CN109654040B - 一种双动力及升速方式气体压缩设备 - Google Patents

一种双动力及升速方式气体压缩设备 Download PDF

Info

Publication number
CN109654040B
CN109654040B CN201910046274.7A CN201910046274A CN109654040B CN 109654040 B CN109654040 B CN 109654040B CN 201910046274 A CN201910046274 A CN 201910046274A CN 109654040 B CN109654040 B CN 109654040B
Authority
CN
China
Prior art keywords
shell
power
rotating shaft
power shaft
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910046274.7A
Other languages
English (en)
Other versions
CN109654040A (zh
Inventor
孙军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910046274.7A priority Critical patent/CN109654040B/zh
Publication of CN109654040A publication Critical patent/CN109654040A/zh
Application granted granted Critical
Publication of CN109654040B publication Critical patent/CN109654040B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/14Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours using industrial or other waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种双动力及升速方式气体压缩设备,燃料电池的阴极排气具有一定的压力和能量,其通过进气口流入气动涡轮壳体中推动排气涡轮转动,同时,直流电机通电后驱动动力轴转动,从而使燃料电池的阴极排气与直流电机联合驱动动力轴转动,能够能够回收低流速排气能量以节省增压设备所实际消耗的驱动能量,即具有节能效果。同时,可显著减小增压设备原动力装置的功率容量、尺寸和成本。避免了动力轴高转速对直流电机所带来的机械与电气工艺瓶颈的制约,降低了动力轴支撑方面的技术难度,显著地提高可靠性并降低成本。

Description

一种双动力及升速方式气体压缩设备
技术领域
本发明涉及进气增压技术领域,具体涉及一种双动力及升速方式气体压缩设备。
背景技术
离心式气体压缩技术具有特别的优势而得到广泛应用,例如内燃发动机配套的废气涡轮增压器,氢燃料电池配套的进气空压机,工业级大流量空气压缩机等。其原理是原动力机械带动离心式压气叶轮高速旋转,使其作用于进气气体并产生旋转和离心运动而形成增压效果。通常离心式压气叶轮的转速高达每分钟数万转至每分钟数十万转,因而产品设计和生产均具有较高的技术难度。
作为一类应用场景,采用高速电动机作为驱动离心压气机的原动力,其所消耗的能量较多。比如氢燃料电池***配套的电动空气压缩机,其工作消耗电能约占到燃料电池***输出电力的 20%。空气压缩机成为了燃料电池***最大的寄生能量消耗部件,因此减少气体压缩设备所消耗的能量,并同时具有紧凑、可靠和低成本的空气管理***,具有显著的节能和经济效益。
气体压缩设备输出的高压气体在被下游装置使用之后所排出的尾气通常含有一定的剩余能量。比如氢燃料电池的增压进气***中,压缩空气在电堆的内部被消耗了部分氧气之后,剩余的尾气从电堆排出,该排出尾气的压力大约相当于增压进气压力的70%。如何回收较低流速排气的能量,是实现压气机节能的关键。
发明内容
本发明为了克服以上技术的不足,提供了一种新的回收尾气能量的方案,在不显著增加尾气排出背压的约束条件下,能够回收排气能量并显著降低能耗的双动力及升速方式气体压缩设备。
本发明克服其技术问题所采用的技术方案是:
一种双动力及升速方式气体压缩设备,包括:
壳体,其内部具有空腔;
动力轴,其通过轴承转动安装于壳体的空腔中;
直流电机,设置于壳体的空腔中,电机定子与壳体的内壁相连接,电机转子与动力轴同轴固定安装;
气动涡轮壳体,安装于壳体一端,其设置有进气口和排气口,所述进气口连接于燃料电池的阴极排气通道;
排气涡轮,安装于气动涡轮壳体内,进气口中进入的流动气体推动排气涡轮转动,排气涡轮与动力轴同轴连接;
压气机壳体,安装于壳体另一端,其设置有压缩空气出口,所述压缩空气出口连接于燃料电池的阴极进气通道;以及
压气机叶轮,设置于压气机壳体内,转轴Ⅰ安装于压气机壳体中,转轴Ⅰ一端与压气机叶轮同轴连接,其另一端通过升速机构与动力轴相连,升速机构使转轴Ⅰ的转速大于动力轴的转速。
进一步的,上述轴承为滚动轴承。
进一步的,上述轴承为浮动轴承。
进一步的,上述升速机构包括安装于壳体上的支架、与动力轴同轴连接的呈圆环形的转环以及以转轴Ⅰ的轴线为中心沿圆周方向环绕设置于转轴Ⅰ***的N个行星轮,所述行星轮通过转轴Ⅱ转动安装于支架上,行星轮的轴线与转轴Ⅰ的轴线及动力轴的轴线相平行,行星轮的外侧端的柱面与转环的圆形内壁相接触,行星轮的内侧端的柱面与转轴Ⅰ的外端面相接触。
为了提高润滑性,还包括设置于壳体上端的润滑剂通道Ⅰ以及设置于壳体下端的润滑剂通道Ⅱ,所述润滑剂通道Ⅰ的入口端与润滑泵的出口端相连,其出口端设置于轴承处,所述润滑剂通道Ⅱ的入口端设置于轴承处,其出口端与润滑泵的入口端相连。
为了提高密封性,轴承两侧的壳体与动力轴之间分别设置有密封圈Ⅰ。
优选的,N为3。
为了提高润滑性,还包括设置于压气机支架上的牵引液通道Ⅰ以及设置于转轴Ⅰ中的牵引液通道Ⅱ,牵引液通道Ⅰ的入口端与牵引液泵相连,其一出口端朝向行星轮的柱面位置,其另一出口端与牵引液通道Ⅱ的入口端相连,牵引液通道Ⅱ的出口端设置于转轴Ⅰ与行星轮相接触的界面之间,所述壳体上设置有用于牵引液回流的牵引液出口。
为了提高密封性,支架与转轴Ⅰ之间设置有密封圈Ⅱ,所述密封圈Ⅱ位于升速机构与压气机叶轮之间。
本发明的有益效果是:燃料电池的阴极排气具有一定的压力和能量,其通过进气口流入气动涡轮壳体中推动排气涡轮转动,同时,直流电机通电后驱动动力轴转动,从而使燃料电池的阴极排气与直流电机联合驱动动力轴转动,能够显著节省增压设备所实际消耗的驱动能量,即具有节能效果。同时,可显著减小增压设备原动力装置的功率容量、尺寸和成本。动力轴转动通过升速机构驱动转轴Ⅰ转动,从而使压气机叶轮转动,压气机叶轮将气体增压后通过压缩空气出口输出压入燃料电池的阴极进气通道。避免了动力轴高转速对直流电机所带来的机械与电气工艺瓶颈的制约,降低了动力轴支撑方面的技术难度,显著地提高可靠性并降低成本。相对于动力轴7高转速的方案,本双动力及升速方式气体压缩设备的低转速排气涡轮对下游设备的尾气排出所形成的背压阻力作用显著地降低,能够利用较低流速尾气排出环节的能量。同时,避免了动力轴高转速对直流电机所带来的机械与电气工艺瓶颈的制约,降低了动力轴支撑方面的技术难度,显著地提高可靠性并降低成本。
附图说明
图1为本发明的采用滚动轴承的主视剖面结构示意图;
图2为本发明的采用浮动轴承的主视剖面结构示意图;
图3为本发明的升速装置部位的剖面结构示意图;
图中,1.壳体 2.气动涡轮壳体 3.进气口 4.排气口 5.压气机壳体 6.压缩空气出口 7.动力轴 8.滚动轴承9.排气涡轮 10.压气机叶轮 11.润滑剂通道Ⅰ 12.润滑剂通道Ⅱ 13.电机定子 14.电机转子 15.密封圈Ⅰ 16.转环 17.行星轮 18.支架 19.转轴Ⅰ 20.密封圈Ⅱ 21.浮动轴承 22.转轴Ⅱ 23.牵引液通道Ⅰ 24.牵引液通道Ⅱ 25.牵引液出口。
具体实施方式
下面结合附图1、附图2、附图3对本发明做进一步说明。
一种双动力及升速方式气体压缩设备,包括:壳体1,其内部具有空腔;动力轴7,其通过轴承转动安装于壳体1的空腔中;直流电机,设置于壳体1的空腔中,电机定子13与壳体1的内壁相连接,电机转子14与动力轴7同轴固定安装;气动涡轮壳体2,安装于壳体1一端,其设置有进气口3和排气口4,进气口3连接于燃料电池的阴极排气通道;排气涡轮9,安装于气动涡轮壳体2内,进气口3中进入的流动气体推动排气涡轮9转动,排气涡轮9与动力轴7同轴连接;压气机壳体5,安装于壳体1另一端,其设置有压缩空气出口6,所述压缩空气出口6连接于燃料电池的阴极进气通道;以及压气机叶轮10,设置于压气机壳体5内,转轴Ⅰ 19安装于压气机壳体5中,转轴Ⅰ 19一端与压气机叶轮10同轴连接,其另一端通过升速机构与动力轴7相连,升速机构使转轴Ⅰ 19的转速大于动力轴7的转速。燃料电池的阴极排气具有一定的压力和能量,其通过进气口3流入气动涡轮壳体2中推动排气涡轮9转动,同时,直流电机通电后电机转子14驱动动力轴7转动,从而使排气涡轮9主动转动,从而使燃料电池的阴极排气与直流电机联合驱动动力轴7转动,能够显著节省增压设备所实际消耗的驱动能量,即具有节能效果。同时,可显著减小增压设备原动力装置的功率容量、尺寸和成本。动力轴7转动通过升速机构驱动转轴Ⅰ 19转动,从而使压气机叶轮10转动,压气机叶轮10将气体增压后通过压缩空气出口6压入燃料电池的阴极进气通道。由于通过升速机构升速后转轴Ⅰ19的转速远大于动力轴7的 ,动力轴7转速甚至可以仅为转轴Ⅰ 19的十分之一量级。避免了动力轴7高转速对直流电机所带来的机械与电气工艺瓶颈的制约,降低了动力轴7支撑方面的技术难度,显著地提高可靠性并降低成本。相对于动力轴7高转速的方案,本双动力及升速方式气体压缩设备的低转速排气涡轮9对尾气所形成的背压阻力作用显著地降低,易于满足尾气排出环节所要求的条件。
如附图3所示,升速机构包括安装于壳体1上的支架18、与动力轴7同轴连接的呈圆环形的转环16以及以转轴Ⅰ 19的轴线为中心沿圆周方向环绕设置于转轴Ⅰ 19***的N个行星轮17,行星轮17通过转轴Ⅱ 22转动安装于支架18上,行星轮17的轴线与转轴Ⅰ 19的轴线及动力轴7的轴线相平行,行星轮17的外侧端的柱面与转环16的圆形内壁相接触,行星轮17的内侧端的柱面与转轴Ⅰ 19的外端面相接触。动力轴7驱动转环16转动,转环16转动时利用摩擦力驱动各个行星轮17转动,各个行星轮17转动时通过摩擦力其驱动转轴Ⅰ 19转动,从而使压气机叶轮10旋转,由于转环16的圆孔的周长大于行星轮17的周长,因此转环16驱动行星轮17转动时,行星轮17的转动速度大于转环16的转动速度,而行星轮17的外径大于转轴Ⅰ 19的外径,因此行星轮17驱动转轴Ⅰ 19转动时,行星轮17的转动速度小于转轴Ⅰ 19的转动速度。因此实现了2级增速,由于转轴Ⅰ 19的转速很高,因此通过转环16-行星轮17-转轴Ⅰ 19的驱动路线,解决了传统齿轮啮合增速机构不能适应高转速的问题。N可以为3,设置3个行星轮17为最优选择。
进一步的,还包括设置于壳体1上端的润滑剂通道Ⅰ 11以及设置于壳体1下端的润滑剂通道Ⅱ 12,润滑剂通道Ⅰ 11的入口端与润滑泵的出口端相连,其出口端设置于轴承处,润滑剂通道Ⅱ 12的入口端设置于轴承处,其出口端与润滑泵的入口端相连。润滑泵将润滑剂泵入润滑剂通道Ⅰ 11中,从而对轴承进行润滑,润滑后的润滑剂通过润滑剂通道Ⅱ12流回润滑泵,实现循环。
进一步的,轴承两侧的壳体1与动力轴7之间分别设置有密封圈Ⅰ 15。密封圈Ⅰ 15提高对轴承的密封性,防止润滑剂流入到壳体1中。
进一步的,还包括设置于压气机支架18上的牵引液通道Ⅰ 23以及设置于转轴Ⅰ 19中的牵引液通道Ⅱ 24,牵引液通道Ⅰ 23的入口端与牵引液泵相连,其一出口端朝向行星轮17的柱面位置,其另一出口端与牵引液通道Ⅱ 24的入口端相连,牵引液通道Ⅱ 24的出口端设置于转轴Ⅰ 19与行星轮17相接触的界面之间。牵引液泵将牵引液泵入牵引液通道Ⅰ 23中,牵引液从牵引液通道Ⅱ 24流入到转轴Ⅰ 19与压气机壳体5之间的转动连接区域实现润滑,流入转轴Ⅰ 19与行星轮17之间实现对行星轮17的润滑,壳体1上设置有用于牵引液回流的牵引液出口25。牵引液通过牵引液出口25排出,实现循环使用。
进一步的,支架18与转轴Ⅰ 19之间设置有密封圈Ⅱ 20,密封圈Ⅱ 20位于升速机构与压气机叶轮10之间。密封圈Ⅱ 20可以防止牵引液流入到压气机壳体5中,提高了密封性。

Claims (6)

1.一种双动力及升速方式气体压缩设备,其特征在于,包括:
壳体(1),其内部具有空腔;
动力轴(7),其通过轴承转动安装于壳体(1)的空腔中;
直流电机,设置于壳体(1)的空腔中,电机定子(13)与壳体(1)的内壁相连接,电机转子(14)与动力轴(7)同轴固定安装;
气动涡轮壳体(2),安装于壳体(1)一端,其设置有进气口(3)和排气口(4),所述进气口(3)连接于燃料电池的阴极排气通道;
排气涡轮(9),安装于气动涡轮壳体(2)内,进气口(3)中进入的流动气体推动排气涡轮(9)转动,排气涡轮(9)与动力轴(7)同轴连接;
压气机壳体(5),安装于壳体(1)另一端,其设置有压缩空气出口(6),所述压缩空气出口(6)连接于燃料电池的阴极进气通道;以及
压气机叶轮(10),设置于压气机壳体(5)内,转轴Ⅰ(19)安装于压气机壳体(5)中,转轴Ⅰ(19)一端与压气机叶轮(10)同轴连接,其另一端通过升速机构与动力轴(7)相连,升速机构使转轴Ⅰ(19)的转速大于动力轴(7)的转速;
所述轴承为滚动轴承(8);
所述轴承为浮动轴承(21);
所述升速机构包括安装于壳体(1)上的支架(18)、与动力轴(7)同轴连接的呈圆环形的转环(16)以及以转轴Ⅰ(19)的轴线为中心沿圆周方向环绕设置于转轴Ⅰ(19)***的N个行星轮(17),所述行星轮(17)通过转轴Ⅱ(22)转动安装于支架(18)上,行星轮(17)的轴线与转轴Ⅰ(19)的轴线及动力轴(7)的轴线相平行,行星轮(17)的外侧端的柱面与转环(16)的圆形内壁相接触,行星轮(17)的内侧端的柱面与转轴Ⅰ(19)的外端面相接触。
2.根据权利要求1所述的双动力及升速方式气体压缩设备,其特征在于:还包括设置于壳体(1)上端的润滑剂通道Ⅰ(11)以及设置于壳体(1)下端的润滑剂通道Ⅱ(12),所述润滑剂通道Ⅰ(11)的入口端与润滑泵的出口端相连,其出口端设置于轴承处,所述润滑剂通道Ⅱ(12)的入口端设置于轴承处,其出口端与润滑泵的入口端相连。
3.根据权利要求1所述的双动力及升速方式气体压缩设备,其特征在于:轴承两侧的壳体(1)与动力轴(7)之间分别设置有密封圈Ⅰ(15)。
4.根据权利要求1所述的双动力及升速方式气体压缩设备,其特征在于:N为3。
5.根据权利要求1所述的双动力及升速方式气体压缩设备,其特征在于:还包括设置于压气机支架(18)上的牵引液通道Ⅰ(23)以及设置于转轴Ⅰ(19)中的牵引液通道Ⅱ(24),牵引液通道Ⅰ(23)的入口端与牵引液泵相连,其一出口端朝向行星轮(17)的柱面位置,其另一出口端与牵引液通道Ⅱ(24)的入口端相连,牵引液通道Ⅱ(24)的出口端设置于转轴Ⅰ(19)与行星轮(17)相接触的界面之间,所述壳体(1)上设置有用于牵引液回流的牵引液出口(25)。
6.根据权利要求1所述的双动力及升速方式气体压缩设备,其特征在于:支架(18)与转轴Ⅰ(19)之间设置有密封圈Ⅱ(20),所述密封圈Ⅱ(20)位于升速机构与压气机叶轮(10)之间。
CN201910046274.7A 2019-01-18 2019-01-18 一种双动力及升速方式气体压缩设备 Active CN109654040B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910046274.7A CN109654040B (zh) 2019-01-18 2019-01-18 一种双动力及升速方式气体压缩设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910046274.7A CN109654040B (zh) 2019-01-18 2019-01-18 一种双动力及升速方式气体压缩设备

Publications (2)

Publication Number Publication Date
CN109654040A CN109654040A (zh) 2019-04-19
CN109654040B true CN109654040B (zh) 2024-04-30

Family

ID=66120001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910046274.7A Active CN109654040B (zh) 2019-01-18 2019-01-18 一种双动力及升速方式气体压缩设备

Country Status (1)

Country Link
CN (1) CN109654040B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11384772B2 (en) 2018-09-19 2022-07-12 Borgwarner Inc. Rotating machine and mating ring included therein
US11078807B2 (en) 2018-09-19 2021-08-03 Borgwarner Inc. Turbocharger and mating ring included therein
US11920605B2 (en) 2018-09-19 2024-03-05 Borgwarner Inc. Rotating machine and mating ring included therein
CN111503016A (zh) * 2020-04-16 2020-08-07 广东广顺新能源动力科技有限公司 一种可控制喘振点的节流高效压缩空气***

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1009115A (en) * 1962-08-03 1965-11-03 Aktiebolget Volvo Improvements in and relating to gas turbine plants
GB2103288A (en) * 1981-05-01 1983-02-16 George Basil Tsakiroglou Rotary positive-displacement fluid-machines
RU2243386C2 (ru) * 2002-02-18 2004-12-27 Чоповский Борис Петрович Двигатель внутреннего сгорания (варианты)
RU2244138C2 (ru) * 2001-08-20 2005-01-10 Чоповский Борис Петрович Двигатель внутреннего сгорания (варианты)
WO2008045036A2 (en) * 2006-10-05 2008-04-17 Hinderks M V Improved reciprocating devices
CN205225435U (zh) * 2015-12-09 2016-05-11 刘银栓 内燃机进气增压及负压排气结构
JP2016156300A (ja) * 2015-02-24 2016-09-01 いすゞ自動車株式会社 車両用の機械式過給機の軸受シール機構
CN107893772A (zh) * 2017-10-09 2018-04-10 中国第汽车股份有限公司 一种带能量回收功能的离心式燃料电池空气压缩机
CN107946613A (zh) * 2017-11-15 2018-04-20 孙军 一种液力驱动的燃料电池增压进气***
CN209510669U (zh) * 2019-01-18 2019-10-18 孙军 一种双动力及升速方式气体压缩设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003229184A1 (en) * 2002-05-17 2003-12-02 Normand Beaudoin Retro-mechanical, post-mechanical, bi-mechanical traction engines
JP5303609B2 (ja) * 2011-06-22 2013-10-02 本田技研工業株式会社 燃料電池システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1009115A (en) * 1962-08-03 1965-11-03 Aktiebolget Volvo Improvements in and relating to gas turbine plants
GB2103288A (en) * 1981-05-01 1983-02-16 George Basil Tsakiroglou Rotary positive-displacement fluid-machines
RU2244138C2 (ru) * 2001-08-20 2005-01-10 Чоповский Борис Петрович Двигатель внутреннего сгорания (варианты)
RU2243386C2 (ru) * 2002-02-18 2004-12-27 Чоповский Борис Петрович Двигатель внутреннего сгорания (варианты)
WO2008045036A2 (en) * 2006-10-05 2008-04-17 Hinderks M V Improved reciprocating devices
JP2016156300A (ja) * 2015-02-24 2016-09-01 いすゞ自動車株式会社 車両用の機械式過給機の軸受シール機構
CN205225435U (zh) * 2015-12-09 2016-05-11 刘银栓 内燃机进气增压及负压排气结构
CN107893772A (zh) * 2017-10-09 2018-04-10 中国第汽车股份有限公司 一种带能量回收功能的离心式燃料电池空气压缩机
CN107946613A (zh) * 2017-11-15 2018-04-20 孙军 一种液力驱动的燃料电池增压进气***
CN209510669U (zh) * 2019-01-18 2019-10-18 孙军 一种双动力及升速方式气体压缩设备

Also Published As

Publication number Publication date
CN109654040A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
CN109654040B (zh) 一种双动力及升速方式气体压缩设备
CN112983848B (zh) 一种燃料电池电堆及供气装置
WO2022077541A1 (zh) 空气压缩装置、多级空气压缩装置及氢燃料电池
CN101603536B (zh) 汽车用电动真空泵
CN201916218U (zh) 一种pta装置用齿轮式空压机
CN212716883U (zh) 一种防磨损增压器
CN112360569A (zh) 一种带有涡轮膨胀机的空压***
CN209510669U (zh) 一种双动力及升速方式气体压缩设备
CN113464270B (zh) 一种增压器、润滑***以及润滑方法
CN112746958B (zh) 一种燃料电池用双螺杆压缩膨胀一体机
CN216589096U (zh) 无润滑油脂窜漏的高洁净度电动回转容积泵
CN102536440A (zh) 行星齿轮传动增压器
CN213807963U (zh) 一种带有涡轮膨胀机的空压***
CN107946613A (zh) 一种液力驱动的燃料电池增压进气***
CN211819873U (zh) 一种驱动元件隔离式输送泵
CN212028101U (zh) 一种双冷却***的离心式空气压缩机
CN214304332U (zh) 串联式大流量齿轮泵
CN211038757U (zh) 一种涡轮增压器用新型止推轴承结构
CN218760414U (zh) 一种使用四点接触球轴承的氢气循环泵
CN106438326A (zh) 一种用于水动风机冷却塔轴承润滑的微型间歇泵以及安装和工作方法
CN202867213U (zh) 螺杆式氦气压缩机
CN112747120A (zh) 一种便于拆装氢气循环泵的密封结构
CN111140475A (zh) 一种硫酸用直动隔膜输送泵
CN221400774U (zh) 一种单组式气动柱塞马达
CN217354806U (zh) 一种内齿增速式离心压缩机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant