电技术存在的不足而提供零碳排放的天然气-超临界CO2联合循环发电工艺,既解决现有天然气联合发电技术高耗水、发电效率低难题;又可大幅度降低压气机的负荷、实现低成本CO2捕集利用、无Nox的常温排放,大幅度提高发电效率。
本发明的技术方案:
本发明的目的是通过空气分离的液氧用于天然气燃烧发电和液氮用于膨胀发电与制冷、高温烟气余热用于超临界CO2发电、水蒸气返回燃气轮机进料用于循环控温、一次液氧用于超临界CO2发电的冷却剂、二次液氧用于烟气冷却剂分级冷却脱水和CO2分离回收提纯等的系列技术耦合来提高天燃气联合发电效率,实现无NOx污染、低水消耗、零碳排放的清洁高效发电。其特征是压气机从外界大气环境吸入空气,并经过轴流式压气机逐级压缩使之增压到0.5-0.8MPa,同时空气温度也相应提高用于部分的加压液氧预热;换冷后的0.5-0.8MPa加压空气进入空分装置进行空气分离,得到液氧和液氮,泵送的加压液氧用于换热和天然气燃烧发电,泵送的加压液氮膨胀汽化推动氮气涡轮发电机发电;高压汽化氧气和循环水蒸气与喷入的天然气在燃气轮机的燃烧室混合燃烧,然后高温高压燃烧烟气再进入到透平中膨胀做功,推动透平带动压气机和发电机一起高速旋转,实现了天然气的化学能部分转化为机械功,并输出电功;高温燃烧烟气再通过超临界CO2换热器换热进行超临界CO2发电,其冷却剂为一级的加压液氧或/和液氮,冷后超临界CO2通过高压泵加压闭路循环;中温烟气再与高压水换热制取循环水蒸气后,然后再与二级的加压液氧或/和液氮换热,冷却的烟气脱水后液体烟气通过蒸馏塔分离回收CO2作为产品外售,部分脱出水通过水泵加压得到高压水、剩余水外排,加压液氧汽化得到高压氧气送到燃气轮机燃烧室。
空气分离为深冷空分、变压吸附分离与深冷分离组合的梯级空分、膜分离与深冷分离组合的梯级空分中的一种。
超临界CO2发电为简单回热、再压缩循环、分段膨胀循环、预压循环和部分冷却循环的超临界CO2发电模式中的一种。
氧气与循环水蒸气的质量比为1:2-12。
超临界CO2压力为7.0-40MPa
本发明将实施例来详细叙述本发明的特点。
4.附图说明
附图图1为本发明的工艺示意图。
附图的图面设明如下:
1、空分装置 2、天然气压力罐 3、压气机 4、超临界CO2换热器 5、发电机 6、冷却器 7、超临界CO2泵 8、超临界CO2涡轮发电机 9、燃气轮机 10、膨胀汽化换热器 11、氮气涡轮发电机 12、蒸馏塔 13、空气-液氧换热器 14、一级液氧换热器 15、超临界CO2回热器16、高压水换热器 17、水泵 18、液氮泵 19、液氧泵
下面结合附图和实施例来详述本发明的工艺特点。
5.具体实施方式
实施例,燃气轮机的压气机(3)从外界大气环境吸入空气,并经过轴流式压气机(3) 逐级压缩使之增压到0.5-0.8MPa,同时空气温度也相应提高,通过空气-液氧换热器(13) 用于液氧预热;通过膨胀汽化换热器(10)换冷后的0.5-0.8MPa加压空气进入空分装置(1) 进行空气分离,得到液氧和液氮,液氧泵(18)加压液氧用于加压空气、超临界CO2和烟气的换热和天然气燃烧发电,液氮泵(19)送的加压液氮通过膨胀汽化推动氮气涡轮发电机(11)发电和作为加压空气冷却剂通过膨胀汽化换热器(10)换热后外排;经加压空气、超临界CO2和烟气换热汽化后的高压氧气和循环水蒸气与从天然气压力罐(2)喷入的天然气在燃气轮机(9)的燃烧室混合燃烧,然后高温高压燃烧烟气再进入到透平中膨胀做功,推动透平带动压气机(3)和发电机(5)一起高速旋转,实现了天然气的化学能部分转化为机械功,并输出电功;高温燃烧烟气再通过超临界CO2换热器(4)换热进行超临界CO2发电,一级液氧换热器(14)中的冷却剂为部分一级的加压液氧,冷后超临界CO2通过高压泵(7)加压通过超临界CO2回热器(15)和超临界CO2换热器(4)形成闭路循环;中温烟气再与高压水通过高压水换热器(16)换热制取循环水蒸气后,然后再与二级的加压液氧通过冷却器(6)换热,冷却的烟气脱水后液体烟气通过蒸馏塔(12)分离回收CO2作为产品外售,部分脱出水通过水泵(17)加压得到高压水、剩余水外排,加压液氧汽化得到高压氧气送到燃气轮机(9)燃烧室。
空气分离为深冷空分、变压吸附分离与深冷分离组合的梯级空分、膜分离与深冷分离组合的梯级空分中的一种。
超临界CO2发电为简单回热、再压缩循环、分段膨胀循环、预压循环和部分冷却循环的超临界CO2发电模式中的一种。
氧气与循环水蒸气的质量比为1:2-12。
超临界CO2压力为7.0-40Mpa。
本发明的液氧和液氮换热次序可以调换。
本发明所提供的零碳排放的天然气-超临界CO2联合循环发电工艺,按Aspen模拟结果,通过空分装置液氧液氮低能耗泵送加压将目前压气机压缩由2.8MPa左右降到0.5-0.8MPa,使天然气燃气轮机用于压气机的能量消耗由1/2-2/3降到了10%左右;天然气和高压水蒸气混合氧气助燃发电,烟气比容增加,燃气轮机发电效率相对提高;高温烟气超临界CO2发电和水换热制取循环水蒸汽以及液氧换热汽化形成联合***,排烟温度由目前140℃左右降到60℃左右,能量回收率大大提高,烟气易于低成本脱水分离得到CO2,CO2捕集能耗大幅度降低;燃烧生成水部分循环用于燃气轮机控温和余热发电的工质采用超临界CO2化解了天然气发电高耗水难题,特别适合西北缺水地区;燃气轮机氧气助燃和水蒸气循环控温,避免了目前天然气电厂烟气的NOx排放、大幅度减少了烟尘的排放,实现了天然气清洁高效零碳排放发电;同时氮气汽化膨胀涡轮发电机发电和用于空分空气制冷,加之超临界CO2和水循环以及液氧液氮泵送加压,大幅度降低了***内部耗能,***净发电效率大于80%。

Claims (5)

1.零碳排放的天然气-超临界CO2联合循环发电工艺,其技术特征是压气机从外界大气环境吸入空气,并经过轴流式压气机逐级压缩使之增压到0.5-0.8MPa,同时空气温度也相应提高用于部分的加压液氧预热;换冷后的0.5-0.8MPa加压空气进入空分装置进行空气分离,得到液氧和液氮,泵送的加压液氧用于换热和天然气燃烧发电,泵送的加压液氮膨胀汽化推动氮气涡轮发电机发电;高压汽化氧气和循环水蒸气与喷入的天然气在燃气轮机的燃烧室混合燃烧,然后高温高压燃烧烟气再进入到透平中膨胀做功,推动透平带动压气机和发电机一起高速旋转,实现了天然气的化学能部分转化为机械功,并输出电功;高温燃烧烟气再通过超临界CO2换热器换热进行超临界CO2发电,其冷却剂为一级的加压液氧或/和液氮,冷后超临界CO2通过高压泵加压闭路循环;中温烟气再与高压水换热制取循环水蒸气后,然后再与二级的加压液氧或/和液氮换热,冷却的烟气脱水后液体烟气通过蒸馏塔分离回收CO2作为产品外售,部分脱出水通过水泵加压得到高压水、剩余水外排,加压液氧汽化得到高压氧气送到燃气轮机燃烧室。
2.根据权利要求1所述的零碳排放的天然气-超临界CO2联合循环发电工艺,其特征在于空气分离为深冷空分、变压吸附分离与深冷分离组合的梯级空分、膜分离与深冷分离组合的梯级空分中的一种。
3.根据权利要求1所述的零碳排放的天然气-超临界CO2联合循环发电工艺,其特征在于超临界CO2发电为简单回热、再压缩循环、分段膨胀循环、预压循环和部分冷却循环的超临界CO2发电模式中的一种。
4.根据权利要求1所述的零碳排放的天然气-超临界CO2联合循环发电工艺,其特征在于氧气与循环水蒸气的质量比为1:2-12。
5.根据权利要求1所述的零碳排放的天然气-超临界CO2联合循环发电工艺,其特征在于超临界CO2压力为7.0-40MPa。
CN201910034260.3A 2019-01-15 2019-01-15 天然气-超临界co2联合循环发电工艺 Active CN109681325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910034260.3A CN109681325B (zh) 2019-01-15 2019-01-15 天然气-超临界co2联合循环发电工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910034260.3A CN109681325B (zh) 2019-01-15 2019-01-15 天然气-超临界co2联合循环发电工艺

Publications (2)

Publication Number Publication Date
CN109681325A true CN109681325A (zh) 2019-04-26
CN109681325B CN109681325B (zh) 2021-12-31

Family

ID=66193203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910034260.3A Active CN109681325B (zh) 2019-01-15 2019-01-15 天然气-超临界co2联合循环发电工艺

Country Status (1)

Country Link
CN (1) CN109681325B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111894735A (zh) * 2020-07-08 2020-11-06 南京工程学院 一种无NOx排放的氢燃气轮机联合循环多联产方法
CN112112697A (zh) * 2020-09-19 2020-12-22 中国船舶重工集团公司第七一一研究所 液氧冷能发电***及发电方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628982A (zh) * 2013-11-27 2014-03-12 暨南大学 利用液化天然气冷能捕集二氧化碳的联合动力循环方法及其***
CN105298567A (zh) * 2015-11-19 2016-02-03 中国核动力研究设计院 采用超临界二氧化碳工质的工业余热利用***
CN105579801A (zh) * 2013-09-17 2016-05-11 乔治洛德方法研究和开发液化空气有限公司 通过空气的低温蒸馏而制备气态氧的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579801A (zh) * 2013-09-17 2016-05-11 乔治洛德方法研究和开发液化空气有限公司 通过空气的低温蒸馏而制备气态氧的方法和设备
CN103628982A (zh) * 2013-11-27 2014-03-12 暨南大学 利用液化天然气冷能捕集二氧化碳的联合动力循环方法及其***
CN105298567A (zh) * 2015-11-19 2016-02-03 中国核动力研究设计院 采用超临界二氧化碳工质的工业余热利用***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111894735A (zh) * 2020-07-08 2020-11-06 南京工程学院 一种无NOx排放的氢燃气轮机联合循环多联产方法
CN111894735B (zh) * 2020-07-08 2022-04-26 南京工程学院 一种无NOx排放的氢燃气轮机联合循环多联产方法
CN112112697A (zh) * 2020-09-19 2020-12-22 中国船舶重工集团公司第七一一研究所 液氧冷能发电***及发电方法

Also Published As

Publication number Publication date
CN109681325B (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
CN109441573B (zh) 用于调峰的零碳排放天然气联合发电工艺
CN102451605B (zh) 二氧化碳回收方法及二氧化碳回收型火力发电***
JP3681434B2 (ja) コージェネレーション装置およびコンバインドサイクル発電装置
CN111022138B (zh) 一种基于吸收式热泵余热回收的超临界二氧化碳发电***
US11988115B2 (en) System for recovering waste heat and method thereof
CN111121389A (zh) 一种深度耦合燃煤机组液化空气储能发电***
CN102451599A (zh) 二氧化碳回收方法及二氧化碳回收型火力发电***
CN102388265A (zh) 用于生成电功率的方法及设备
CN102606237B (zh) 基于燃气轮机的开式正逆循环耦合电热冷三联供***
CN112780375A (zh) 一种与火电厂耦合的压缩空气储能***及其使用方法
CN110005486A (zh) 一种基于全热循环的零碳排放冷热电联产装置及工作方法
CN109681325A (zh) 零碳排放的天然气-超临界co2联合循环发电工艺
CN109578098A (zh) 零碳排放的天然气热电联供发电工艺
CN109611171A (zh) 零碳排放的整体煤气化-超临界co2联合循环发电工艺
CN212339737U (zh) 一种深度耦合燃煤机组液化空气储能发电***
CN102278205A (zh) 可用于分布式的空气及燃料湿化燃气轮机联合循环方法
CN107143403A (zh) 氢燃气轮机尾气余热利用***
RU2409746C2 (ru) Парогазовая установка с паротурбинным приводом компрессора и регенеративной газовой турбиной
CN208380648U (zh) 一种带双压超临界二氧化碳余热锅炉的联合循环发电***
Gou et al. An advanced oxy-fuel power cycle with high efficiency
CN109630269A (zh) 零碳排放的天然气-蒸汽联合循环洁净发电工艺
CN114382562B (zh) 分流再压缩纯氧燃烧循环***
CN215486194U (zh) 一种与火电厂耦合的压缩空气储能***
CN209875312U (zh) 适用于低温环境的热力发电***
JP4619563B2 (ja) ウルトラタービン

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant