CN109639340B - 一种适用于卫星链路的tcp加速方法 - Google Patents

一种适用于卫星链路的tcp加速方法 Download PDF

Info

Publication number
CN109639340B
CN109639340B CN201811513231.7A CN201811513231A CN109639340B CN 109639340 B CN109639340 B CN 109639340B CN 201811513231 A CN201811513231 A CN 201811513231A CN 109639340 B CN109639340 B CN 109639340B
Authority
CN
China
Prior art keywords
tcp
data
satellite
gateway
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811513231.7A
Other languages
English (en)
Other versions
CN109639340A (zh
Inventor
田永
谢永锋
刘小林
黄玺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Spaceon Technology Co ltd
Original Assignee
Chengdu Spaceon Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Spaceon Technology Co ltd filed Critical Chengdu Spaceon Technology Co ltd
Priority to CN201811513231.7A priority Critical patent/CN109639340B/zh
Publication of CN109639340A publication Critical patent/CN109639340A/zh
Application granted granted Critical
Publication of CN109639340B publication Critical patent/CN109639340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/11Identifying congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/19Flow control; Congestion control at layers above the network layer
    • H04L47/193Flow control; Congestion control at layers above the network layer at the transport layer, e.g. TCP related
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/163In-band adaptation of TCP data exchange; In-band control procedures

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种适用于卫星链路的TCP加速方法,包括:卫星网络的TCP通信分为3段:发送方终端用户与卫星网关,卫星网关与卫星网关,卫星网关与接收方终端用户;终端用户与卫星网关之间的地面通信采用TCP协议进行通信,在发送端的卫星网关设置网络加速器,网络加速器实现双向加速,一方面卫星网关对终端用户发送的TCP数据采用协议伪应答的方式响应TCP加速传输,另一方面网关与网关之间采用改进后的TCP协议通信,改进后的TCP协议结合传统TCP拥塞控制及基于数据量的拥塞控制两种方式对网络进行拥塞判断,采用协议伪应答与基于数据量的拥塞控制机制相结合的方式解决因为长延时及链路高误码率导致的拥塞误判,进而提高TCP的使用效率。

Description

一种适用于卫星链路的TCP加速方法
技术领域
本发明涉及卫星网络领域,具体地,涉及一种适用于卫星链路的TCP加速方法。
背景技术
卫星网络的优势决定了它在未来通信***中占据越来越重要的地位,利用先进的卫星通信技术与地面网络技术相结合已成为研究热点。传输控制协议(TCP)是互联网中常用的传输层协议,它提供可靠的流量控制和拥塞控制服务。但卫星网络自身的特点限制了TCP在卫星网络中的使用。影响卫星网络性能的因素主要有以下几种:
链路高误码率:
由于卫星网络环境的复杂性,容易受天气等因素影响,链路误码率较地面网络大大提高,传统的拥塞控制机制将数据的丢失认为是网络拥塞引起的,这种机制不再适用于卫星网络。如果没有一种机制正确判断网络拥塞和误码造成的数据丢失,错误地执行拥塞控制机制将对卫星链路的TCP性能产生很大影响。
链路层长时延:
卫星网络链路层传输时延比有线网络大得多,较大的传输时延会减缓拥塞窗口增长的速度,同时,较大的时延变化量也会干扰对RTT的估算,从而影响TCP的定时机制,带来不必要的超时重传,进而错误的改变TCP发送窗口的大小,降低带宽利用率。如果按照卫星链路的RTT来设置超时定时器的话将大大降低卫星链路TCP性能。
发明内容
本发明提供了一种适用于卫星链路的TCP加速方法,为了在卫星网络里有效地使用TCP传输协议,需要执行TCP加速手段来提高TCP的使用性能。本发明提出一种有效的加速方法,采用协议伪应答与基于数据量的拥塞控制机制相结合的方式解决因为长延时及链路高误码率导致的拥塞误判,进而提高TCP的使用效率。
透明传输控制协议(TCP)加速是指提高TCP吞吐量而不需要在终端***中对TCP协议进行任何改变的技术。针对卫星链路高时延和高误码率的特点,提出一种单双边相结合的TCP加速方法,以改善TCP在卫星链路上的使用性能。该加速方法在卫星网关设置加速器,该加速器一方面向发送端实现协议伪应答;另一方面向远端卫星网关发送数据时采用基于数据量的拥塞控制来实现TCP加速,解决卫星链路存在的拥塞误判。
本申请提供了一种适用于卫星链路的TCP加速方法,所述方法包括:
卫星网络的TCP通信分为3段:发送方终端用户与卫星网关,卫星网关与卫星网关,卫星网关与接收方终端用户;终端用户与卫星网关之间的地面通信采用TCP协议进行通信,在发送端的卫星网关设置网络加速器,网络加速器实现双向加速,一方面卫星网关对终端用户发送的TCP数据采用协议伪应答的方式响应TCP加速传输,另一方面网关与网关之间采用改进后的TCP协议通信,改进后的TCP协议结合传统TCP拥塞控制及基于数据量的拥塞控制两种方式对网络进行拥塞判断。
进一步的,在卫星网关设置协议伪应答,当卫星网关收到发送方的数据时及时响应,让发送方以为收到接收端确认信息。当卫星网络上的包数大于带宽时延乘积时,则认为卫星网络出现拥塞。
进一步的,协议伪应答包括以下行为:
对发送方的即时响应:收到发送方的数据包立即被缓存并确认;
本地重传:当数据包丢失时,发送方启用重传机制;
流量控制:当加速网关的发送速度慢于缓冲区接收速度时,缓冲区空间将填满,不再确认和存储其他数据包。
进一步的,协议伪应答流程具体包括:
卫星网关从发送方接收数据包,判断是否为TCP数据包,若不是TCP数据包,则不作加速处理;若是TCP数据包,则进一步判断是否为SYN数据包;若为SYN数据包,则进一步判断网关加速器上是否有流记录(流记录为某条链接建立的记录),若有流记录,则回复SYN/ACK;若没有流记录,则建立流记录,回复SYN/ACK,保存并转发SYN;若不是SYN数据包,则进一步判断缓存空间是否可用;若缓存空间不可用,则丢弃数据包;若缓存空间可用,则回复ACK,保存并转发数据包,然后判断是否从接收方收到ACK,若没有从接收方收到ACK,则继续进行判断是否从接收方收到ACK;若从接收方收到ACK,则释放缓存空间,并判断网关是否从接收方收到FIN,若没有收到FIN,则回到流程初始步骤;若收到FIN,则断开TCP连接,并结束流程。
进一步的,拥塞控制流程具体包括:
建立TCP连接,依靠传统的TCP协议进行数据传输控制,判断卫星网络是否出现拥塞;若卫星网络出现拥塞,则使用基于数据量的拥塞控制算法调整窗口大小和发送速率,然后进一步判断卫星网络是否出现拥塞,若卫星网络出现拥塞,则返回执行步骤使用基于数据量的拥塞控制算法调整窗口大小和发送速率;若卫星网络没有出现拥塞,则返回执行步骤依靠传统的TCP协议进行数据传输控制。
进一步的,基于数据量的拥塞控制算法利用网络加速器不断采集连续时间窗口内的最大带宽BW和最小RTT(RTT是发送一包数据到收到确认回复所花的时间),并以此计算发送速率和窗口大小,该算法通过增益系数调节窗口大小和发送速率,当在一个时间窗口内采集到更大的BW和更小的RTT时,则认为卫星网络支持更大的数据容量,并以它们的乘积,即BDP作为基准,如果没有达到,则认为网络发生了拥塞,调小增益系数,在时间窗口范围内并不改变基准。
进一步的,基于数据量的拥塞控制算法的输出两个值,即窗口大小cwnd和发送速率pacingrate,cwnd规定了当前的TCP最多可以发送多少数据,pacing rate规定cwnd指示的一窗数据的数据包之间,以多大的时间间隔发送出去,其中:
cwnd=BDP*G’,BDP=BW(max)*RTT(min),pacing rate=BW*G
BW是即时带宽,为单位时间内应答的数据个数;
BW=delivered_data/delivered_time
delivered_data为实际应答的数据量;delivered_time为应答delivered_data所需的时间;
BW(max)是时间窗口内最大BW,在TCP连接的持续过程中,每收到一个ACK,都会计算即时的带宽;RTT是发送一包数据到收到确认回复所花的时间,RTT(min)连续时间内采集到的最小RTT;G'是cwnd的增益系数,固定值为3/2;G是pacing rate的增益系数。
进一步的,G的取值分以下两种情况:
1、检测到拥塞状态时,G=1/2.8,2.8是启动阶段符合慢启动的增窗指数,出现拥塞时反算到速率增益上;
2、稳定状态时G的取值在5/4,1,3/4之间随机选择。
进一步的,基于数据量的拥塞控制算法流程具体包括:
1、发送网关和接收网关建立TCP连接;
2、发送网关和接收网关依靠传统TCP协议进行数据传输控制;
3、发送网关判断网络是否出现拥塞;
4、如果网络未出现拥塞,则继续依靠传统TCP协议进行数据传输控制;如果出现拥塞,则采用基于数据量的拥塞控制算法控制数据传输(步骤5到步骤7为基于数据量的拥塞控制算法);
5、发送网关不断采集连续时间窗口内的最大带宽BW(max)和最小RTT(min),并以此计算发送速率(pacing rate)和窗口大小(cwnd):
cwnd=BDP*G’,
BDP=BW(max)*RTT(min),
pacing rate=BW*G
G'是cwnd的增益系数,固定值为3/2。G是pacing rate的增益系数。如果连续一段时间窗口内采集到的RTT均比***已保存的最小RTT更大,很可能网络内发生了拥塞;
6、检测到拥塞状态时,G=1/2.8。2.8是启动阶段符合慢启动的增窗指数,此时数据包以较低的发送速率发送出去;
7、稳定状态时G的取值在5/4,1,3/4之间选择。达到稳定状态后,为了探测更多的带宽,可以调大增益,即5/4,另一方面,对于偶尔出现的拥堵,则采用3/4进行收敛,减慢发送。
本申请提供的一个或多个技术方案,至少具有如下技术效果或优点:
由于采用了伪应答,当卫星网关收到TCP数据后即执行回复并将数据存储在缓存中,由于减小反馈延迟,终端设备能更快地对TCP流分组丢失做出反应,从而实现更高的吞吐量。同时,由于本发明转变了对于卫星网络中对于拥塞的判断标准,定义当网络上的包数大于BDP(带宽时延乘积)时,则认为出现了拥塞。根据收到的确认包,发现有效带宽不再增长时,就进入拥塞避免阶段,实现了最大化利用网络带宽的作用。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定;
图1是卫星网络结构示意图;
图2是基于协议伪应答的TCP加速连接示意图;
图3是协议伪应答流程示意图;
图4是拥塞控制算法流程示意图;
图5是基于数据量的拥塞控制算法流程示意图。
具体实施方式
本发明提供了一种适用于卫星链路的TCP加速方法,为了在卫星网络里有效地使用TCP传输协议,需要执行TCP加速手段来提高TCP的使用性能。本发明提出一种有效的加速方法,采用协议伪应答与基于数据量的拥塞控制机制相结合的方式解决因为长延时及链路高误码率导致的拥塞误判,进而提高TCP的使用效率。
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在相互不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述范围内的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
本发明提出的针对卫星网络的TCP加速方案将通信分为3段:终端用户与卫星网关,卫星网关与卫星网关,卫星网关与终端用户。网络结构图如图1所示。
其中,终端用户与卫星网关之间的地面通信仍然采用TCP协议进行通信,网关对终端用户发送的TCP数据采用协议伪应答的方式响应TCP传输。网关与网关之间采用改进后的TCP协议通信,此处结合传统TCP拥塞控制及基于数据量的拥塞控制两种方式对网络进行拥塞判断,避免错误的拥塞判断影响TCP传输效率。该设计完全兼容现有的网络应用配置,用户终端***不需要针对TCP协议进行任何修改即可使用。
为实现TCP加速,在卫星网关设置网络加速器,该加速器配置在发送端网关。该网络加速器实现双向加速功能,即面向发送方通过协议伪应答实现TCP加速,面向下一卫星网关采用基于数据量的拥塞控制,保证TCP的高效传输。
卫星网络通信长时延的问题主要出在卫星网关与卫星网关之间。如果能在卫星网关设置协议伪应答,当卫星网关收到发送方的数据时及时响应,让发送方以为收到接收端确认信息,进而可以避免卫星网络长延时的问题。
标准TCP中的拥塞控制算法是不断增加发送窗口,直到发现开始丢包。当收到一个确认消息的时候慢慢增加发送窗口,当确认一个包丢掉的时候较快地减小发送窗口。将丢包作为拥塞的信号,从而大幅降低发送速率。卫星链路存在较高的误码率,如果采用传统的TCP协议进行通信,往往由于检测到较高的丢包率而启动拥塞控制机制,因此降低发送速率,但实际上网络并未出现拥塞,因而浪费大量带宽资源。本发明中的算法,不考虑丢包,而是定义:当网络上的包数大于BDP(带宽时延乘积)时,则认为出现了拥塞。本发明中的算法根据收到的确认包,发现有效带宽不再增长时,就进入拥塞避免阶段。该方式可以有效利用网络带宽,避免资源浪费。
协议伪应答:
该功能针对终端用户与卫星网关之间的通信。TCP是一种速率自适应协议,而反馈回路是TCP协议确定发送速率和重传机制的依据,是TCP实施过程中必不可少的部分。协议伪应答的作用是为了减少反馈回路中的延迟。即使在理想条件下(没有包丢失,不考虑带宽的情况下),重传依然存在。重传的反馈时间越短,网络性能就越高。卫星通信的时延主要来自于卫星网关与卫星网关之间。在卫星网关上安置网络加速器,将用户与网关之间的TCP数据终止在卫星网关上,当卫星网关收到TCP数据后即执行回复并将数据存储在缓存中,由于减小反馈延迟,终端设备能更快地对TCP流分组丢失做出反应,从而实现更高的吞吐量。基于协议伪应答的TCP连接图如图2所示。
协议伪应答主要包含以下行为:
对发送方的即时响应:收到发送方的数据包立即被缓存并确认。
本地重传:当数据包丢失时,发送方启用重传机制。由于两个连接的RTT较短,超时时间可以更快地检测到丢包。
流量控制:当加速网关的发送速度慢于缓冲区接收速度时,缓冲区空间将填满,不能再确认和存储其他数据包。这时发送方检测到数据包丢失并减慢速度。
对于终端用户来说,引入TCP加速方案后,终端***与传统的TCP连接(除了分组顺序和性能之外)没有任何区别,这样,终端***不需要做任何修改即可实现TCP加速。协议伪应答流程图如图3所示。
基于数据量的拥塞控制:
卫星网络比有线网络存在更大的传输时延,这必然会影响TCP的定时机制。用户发送完数据包后会等待ACK,如果网络存在较大时延会影响RTT(收到确认信息所花的时间)估算,带来不必要的超时重传,会影响发送端对网络状态的判断,进而错误地改变窗口发送大小,降低带宽利用率。同时卫星信道的误码率本来就比较高,如果将数据包的丢失误认为是网络拥塞造成的,从而启动拥塞控制机制,降低发送速率,结果造成带宽资源的浪费。
针对卫星链路较大时延和较高误码率的特点,本发明提出了一种新的TCP拥塞控制方案,以解决传统TCP在卫星链路上使用时拥塞误判等问题。本发明在卫星网络这段链路上采用基于数据量的拥塞控制机制,无论外部TCP处在哪个阶段,该拥塞控制算法都可以完全控制传输多少数据以及以什么速率传输数据,这意味着可以区别噪声丢包和拥塞丢包了,而噪声丢包是无线链路特别是卫星链路传输的显著特点。如果是噪声丢包,在收到重复ACK后,由于算法并不区分一个确认是ACK还是SACK引起的,所以即使出现数据包丢失,即时带宽并没有降低,可能还有所增加,过程中并不会受到任何TCP拥塞状态的影响。
拥塞控制方式分为两个阶段,即正常阶段和异常阶段。在正常阶段中,依靠传统的TCP控制算法对窗口进行调整,对应TCP的慢启动阶段;在异常阶段中,即依靠传统TCP拥塞控制算法检测到拥塞时,采用基于数据量的拥塞控制算法控制窗口的变化。拥塞控制方式如图4所示。
基于数据量的拥塞控制算法原理:
传统TCP协议中,影响TCP拥塞控制算法最重要的因素就是窗口大小。它决定了当前的***最多可以发送多少数据,但它并没有规定怎么把这么多数据发出去,如果把cwnd一窗数据全部突发出去,而这往往会造成数据包排队,在深队列的情况下,会测量出RTT剧烈地抖动。
基于数据量的拥塞控制算法不但要考虑发送窗口大小(cwnd),还要考虑发送速率(pacingrate)。该算法利用网络加速器不断采集连续时间窗口内的最大带宽BW(max)和最小RTT
(min),并以此计算发送速率(pacing rate)和窗口大小(cwnd),pacing rate规定了cwnd指示的一窗数据的数据包之间,以多大的时间间隔发送出去。该算法通过增益系数(G’,G)调节窗口大小和发送速率。一旦在一个时间窗口内采集到更大的BW和更小的RTT,就认为网络支持更大的数据容量,并以它们的乘积,即BDP作为基准,如果没有达到,则认为网络发生了拥塞,调小增益系数即可,但在时间窗口范围内并不改变基准。由于增益系数是根据反馈调节的且基准BDP不变,一旦拥塞缓解,可以第一时间发现并增大增益系数。
基于数据量的拥塞控制算法实现方式:
算法的输出主要有两个值,即窗口大小(cwnd)和发送速率(pacing rate),cwnd规定了当前的TCP最多可以发送多少数据,pacing rate规定cwnd指示的一窗数据的数据包之间,以多大的时间间隔发送出去。
cwnd=BDP*G’,BDP=BW(max)*RTT(min),pacing rate=BW*G
BW是即时带宽,为单位时间内应答的数据个数,不管该应答是重传后的ACK确认,正常ACK确认,还是SACK确认,都统一计算,都认为是数据量的反映。
BW=delivered_data/delivered_time
delivered_data为实际应答的数据量;
delivered_time为应答delivered_data所需的时间。
BW(max)是时间窗口内(默认10轮采样)最大BW。在TCP连接的持续过程中,每收到一个ACK,都会计算即时的带宽。
RTT是发送一包数据到收到确认回复所花的时间,RTT(min)连续时间内(默认10秒)采集到的最小RTT,直接采用冒泡法采集最小的RTT。如果连续一段时间窗口内采集到的RTT均比***已保存的最小RTT更大,很可能网络内发生了拥塞。
G'是cwnd的增益系数,固定值为3/2。G是pacing rate的增益系数。G的取值分以下两种情况:
1、检测到拥塞状态时,G=1/2.8。2.8是启动阶段符合慢启动的增窗指数,出现拥塞时反算到速率增益上。
2、稳定状态时G的取值在5/4,1,3/4之间随机选择。达到稳定状态后,为了探测更多的带宽,即时利用其它TCP连接清空的带宽,可以稍微调大增益,即出现了5/4,另一方面,对于偶尔出现的拥堵,则采用3/4进行收敛,减慢发送,总体而言,整体速率是趋于匀速的。该方案不断地基于当前带宽以及当前的增益系数计算pacing rate以及cwnd,以此2个结果作为拥塞控制算法的输出,其简图如图5所示。
标准TCP是通过不断增加发送窗口,直到发现开始丢包的方式来估算发送窗口的,在连接的开始阶段,网络缓存区会被倾向于占满。后续网络缓存区的占用会逐渐减少,但是并不会完全消失。客户端估计的发送窗口大小总是略大于网络中缓冲区的。网络缓存区里面的缓存的数据越多,数据排队等待发送的时间就越长;共享网络瓶颈的连接较多时,可能导致缓冲区被填满而丢包。
本发明中的算法,不关注丢包,只要链路的错误丢包率只要不太高,对本发明中的算法没有影响,可以在有一定丢包率的网络链路上充分利用带宽。当发送速率增长到开始占用网络缓存的时候,有效带宽不再增长,这样就不会把缓冲区填满。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

1.一种适用于卫星链路的TCP加速方法,其特征在于,所述方法包括:
卫星网络的TCP通信分为3段:发送方终端用户与卫星网关,卫星网关与卫星网关,卫星网关与接收方终端用户;终端用户与卫星网关之间的地面通信采用TCP协议进行通信,在发送端的卫星网关设置网络加速器,网络加速器实现双向加速,一方面卫星网关对终端用户发送的TCP数据采用协议伪应答的方式响应TCP加速传输,另一方面网关与网关之间采用改进后的TCP协议通信,改进后的TCP协议结合传统TCP拥塞控制及基于数据量的拥塞控制两种方式对网络进行拥塞判断;
拥塞控制流程具体包括:
建立TCP连接,依靠传统的TCP协议进行数据传输控制,判断卫星网络是否出现拥塞;若卫星网络出现拥塞,则使用基于数据量的拥塞控制算法调整窗口大小和发送速率,然后进一步判断卫星网络是否出现拥塞,若卫星网络出现拥塞,则返回执行步骤使用基于数据量的拥塞控制算法调整窗口大小和发送速率;若卫星网络没有出现拥塞,则返回执行步骤依靠传统的TCP协议进行数据传输控制;
基于数据量的拥塞控制算法利用网络加速器不断采集连续时间窗口内的最大带宽BW和最小RTT,并以此计算发送速率和窗口大小,该算法通过增益系数调节窗口大小和发送速率,当在一个时间窗口内采集到更大的BW和更小的RTT时,则认为卫星网络支持更大的数据容量,并以BW和RTT的乘积,即BDP作为基准,当在一个时间窗口内没有采集到更大的BW和更小的RTT时,则认为网络发生了拥塞,调小增益系数,在时间窗口范围内并不改变基准。
2.根据权利要求1所述的适用于卫星链路的TCP加速方法,其特征在于,在卫星网关设置协议伪应答,当卫星网关收到发送方的数据时及时响应,让发送方以为收到接收端确认信息。
3.根据权利要求1所述的适用于卫星链路的TCP加速方法,其特征在于,当卫星网络上的包数大于带宽时延乘积时,则认为卫星网络出现拥塞。
4.根据权利要求1所述的适用于卫星链路的TCP加速方法,其特征在于,协议伪应答包括以下行为:
对发送方的即时响应:收到发送方的数据包立即被缓存并确认;
本地重传:当数据包丢失时,发送方启用重传机制;
流量控制:当加速网关的发送速度慢于缓冲区接收速度时,缓冲区空间将填满,不再确认和存储其他数据包。
5.根据权利要求1所述的适用于卫星链路的TCP加速方法,其特征在于,协议伪应答流程具体包括:
卫星网关从发送方接收数据包,判断是否为TCP数据包,若不是TCP数据包,则不作加速处理;若是TCP数据包,则进一步判断是否为SYN数据包;若为SYN数据包,则进一步判断网关加速器上是否有流记录,若有流记录,则回复SYN/ACK;若没有流记录,则建立流记录,回复SYN/ACK,保存并转发SYN;若不是SYN数据包,则进一步判断缓存空间是否可用;若缓存空间不可用,则丢弃数据包;若缓存空间可用,则回复ACK,保存并转发数据包,然后判断是否从接收方收到ACK,若没有从接收方收到ACK,则继续进行判断是否从接收方收到ACK;若从接收方收到ACK,则释放缓存空间,并判断网关是否从接收方收到FIN,若没有收到FIN,则回到流程初始步骤;若收到FIN,则断开TCP连接,并结束流程。
6. 根据权利要求1所述的适用于卫星链路的TCP加速方法,其特征在于,基于数据量的拥塞控制算法的输出两个值,即窗口大小cwnd和发送速率pacing rate,cwnd规定了当前的TCP最多可以发送多少数据,pacing rate规定cwnd指示的一窗数据的数据包之间,以多大的时间间隔发送出去,其中:
cwnd=BDP*G’,BDP=BW(max)*RTT(min),pacing rate=BW*G
BW是即时带宽,为单位时间内应答的数据个数;
BW=delivered_data/delivered_time
delivered_data为实际应答的数据量;delivered_time为应答delivered_data所需的时间;
BW(max)是时间窗口内最大BW,在TCP连接的持续过程中,每收到一个ACK,都会计算即时的带宽;RTT是发送一包数据到收到确认回复所花的时间,RTT(min)连续时间内采集到的最小RTT;G'是cwnd的增益系数,固定值为3/2;G是pacing rate的增益系数。
7.根据权利要求6所述的适用于卫星链路的TCP加速方法,其特征在于,G的取值分以下两种情况:
1、检测到拥塞状态时,G=1/2 .8,2 .8是启动阶段符合慢启动的增窗指数,出现拥塞时反算到速率增益上;
2、稳定状态时G的取值在5/4,1,3/4之间随机选择。
8.根据权利要求6所述的适用于卫星链路的TCP加速方法,其特征在于,基于数据量的拥塞控制算法流程具体包括:
发送网关和接收网关建立TCP连接;
发送网关和接收网关依靠传统TCP协议进行数据传输控制;
发送网关判断网络是否出现拥塞;如果网络未出现拥塞,则继续依靠传统TCP协议进行数据传输控制;如果出现拥塞,则采用基于数据量的拥塞控制算法控制数据传输;基于数据量的拥塞控制算法包括:
发送网关采集连续时间窗口内的最大带宽BW(max)和最小RTT(min),并以此计算发送速率即pacing rate和窗口大小即cwnd:
cwnd=BDP*G’,
BDP=BW(max)*RTT(min),
pacing rate=BW*G
G'是cwnd的增益系数;G是pacing rate的增益系数;
检测到拥塞状态时,G=1/2.8;2.8是启动阶段符合慢启动的增窗指数;
稳定状态时G的取值在5/4,1,3/4之间选择。
CN201811513231.7A 2018-12-11 2018-12-11 一种适用于卫星链路的tcp加速方法 Active CN109639340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811513231.7A CN109639340B (zh) 2018-12-11 2018-12-11 一种适用于卫星链路的tcp加速方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811513231.7A CN109639340B (zh) 2018-12-11 2018-12-11 一种适用于卫星链路的tcp加速方法

Publications (2)

Publication Number Publication Date
CN109639340A CN109639340A (zh) 2019-04-16
CN109639340B true CN109639340B (zh) 2021-05-28

Family

ID=66072844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811513231.7A Active CN109639340B (zh) 2018-12-11 2018-12-11 一种适用于卫星链路的tcp加速方法

Country Status (1)

Country Link
CN (1) CN109639340B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787711B (zh) * 2018-12-25 2022-07-29 长沙天仪空间科技研究院有限公司 一种卫星通信路由优化方法及***
CN110190893A (zh) * 2019-06-18 2019-08-30 中国电子科技集团公司第五十四研究所 一种基于dpdk的卫星信道高速可靠数据传输方法
CN110290428B (zh) * 2019-06-26 2021-08-20 腾讯科技(深圳)有限公司 一种拥塞控制方法、装置、终端及存储介质
US10979365B1 (en) * 2019-12-31 2021-04-13 Hughes Network Systems, Llc Accelerated startup of satellite high-bandwidth communication sessions
CN111314961A (zh) * 2020-02-19 2020-06-19 航天恒星科技有限公司 Tcp传输方法、装置和***
CN111970208B (zh) * 2020-08-27 2024-03-05 腾讯科技(深圳)有限公司 网络传输方法、装置、设备及计算机可读存储介质
CN112332903A (zh) * 2020-10-30 2021-02-05 中科院计算技术研究所南京移动通信与计算创新研究院 卫星链路的拥塞控制方法、装置、终端及介质
CN113285914B (zh) * 2021-03-29 2022-10-28 上海大学 一种基于fpga的tcp协议高效数据确认的通信传输方法
CN113518040B (zh) * 2021-04-30 2022-12-09 东北大学 一种面向时延敏感业务的多径耦合拥塞控制方法
CN116131923B (zh) * 2023-02-15 2024-07-05 航天科工空间工程网络技术发展(杭州)有限公司 一种基于卫星通信的数据传输方法、装置及存储介质
CN116566914B (zh) * 2023-07-07 2023-09-19 灵长智能科技(杭州)有限公司 旁路tcp加速方法、装置、设备及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1674485A (zh) * 2004-03-25 2005-09-28 国际商业机器公司 动态提供计算机***资源的方法和***
CN102204182A (zh) * 2010-12-29 2011-09-28 华为技术有限公司 一种数据传输的拥塞控制方法及装置
CN102664867A (zh) * 2012-03-15 2012-09-12 南京邮电大学 一种卫星通信***中的传输协议的增强方法
CN102739569A (zh) * 2011-04-01 2012-10-17 中国科学院空间科学与应用研究中心 一种用于卫星通信中的网关及其tcp性能增强的方法
CN104158760A (zh) * 2014-08-29 2014-11-19 中国科学技术大学 一种广域网tcp单边加速的方法及***
CN105704055A (zh) * 2016-01-18 2016-06-22 河南科技大学 一种基于自然启发的网络拥塞预防方法
CN105897665A (zh) * 2015-01-26 2016-08-24 中兴通讯股份有限公司 一种卫星网络环境下实现tcp传输的方法及相应的网关
CN207588858U (zh) * 2017-12-29 2018-07-06 成都天奥信息科技有限公司 一种用于海事卫星通信***的通信加速终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143078B (zh) * 2011-03-29 2013-10-02 华为技术有限公司 一种报文处理方法、转发设备及***
US10069558B2 (en) * 2015-06-24 2018-09-04 The Boeing Company Reducing call setup delay in geomobile satellite networks

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1674485A (zh) * 2004-03-25 2005-09-28 国际商业机器公司 动态提供计算机***资源的方法和***
CN102204182A (zh) * 2010-12-29 2011-09-28 华为技术有限公司 一种数据传输的拥塞控制方法及装置
CN102739569A (zh) * 2011-04-01 2012-10-17 中国科学院空间科学与应用研究中心 一种用于卫星通信中的网关及其tcp性能增强的方法
CN102664867A (zh) * 2012-03-15 2012-09-12 南京邮电大学 一种卫星通信***中的传输协议的增强方法
CN104158760A (zh) * 2014-08-29 2014-11-19 中国科学技术大学 一种广域网tcp单边加速的方法及***
CN105897665A (zh) * 2015-01-26 2016-08-24 中兴通讯股份有限公司 一种卫星网络环境下实现tcp传输的方法及相应的网关
CN105704055A (zh) * 2016-01-18 2016-06-22 河南科技大学 一种基于自然启发的网络拥塞预防方法
CN207588858U (zh) * 2017-12-29 2018-07-06 成都天奥信息科技有限公司 一种用于海事卫星通信***的通信加速终端

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A novel cross layer TCP pacing protocol for multi-hop wireless networks;Hengheng Xie;《2013 IEEE Wireless Communications and Networking Conference (WCNC)》;20130715;第1428-1433页 *
卫星网络中TCP协议拥塞控制算法的改进与仿真;章翀;《中国优秀硕士学位论文全文数据库》;20100515;全文 *
浅谈TCP拥塞控制算法;LG一直在努力;《博客园》;20180615;全文 *
空间信息网络拥塞控制与路由研究;郭超;《中国博士学位论文全文数据库》;20150915;全文 *

Also Published As

Publication number Publication date
CN109639340A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN109639340B (zh) 一种适用于卫星链路的tcp加速方法
US11876714B2 (en) Method and apparatus for network congestion control based on transmission rate gradients
US7099273B2 (en) Data transport acceleration and management within a network communication system
US7369498B1 (en) Congestion control method for a packet-switched network
US7672241B2 (en) Link-aware transmission control protocol
JP5652388B2 (ja) 通信レート制御方法、送信装置および通信システム
US20100011270A1 (en) Communication system, communication device, and communication method
WO2007007383A1 (ja) 送信装置、受信装置、情報通信方法
CN112436994B (zh) 一种数据传输方法及电子设备
JP2008508817A (ja) 低頻度ackのシステムに適した高性能tcp
WO2012126424A2 (zh) 一种数据包的转发方法和设备
WO2006027695A1 (en) Signaling a state of a transmission link via a transport control protocol
CN111193577B (zh) 使用传输超时的网络***通信方法及通信装置
CN110505533B (zh) 一种tcp视频传输进行误码重传控制的方法
CN104683259A (zh) Tcp拥塞控制方法及装置
US7738395B2 (en) Communication system for improving data transmission efficiency of TCP in a wireless network environment and a method thereof
CN113424578B (zh) 一种传输控制协议加速方法和装置
KR20050055904A (ko) 무선 네트워크망을 통해 통신하는 서버 시스템
Kocan et al. TCP for wireless network
GB2447469A (en) Handling TCP transmissions by determination of a sending or receiving nodes congestion avoidance capabilities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant