CN109655674A - 基于弱耦合微机械谐振器的微弱静电场测量装置及方法 - Google Patents

基于弱耦合微机械谐振器的微弱静电场测量装置及方法 Download PDF

Info

Publication number
CN109655674A
CN109655674A CN201910144728.4A CN201910144728A CN109655674A CN 109655674 A CN109655674 A CN 109655674A CN 201910144728 A CN201910144728 A CN 201910144728A CN 109655674 A CN109655674 A CN 109655674A
Authority
CN
China
Prior art keywords
resonator
electric field
array
detecting electrode
weak coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910144728.4A
Other languages
English (en)
Other versions
CN109655674B (zh
Inventor
常洪龙
严子木
梁家驹
康昊
郝永存
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910144728.4A priority Critical patent/CN109655674B/zh
Publication of CN109655674A publication Critical patent/CN109655674A/zh
Application granted granted Critical
Publication of CN109655674B publication Critical patent/CN109655674B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)

Abstract

本发明涉及一种基于弱耦合微机械谐振器的微弱静电场测量装置及方法,属于微传感器技术(MEMS)领域。该电场强度测量芯片包括了通过机械耦合梁串联在一起的多个谐振器,电压输入电极、检测电极和驱动电极,通过桥型梁对多个谐振器进行弱耦合,该桥型耦合梁的设计可以释放由于加工过程中产生的轴向应力,保证了器件不受残余应力的影响。两个谐振器的输出信号均由两组检测电极检测引出并进行差分,增强信号的强度,消除由驱动电极与检测电极之间存在的电势差引起的馈通电容信号干扰,大幅提升测量信号的稳定性与准确度。谐振器两侧设计了大规模的梳齿阵容,均可用于敏感待测电场,提升了对待测电场强度的测量灵敏度,并保证了超高精度的静电场测量以及对环境噪声的抑制力。

Description

基于弱耦合微机械谐振器的微弱静电场测量装置及方法
所属领域:
本发明涉及了一种高精度静电场测量方法及装置,属于电子测量仪器领域。
背景技术
电场计是一种能够测量电场强度的电子仪器。电场强度探测与监控在诸多科学研究和工程技术领域具有重要意义,特别是在航空航天、电力***等领域具有广泛而重要的应用需求。
早期人们对于电场测量方法的研究主要集中于电学原理,基于电荷感应原理的电场传感器的研究最为普遍,一种被称为场磨式电场仪的测量仪器是最为典型的电场计。场磨式电场仪主要包含放置于底部的敏感电极和位于上方的飞梭结构两部分,它在工作时通过摇摆的飞梭不断地将敏感电极周期性屏蔽、暴露于测量电场中,由此在电极端形成一交变信号,再将此信号处理,最终完成对电场的测量。然而这类电场计体积较大,普遍分辨率大约在50V/m的水平,同时其工作需要接地部件,因此容易产生失真。场磨式电场计多被用于测量大气电场等瞬态电场,无法满足小范围、高精度的静电场测量工作。
光学传感与测量技术的迅速发展为电场测量提供了一种新的手段。一类常见的方法是采用探头感应测量电场中的电荷信号,经电路转换为光信号再接受处理,实现一种绝缘测量;另一类则是基于晶体Pockels效应,指的是根据晶体对外加电场强度的电光相位延迟变化进行测量。后者由于其精度较高的优势,渐渐成为光学测量的主流方法。这类电场计的分辨率虽然较之上述电学式更高,但是却容易受到温度等环境噪声的影响,不具备稳定工作的性质。
基于微机电***(MEMS)技术的微型电场传感器因其体积小、功耗低等优点,逐渐成为了近年来微机械芯片的研究热点。而模态局部化机理通过幅值比来反映敏感量的变化,而非幅值本身,这样一来有效抑制了环境噪声对测量的影响,同时也已证明这类器件具备极高的测量精度。受此启发,本发明提出一种基于模态局部化效应的多个弱耦合谐振器串联式电场计,通过设计了一种大规模梳齿电容阵列用于敏感待测电场并提高其测量精度,而基于模态局部化原理的谐振器同时也兼具了所需求的工作稳定性。与上述两大类电场计相比,该发明可实现对小范围静电场的高精度测量,并具有很强的环境共模噪声抑制能力。
发明内容:
本发明的目的是:基于多自由度弱耦合谐振器的模态局部化效应,提供一种高精度静电场强度测量装置和测量方法,它能够实现对0.1V/m级别微弱静电场的测量。
本发明提出了基于弱耦合微机械谐振器的微弱静电场测量装置,包含电场测量芯片及信号处理电路;电场测量芯片包括至少两个完全相同的谐振器,具体包括谐振器一301、谐振器阵列302及谐振器二303,其中谐振器阵列302中的谐振器数可为零,即谐振器阵列302可为空;谐振器一301、谐振器阵列302及谐振器二303在水平方向即谐振方向上顺序放置,在垂直方向上,每个谐振器两侧均通过一组谐振梁与水平方向的机械耦合梁304相连接,所述谐振梁每组为至少一根互相平行的垂直方向直梁;机械耦合梁304两端分别通过一根垂直方向短梁固定于固定锚点305上,其组成形状似桥形,故将所述机械耦合梁304与两端的垂直方向短梁合称为“桥式耦合梁”;谐振器之间的弱耦合体现在桥式耦合梁的刚度远小于谐振梁刚度,从而实现谐振器之间弱耦合;在谐振器一301左侧布置由可动梳齿阵列312和固定梳齿阵列313组成的梳齿阵列202,用于敏感施加电场的强度,并对弱耦合谐振器进行扰动;在谐振器二303右侧上下方布置上驱动电极308和下驱动电极309,共同驱动谐振器起振;在谐振器二303右侧布置调节电极314用于调节谐振器振动状态;全部谐振器在底部均与直流驱动电极315相连,由直流驱动315提供直流电压;整个***使用谐振器一301、谐振器二303作为信号输出端,因此在谐振器一301右侧上下分别布置第一检测电极306和第二检测电极307,形成谐振器一301的差分检测电极,在谐振器二303左侧上下分别布置第三检测电极310和第四检测电极311,形成谐振器二303的差分检测电极。由第一检测电极306、第二检测电极307、第三检测电极310和第四检测电极311输出的信号经信号处理电路205得到电场强度测量芯片最终的输出信号。
作为一种可选的方式,每个谐振器也可以一侧通过一组谐振梁与水平方向的机械耦合梁304相连接,另一侧直接固定在锚点305上。
作为一种可选方式,桥式耦合梁304可为互相分离的多段水平直梁,其中每段直梁使相邻两个谐振器的互相连接。
工作过程:通过直流驱动315向谐振器一301和谐振器二303施加直流电流,通过上驱动电极308与下驱动电极309施加交流电压对谐振器进行交流驱动,弱耦合谐振器在一阶模态或二阶模态谐振频率处做同相振动或反相振动,此时谐振器一301与谐振器二303的振幅比为1或-1。当待测电场覆盖到可动梳齿阵列312以及固定梳齿阵列313时,会改变可动梳齿阵列312与谐振器一301之间的静电负刚度,该静电负刚度会影响谐振器一301的刚度,导致谐振器一301和谐振器二303的振幅比发生变化,通过检测振幅比的变化可以得到待测电场的大小。
本发明提出的一种高精度电场强度测量方法,包括如下步骤:
步骤一:在可动梳齿阵列312以及固定梳齿阵列313上施加已知电场E1,得到一组谐振器振幅比ui
步骤二:通过线性拟合的方法得到振幅比ui对已知电场E1的拟合曲线。
步骤三:将未知待测电场E0施加在可动梳齿阵列312以及固定梳齿阵列313上,得到一个振幅比u0
步骤四:将该振幅比u0代入振幅比ui对已知电场E1的拟合曲线中,得到对应的电场强度值,该电场强度值即为上述未知待测电场E0
本发明的有益效果:提供一种基于模态局部化效应的高精度静电场计,该电场强度测量芯片包括了通过机械耦合梁串联在一起的多个谐振器,电压输入电极、检测电极和驱动电极。
本发明中通过桥型梁对多个谐振器进行弱耦合,该桥型耦合梁的设计可以释放由于加工过程中产生的轴向应力,保证了器件不受残余应力的影响。
谐振器一与谐振器二的输出信号均由两组检测电极检测引出并进行差分,这种检测方法不仅可以增强信号的强度,更重要的是可以消除由驱动电极与检测电极之间存在的电势差引起的馈通电容信号干扰,可以大幅提升测量信号的稳定性与准确度。
谐振器两侧设计了大规模的梳齿阵容,均可用于敏感待测电场,通过充分利用梳齿电容阵列的正对面积,增大了梳齿积蓄的电荷量,提升了对待测电场强度的测量灵敏度。当施加待测电场至器件上方时,可动梳齿阵列受静电力作用而运动,改变了与谐振器之间的静电负刚度,从而影响了弱耦合谐振器***的能量分布,导致谐振器模态的剧烈变化,以输出谐振器的振幅比作为输出量纲可放大电场强度测量芯片的灵敏度,保证了超高精度的静电场测量以及对环境噪声的抑制力。
本发明提出的测量装置包括了通过机械梁或静电连接在一起的两个或多个弱耦合谐振器,多组驱动电极和检测电极,以及设置在谐振器两侧的静电耦合的大规模固定及可动梳齿结构。设置好器件的偏置电压,使可动梳齿阵列上产生感应电荷,当器件置入静电场中时,感应电荷在静电力作用下驱使可动梳齿运动,改变梳齿阵列与谐振器之间的静电负刚度,从而使得谐振器***的能量分布出现剧烈失衡,因此作为输出的两个谐振器的幅值比将急剧变化,通过测量谐振器输出幅值比可以实现电场强度的高分辨率测量。测试电路的设计采用闭环测试方案:检测电极上的信号依次经过跨阻放大器、减法器、带通滤波器和比较器后加载至交流驱动电极上形成闭环回路;将两路减法器的输出分别进行整流滤波并相除即可得到反映1,3号谐振器振幅比的直流电压信号。闭环驱动检测电路可降低谐振器的噪声影响,并大幅度提升分辨率。
附图说明:
图1是基于模态局部化效应的弱耦合谐振器阵列的等效示意图。
图2是本发明模态局部化效应的高精度静电场计的工作示意图。
图3是基于模态局部化效应的高精度电场计的结构示意图。
图4是实施本发明的检测方法示意图(以三自由度为例)。
图5是本发明具体实施方式所得到的幅值比对电场强度的拟合曲线图。
图中:
101-谐振器一等效质量模型,102-谐振器阵列等效质量模型,103-谐振器二等效质量模型,104-谐振器一等效刚度模型,105-连接谐振器一等效质量模型与谐振器阵列等效质量模型的耦合梁模型,106-连接谐振器阵列等效质量模型与谐振器二等效质量模型的耦合梁模型,107-谐振器二的等效刚度模型。
201-本发明高精度静电场计芯片,202-梳齿阵列,203-多自由度弱耦合谐振器(图中以三自由度示意),204-谐振器输出信号,205-信号处理电路。
301-谐振器一,302-谐振器阵列,303-谐振器二,304-机械耦合梁,305-固定锚点,306-第一检测电极,307-第二检测电极,308-上驱动电极,309-下驱动电极,310-第三检测电极,311-第四检测电极,312-可动梳齿阵列,313-固定梳齿阵列,314-调节电极,315-直流驱动。
401-第一检测电极输出,402-第二检测电极输出,403-第三检测电极输出,404-第四检测电极输出,405-一号信号跨阻放大器,406-二号信号跨阻放大器,407-三号信号跨阻放大器,408-四号信号跨阻放大器,409-谐振器一信号差分放大器,410-谐振器二信号差分放大器,411-除法器。
具体实施方式:
该实施例中的电场测量芯片以三自由度谐振器结构实施并通过检测电路进行检测,详细结构如下:该电场测量芯片包括三分谐振器,左侧为谐振器一301,中间为仅含有单个谐振器的谐振器阵列302,右侧为谐振器二303;本实施例中,每个谐振器通过两侧的谐振梁与水平方向的机械耦合梁304相连接,可实现谐振器之间的弱耦合;通过直流驱动315为谐振器提供一个5V的正直流电压信号,通过上驱动电极308和下驱动电极309为谐振器二提供一个10mV的交流扫频信号,通过静电力的方式驱动谐振器在谐振频率处振动;在可动梳齿312和固定梳齿313上施加待测电场;第一检测电极输出401和第二检测电极输出402通过一号信号跨阻放大器405和二号信号跨阻放大器406进行放大降噪,送至谐振器一信号差分放大器409处获得差分后信号;第三检测电极输出403和第四检测电极输出404通过三号信号跨阻放大器407和四号信号跨阻放大器408进行放大降噪,送至谐振器二信号差分放大器410处获得差分后信号;除法器411用于将两路差分信号进行除法运算得到振幅比输出。
工作过程:通过直流驱动315为谐振器提供一个5V的正直流电压信号,通过上驱动电极308和下驱动电极309为谐振器二提供一个10mV的交流扫频信号,弱耦合谐振器在一阶模态或二阶模态谐振频率处做同相振动或反相振动,此时谐振器一301与谐振器二303的振幅比为1或-1。当待测电场覆盖到可动梳齿阵列312以及固定梳齿阵列313时,会改变可动梳齿阵列312与谐振器一301之间的静电负刚度,有电场覆盖下的静电负刚度为:
其中A表示两个电容器相邻极板间重合的有效面积;G0表示极板间距;V表示可动梳齿阵列上施加的电压;f是整个梳齿阵列的电容量;ε表示真空介电常数。每个谐振器具有两个谐振峰值,谐振器1:X11与X12;谐振器2:X21与X22。选择每个谐振器的第一个谐振峰值计算振幅比U=X11/X21,此时谐振器一301和谐振器二303振幅比的表达式为:
其中,k为左侧谐振器一301和右侧谐振器二303的刚度,k2为中间谐振器的刚度,kc谐振器之间的耦合梁304刚度。综上所述,结合公式(2)和(3)可以求出待测电场的大小。
基于上述装置的电场强度测量方法,其解析过程为:
第一步,当待测电场E施加时,谐振器一301输出两个峰值X11与X12,谐振器二303输出两个峰值X21与X22,选择每个谐振器的第一个谐振峰值计算振幅比U=X11/X21
第二步,将该振幅比U带入公式(2),由于K、K2、KC均为已知参数,所以可以求得谐振器的刚度变化量Δk。
第三步,将求得的刚度变化量Δk带入公式(1),可求得引起该刚度变化的待测电场E的值。
本实施例中的一种高精度电场强度测量方法,包括如下步骤:
步骤一:在可动梳齿阵列312和固定梳齿阵列313上施加14个大小不同电场强度值Ei,从除法器411中得到10个不同谐振器振幅比Ui
步骤二:通过线性拟合的方法得到不同振幅比Ui对输入电场强度Ei的拟合曲线,如图5所示。
步骤三:将未知待测电场E0施加在可动梳齿阵列312和固定梳齿阵列313上,从除法器411得到一个振幅比U0
步骤四:将该振幅比U0代入图5所示已获得拟合曲线中,得到对应的电场强度值,该电场强度值即为上述待测电场E0

Claims (4)

1.基于弱耦合微机械谐振器的微弱静电场测量装置,其特征在于,包含电场测量芯片及信号处理电路;电场测量芯片包括至少两个完全相同的谐振器,具体包括谐振器一301、谐振器阵列302及谐振器二303,其中谐振器阵列302中的谐振器数可为零,即谐振器阵列302可为空;谐振器一301、谐振器阵列302及谐振器二303在水平方向即谐振方向上顺序放置,在垂直方向上,每个谐振器两侧均通过一组谐振梁与水平方向的机械耦合梁304相连接,所述谐振梁每组为至少一根互相平行的垂直方向直梁;机械耦合梁304两端分别通过一根垂直方向短梁固定于固定锚点305上,其组成形状似桥形,故将所述机械耦合梁304与两端的垂直方向短梁合称为“桥式耦合梁”;谐振器之间的弱耦合体现在桥式耦合梁的刚度远小于谐振梁刚度,从而实现谐振器之间弱耦合;在谐振器一301左侧布置由可动梳齿阵列312和固定梳齿阵列313组成的梳齿阵列202,用于敏感施加电场的强度,并对弱耦合谐振器进行扰动;在谐振器二303右侧上下方布置上驱动电极308和下驱动电极309,共同驱动谐振器起振;在谐振器二303右侧布置调节电极314用于调节谐振器振动状态;全部谐振器在底部均与直流驱动电极315相连,由直流驱动315提供直流电压;整个***使用谐振器一301、谐振器二303作为信号输出端,因此在谐振器一301右侧上下分别布置第一检测电极306和第二检测电极307,形成谐振器一301的差分检测电极,在谐振器二303左侧上下分别布置第三检测电极310和第四检测电极311,形成谐振器二303的差分检测电极;由第一检测电极306、第二检测电极307、第三检测电极310和第四检测电极311输出的信号经信号处理电路205得到电场强度测量芯片最终的输出信号。
2.如权利要求1所述的基于弱耦合微机械谐振器的微弱静电场测量装置,其特征在于,所述的每个谐振器的一侧通过一组谐振梁与水平方向的机械耦合梁304相连接,另一侧直接固定在锚点305上。
3.如权利要求1所述的基于弱耦合微机械谐振器的微弱静电场测量装置,其特征在于,所述的桥式耦合梁304为互相分离的多段水平直梁,其中每段直梁使相邻两个谐振器的互相连接。
4.基于如权利要求1-3之一的装置进行高精度电场强度测量的方法,其特征在于,包括如下步骤:
步骤一:在可动梳齿阵列312以及固定梳齿阵列313上施加已知电场E1,得到一组谐振器振幅比ui
步骤二:通过线性拟合的方法得到振幅比ui对已知电场E1的拟合曲线;
步骤三:将未知待测电场E0施加在可动梳齿阵列312以及固定梳齿阵列313上,得到一个振幅比u0
步骤四:将该振幅比u0代入振幅比ui对已知电场E1的拟合曲线中,得到对应的电场强度值,该电场强度值即为上述未知待测电场E0
CN201910144728.4A 2019-02-27 2019-02-27 基于弱耦合微机械谐振器的微弱静电场测量装置及方法 Active CN109655674B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910144728.4A CN109655674B (zh) 2019-02-27 2019-02-27 基于弱耦合微机械谐振器的微弱静电场测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910144728.4A CN109655674B (zh) 2019-02-27 2019-02-27 基于弱耦合微机械谐振器的微弱静电场测量装置及方法

Publications (2)

Publication Number Publication Date
CN109655674A true CN109655674A (zh) 2019-04-19
CN109655674B CN109655674B (zh) 2021-01-15

Family

ID=66123781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910144728.4A Active CN109655674B (zh) 2019-02-27 2019-02-27 基于弱耦合微机械谐振器的微弱静电场测量装置及方法

Country Status (1)

Country Link
CN (1) CN109655674B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110542869A (zh) * 2019-06-21 2019-12-06 西北工业大学 基于模态局部化效应的微弱磁场测量装置及方法
CN111487435A (zh) * 2020-05-14 2020-08-04 东南大学 基于弱耦合谐振器组三种工作方式的空气流速测量装置
CN111679095A (zh) * 2020-04-30 2020-09-18 东南大学 一种机械灵敏度和测量范围可调的硅微流速计
CN112163358A (zh) * 2020-09-30 2021-01-01 中国科学院空天信息创新研究院 基于耦合mems谐振器的储备池计算硬件的实现方法及装置
CN112540239A (zh) * 2019-09-20 2021-03-23 中国科学院电子学研究所 基于多结构耦合的微型电场传感器及其制备方法
CN113030515A (zh) * 2021-03-11 2021-06-25 东南大学 一种直接测量弱耦合谐振器的振幅比的装置
AT523342A1 (de) * 2019-12-18 2021-07-15 Univ Wien Tech Sensor
CN113625064A (zh) * 2020-05-09 2021-11-09 中国科学院空天信息创新研究院 电场传感器
CN114113814A (zh) * 2021-11-24 2022-03-01 北京中科飞龙传感技术有限责任公司 一种静电力调谐型mems电场传感器和检测方法
CN114137325A (zh) * 2021-11-30 2022-03-04 中国人民解放军陆军工程大学 一种非接触式静电电位分布测试的仿生电路及方法
CN114910714A (zh) * 2022-05-12 2022-08-16 东南大学 一种基于奇异点的高灵敏度电荷传感器及其使用方法
CN117289038A (zh) * 2023-09-27 2023-12-26 清华大学 电场测量装置、***及方法
CN117517803A (zh) * 2023-11-13 2024-02-06 北京信息科技大学 一种垂直调制的谐振式电场传感器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063630A (zh) * 2007-06-01 2007-10-31 中国计量学院 一种基于微桥谐振器的红外探测器结构及制作方法
CN101685119A (zh) * 2008-09-24 2010-03-31 中国科学院电子学研究所 谐振式微型电场传感器
CN104180919A (zh) * 2014-08-12 2014-12-03 南京理工大学 基于微谐振器的高精度温度测量***
CN204256053U (zh) * 2014-12-18 2015-04-08 南京信息工程大学 一种微机械振动式电场传感器
CN106645999A (zh) * 2016-09-20 2017-05-10 西北工业大学 一种超高灵敏度的微机械谐振式静电计
CN108344900A (zh) * 2018-01-11 2018-07-31 西北工业大学 基于模态局部化效应的大量程室温单电子分辨率静电计
CN108375371A (zh) * 2018-01-11 2018-08-07 西北工业大学 一种基于模态局部化效应的四自由度弱耦合谐振式加速度计

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063630A (zh) * 2007-06-01 2007-10-31 中国计量学院 一种基于微桥谐振器的红外探测器结构及制作方法
CN101685119A (zh) * 2008-09-24 2010-03-31 中国科学院电子学研究所 谐振式微型电场传感器
CN104180919A (zh) * 2014-08-12 2014-12-03 南京理工大学 基于微谐振器的高精度温度测量***
CN204256053U (zh) * 2014-12-18 2015-04-08 南京信息工程大学 一种微机械振动式电场传感器
CN106645999A (zh) * 2016-09-20 2017-05-10 西北工业大学 一种超高灵敏度的微机械谐振式静电计
CN108344900A (zh) * 2018-01-11 2018-07-31 西北工业大学 基于模态局部化效应的大量程室温单电子分辨率静电计
CN108375371A (zh) * 2018-01-11 2018-08-07 西北工业大学 一种基于模态局部化效应的四自由度弱耦合谐振式加速度计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HEMIN ZHANG 等: "A HIGH-SENSITIVE RESONANT ELECTROMETER BASTED ON MODE LOCALIZATION OF THE WEAKLY COUPLED RESONATORS", 《IEEE》 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020253795A1 (zh) * 2019-06-21 2020-12-24 西北工业大学 基于模态局部化效应的微弱磁场测量装置及方法
CN110542869A (zh) * 2019-06-21 2019-12-06 西北工业大学 基于模态局部化效应的微弱磁场测量装置及方法
CN112540239A (zh) * 2019-09-20 2021-03-23 中国科学院电子学研究所 基于多结构耦合的微型电场传感器及其制备方法
CN112540239B (zh) * 2019-09-20 2022-03-18 中国科学院电子学研究所 基于多结构耦合的微型电场传感器及其制备方法
AT523342B1 (de) * 2019-12-18 2024-03-15 Univ Wien Tech Sensor
AT523342A1 (de) * 2019-12-18 2021-07-15 Univ Wien Tech Sensor
CN111679095B (zh) * 2020-04-30 2022-03-11 东南大学 一种机械灵敏度和测量范围可调的硅微流速计
CN111679095A (zh) * 2020-04-30 2020-09-18 东南大学 一种机械灵敏度和测量范围可调的硅微流速计
CN113625064A (zh) * 2020-05-09 2021-11-09 中国科学院空天信息创新研究院 电场传感器
CN113625064B (zh) * 2020-05-09 2023-06-27 中国科学院空天信息创新研究院 基于模态局域化的扭矩式微型电场传感器
CN111487435A (zh) * 2020-05-14 2020-08-04 东南大学 基于弱耦合谐振器组三种工作方式的空气流速测量装置
CN111487435B (zh) * 2020-05-14 2022-03-11 东南大学 基于弱耦合谐振器组三种工作方式的空气流速测量装置
CN112163358B (zh) * 2020-09-30 2023-09-26 中国科学院空天信息创新研究院 基于耦合mems谐振器的储备池计算硬件的实现方法及装置
CN112163358A (zh) * 2020-09-30 2021-01-01 中国科学院空天信息创新研究院 基于耦合mems谐振器的储备池计算硬件的实现方法及装置
CN113030515B (zh) * 2021-03-11 2022-04-22 东南大学 一种直接测量弱耦合谐振器的振幅比的装置
CN113030515A (zh) * 2021-03-11 2021-06-25 东南大学 一种直接测量弱耦合谐振器的振幅比的装置
CN114113814A (zh) * 2021-11-24 2022-03-01 北京中科飞龙传感技术有限责任公司 一种静电力调谐型mems电场传感器和检测方法
CN114137325A (zh) * 2021-11-30 2022-03-04 中国人民解放军陆军工程大学 一种非接触式静电电位分布测试的仿生电路及方法
CN114137325B (zh) * 2021-11-30 2022-09-27 中国人民解放军陆军工程大学 一种非接触式静电电位分布测试的仿生电路、***及方法
CN114910714A (zh) * 2022-05-12 2022-08-16 东南大学 一种基于奇异点的高灵敏度电荷传感器及其使用方法
CN114910714B (zh) * 2022-05-12 2024-02-02 东南大学 一种基于奇异点的高灵敏度电荷传感器及其使用方法
CN117289038A (zh) * 2023-09-27 2023-12-26 清华大学 电场测量装置、***及方法
CN117517803A (zh) * 2023-11-13 2024-02-06 北京信息科技大学 一种垂直调制的谐振式电场传感器及其制备方法
CN117517803B (zh) * 2023-11-13 2024-05-07 北京信息科技大学 一种垂直调制的谐振式电场传感器及其制备方法

Also Published As

Publication number Publication date
CN109655674B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
CN109655674A (zh) 基于弱耦合微机械谐振器的微弱静电场测量装置及方法
CN109828141B (zh) 基于弱耦合微机械谐振器的高灵敏度电压测量装置及测量方法
WO2020253795A1 (zh) 基于模态局部化效应的微弱磁场测量装置及方法
CN106645999B (zh) 一种超高灵敏度的微机械谐振式静电计
CN101769969B (zh) 测量铁电材料压电常数回线和介电常数回线的装置和方法
US8094841B2 (en) Apparatus and method using capacitive detection with inherent self-calibration
CN109813341A (zh) 一种硅微机械陀螺驱动力耦合误差在线自校准***
CN108375371A (zh) 一种基于模态局部化效应的四自由度弱耦合谐振式加速度计
CN101881785A (zh) 四折叠梁变面积差分电容结构微加速度传感器及制备方法
CN105137125A (zh) 一种用于电畴成像的双频多通道同步检测方法
Yang et al. Binocular vision-based method used for determining the static and dynamic parameters of the long-stroke shakers in low-frequency vibration calibration
CN111412830B (zh) 一种电容极板调装装置及方法
CN108917895B (zh) 一种基于悬臂梁模态频率的质量称量装置及方法
Ling et al. Single-chip 3D electric field microsensor
CN210665355U (zh) 精密作动/感知双模式一体化的微机械梳齿结构
CN104062569A (zh) 一种复眼式光纤efpi的局部放电方向检测方法
Peng et al. A novel high performance micromechanical resonant electrostatic field sensor used in atmospheric electric field detection
CN110987357B (zh) 二维聚焦激光差分干涉仪及平板边界层密度脉动测量方法
CN117214552A (zh) 基于扭秤周期变化的导体表面电势测量方法
CN104020338B (zh) 基于等应变梁的光纤Bragg光栅静电电压测量***及采用该***实现的测量方法
CN110440777B (zh) 音叉敏感结构修调在线测试方法及角速率传感器
CN101168874B (zh) 带测速的纱线信号检测装置
Pala et al. A Lorentz force MEMS magnetometer
CN108362401A (zh) 一种光纤光栅温度传感器响应时间的测试方法
CN203909123U (zh) 基于等应变梁的光纤Bragg光栅电压传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant