CN109606466A - 一种四轮独立驱动电动车辆的主动转向控制方法 - Google Patents

一种四轮独立驱动电动车辆的主动转向控制方法 Download PDF

Info

Publication number
CN109606466A
CN109606466A CN201811445696.3A CN201811445696A CN109606466A CN 109606466 A CN109606466 A CN 109606466A CN 201811445696 A CN201811445696 A CN 201811445696A CN 109606466 A CN109606466 A CN 109606466A
Authority
CN
China
Prior art keywords
vehicle
formula
yaw
real
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811445696.3A
Other languages
English (en)
Other versions
CN109606466B (zh
Inventor
周琪
陈林
鲁仁全
李鸿
李鸿一
李攀硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201811445696.3A priority Critical patent/CN109606466B/zh
Publication of CN109606466A publication Critical patent/CN109606466A/zh
Application granted granted Critical
Publication of CN109606466B publication Critical patent/CN109606466B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

本发明公开一种四轮独立驱动电动车辆的主动转向控制方法,包括以下步骤:预设理想车辆转向模型、状态反馈观测器、前轮转向角控制器和横摆力矩控制器;以车辆直行状态作为初始时刻,实时测量横向速度和横摆角速度,将未知前轮转向角和横摆力矩输入理想车辆转向模型,构造期望的数学模型,将横向速度和横摆角速度期望值与实时值比较,得到实时误差;将实时误差输入到状态观测器,得到稳定闭环***,通过解线性矩阵不等式方法,既得到实时车辆横向速度和横摆角速度值,也得到实时前轮转向角和横摆力矩值,从而对车辆进行控制。该方法克服了电动车稳定性弱且经济适用的转向策略问题,提高车辆安全行驶的灵活操纵性,具有控制效果好、稳定性高的优点。

Description

一种四轮独立驱动电动车辆的主动转向控制方法
技术领域
本发明涉及车辆控制技术领域,尤其涉及一种四轮独立驱动电动车辆的主动转向控制方法。
背景技术
随着汽车技术的发展,电动汽车完全可由可充电电池(如铅酸电池、锂离子电池)提供动力,从而有利于减少污染气体的排放,具有节能环保的特点,从而使得电动汽车的研究和应用成为汽车研究的热点。
电动汽车的操纵稳定性是关系汽车安全行驶的一项重要性能。电动汽车的每个车轮都可以由车载的轮毂电机独立控制,由于轮毂电机快速和准确的响应,因而可以保证电动汽车具有灵活的驱动性能。电动汽车转向***可以用来改变或保持汽车行驶的方向,其对汽车的安全行驶至关重要。现有技术中,电动汽车采用主动前轮转向(AFS,ActiveFront-wheel Steering)方式进行转向,就是一种驾驶员控制汽车的前轮转向,后轮跟随前轮转向的方式。人们针对主动前轮转向的控制问题,提出了前轮转向角的前馈控制和横摆角速度反馈控制等方法,可以有效的提高汽车的转向操纵稳定性。目前主动前轮转向***的结构比较简单,生产成本也比较低,所以在汽车的应用上的到了广泛的使用。横摆力矩控制也是车辆动力学***稳定控制中一种有效的控制方法,它由左右两侧车轮的力矩差所产生,可以调节车辆的横摆和横向运动,从而保证车辆的稳定性。车辆角速度传感器是车辆稳定***的重要测量元件,可以测量绕车辆重心的旋转,有助于纠正车辆向前倾斜带来的不利影响,从而可以确保车辆的舒适性和安全性。
因此,现有技术需要进一步改进和完善。
发明内容
本发明的目的在于克服现有技术的不足,提供一种控制效果好、稳定性高的四轮独立驱动电动车辆的主动转向控制方法。
本发明的目的通过下述技术方案实现:
一种四轮独立驱动电动车辆的主动转向控制方法,该主动转向控制方法主要包括如下具体步骤:
步骤S1:预先设置理想车辆转向模型、状态反馈观测器、前轮转向角控制器和横摆力矩控制器。
步骤S2:以车辆直行状态作为初始时刻,在一定范围的扰动情况下,实时测量车辆的横向速度和横摆角速度,同时将未知的前轮转向角和横摆力矩输入理想车辆转向模型,从而构造了一个期望的横向速度和横摆角速度的数学模型,将期望的横向速度和横摆角速度与对应的实时横向速度和横摆角速度进行比较,从而得到实时的横向速度误差和横摆角速度误差。
步骤S3:对于构建的数学模型中存在一些时变参数,采用Takagi-Sugeno(T-S)模糊的方法进行处理。
步骤S4:将实时的横向速度误差和横摆角速度误差同时输入到状态观测器中,就会得到一个稳定的闭环***,通过使用解线性矩阵不等式的方法,既可以得到实时估计的车辆横向速度和横摆角速度值,也可以得到实时的前轮转向角和横摆力矩值,并采用实时的前轮转向角和横摆力矩对车辆进行控制。
具体的,所述步骤S1中理想车辆转向模型构造过程如下:
建立如下的车辆转向运动学模型:
式中,Vx和Vy分别是车辆在x轴和y轴上的速度分量;M是车辆质量;Ωz是车辆的横摆角速度;Iz是车辆绕z轴的转动惯量;w1(t)和w2(t)表示外界的干扰因素;Fyf和Fyr分别表示前轮横向力和后轮横向力;ΔMz表示车轮所受纵向力所产生附加控制的横摆力矩:
ΔMz=(Fxfr-Fxfl)ls, (2)
前轮的侧偏角af和后轮的侧偏角ar可以分别表示为:
式中,δ表示前轮转向角;假设轮胎偏离角对车辆安全行驶的影响较小,则轮胎横向力可以表示为:
Fyi=Ciαi,(i=f,r), (4)
定义***的状态矢量x(t)=[Vy Ωz]T,控制输入矢量u(t)=[δ ΔMz]T和外界干扰因素w(t)=[w1 w2]T,根据式(3)和(4)建立如下的车辆状态空间模型为:
式中:***矩阵控制输入矩阵
考虑车辆模型含有时变参数,例如轮胎侧偏刚度值易受道路变化的影响,其值是不断变化的且有界;因此,轮胎侧偏刚度值可以表示为:
结合式子(6),则Cf/M的值表示为:
式子λ1=λf同样的,也可以定义并且未知参数满足:λi(i=2,3,4)|λi|≤1,其中 同时考虑车辆转向***参数的变化因素对***作用的影响,定义如下式子:
A=A0+ΔA,B=B0+ΔB, (8)
根据式子(8),则式子(5)可以进一步写为:
式中:分别表示***矩阵A的标称矩阵和变化矩阵;分别表示***矩阵B的标称矩阵和变化矩阵;
根据ΔA和ΔB的定义,可以得到:
[ΔA ΔB]=HN[E1 E2], (10)
式中:N=diag{λ1234},并且H,E1和E2都表示合适维数的矩阵,N满足NTN≤I;
因此,构建理想车辆转向模型为:
式中:y(t)被定义为测量输出;z(t)被定义为控制输出;C1=[0 1]和C2=diag{1,1},其中diag{·}表示为对角矩阵;
闭环***(11)渐进稳定,并且满足如下H性能指标:
式子中,γ表示衰减水平系数;
考虑到不同的装载条件,如有效载荷或乘客数量,车辆质量将会变化,电动车辆***将成为一个不确定因素的复杂***;另外,惯性力矩将很容易受到不同质量的影响;为了减少电动车辆的质量和惯性力矩的变化量会对车辆的性能造成影响;若采用Takagi-Sugeno(T-S)模糊方法来处理复杂非线性***的不确定项,假设变量1/Iz(t)在范围内[1/Izmax,1/Izmin]变化,变量1/M(t)在范围内[1/Mmax,1/Mmin]变化.因此,可定义变量:
通过采用部分非线性方法,参数可以表示为:
定义前提变量如下:
M11(t))+M21(t))=1,N12(t))+N22(t))=1. (15)
车辆转向模型的隶属度函数可以表示为:
因此,理想车辆转向模型可以进一步写为:
定义变量:
h1(ξ(t))=M11(t))×N12(t)),h2(ξ(t))=M11(t))×N22(t)),
h3(ξ(t))=M21(t))×N12(t)),h4(ξ(t))=M21(t))×N22(t)).
定义权重函数:
具体的,所述步骤S1中状态反馈观测器的具体构造过程如下:
式中:Li表示观测器的增益;表示状态矢量的估计状态;表示测量输出的估计状态;定义误差根据式子(11)和(18)推导出控制误差方程:
具体的,所述步骤S1中前轮转向角控制器及横摆力矩控制器的具体构造过程如下:
已知控制输入矢量u(t)=[δ ΔMz]T,其中控制器u同时包含前轮转向角控制和横摆力矩控制;根据实际的控制需要,则定义控制器u的表达式如下:
式中:Kj(j=1,...,4).是控制器增益矩阵;因此,采用上述的控制方法可以对车辆进行实时控制。
本发明的工作过程和原理是:本发明提出了一种四轮独立驱动电动车辆的主动转向控制方法,通过前轮转向角控制器、横摆力矩控制器和状态反馈观测器的组合控制,使得横摆角速度测量值与理想模型对应输出间的误差尽可能小,让车辆能够获得良好的跟踪性能,从而满足安全行驶稳定性要求。前轮转向角和横摆力矩控制的组合可以使得本发明的控制效果优于单一的方式的控制;一方面,可以获得良好的转向角精度;另一方面,特别是遇到路面上侧风,路面摩擦力等干扰情况下,能够获得好的控制效果,满足H性能指标。本发明可以通过使用Takagi-Sugeno(T-S)方法来抑制或减少车辆模型中的时变参数变化带来的扰动对控制性能的影响,从而可以提高车辆转向***的控制鲁棒性。该方法克服了电动车辆稳定性弱且经济适用的转向策略问题,使得车辆四个车轮更能协调的工作,以提高车辆安全行驶的灵活操纵性,具有控制效果好,稳定性高的特点。
附图说明
图1为本发明所提供的电动车辆运动学模型示意图。
图2为本发明提供的四轮独立驱动电动车辆主动转向控制方法的流程图。
图3为本发明所提供的车辆横摆角速度的波形图。
图4为本发明所提供的车辆前轮转向角的波形图。
图5为本发明所提供的车辆横摆力矩的波形图。
图6为本发明所提供的车辆横向速度估计的波形图。
图7为本发明所提供的车辆横摆角速度估计的波形图。
图8为本发明所提供的车辆横向速度的波形图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明作进一步说明。
实施例1:
如图1至图8所示,本实施例公开了一种四轮独立驱动电动车辆主动转向控制方法,其中,四轮独立驱动电动车辆设置有四个独立的动力驱动电机,并且两前轮都设置有两个独立的转向电机,这样的驱动设计,使得车辆操纵更加灵活,能够获得良好的转向精度,稳定性增强,如图1所示。如图2所示,介绍四轮独立驱动电动车辆主动转向控制方法包括以下步骤:
A、预设理想的车辆模型、状态反馈观测器、前轮转向角控制器、横摆力矩控制器;
所述的理想车辆转向运动模型构造过程如下:
建立如下的车辆转向运动学模型:
式中,Vx和Vy分别是车辆在x轴和y轴上的速度分量;M是车辆质量;Ωz是车辆的横摆角速度;Iz是车辆绕z轴的转动惯量;w1(t)和w2(t)表示外界的干扰因素;Fyf和Fyr分别表示前轮横向力和后轮横向力;ΔMz表示车轮所受纵向力所产生附加控制的横摆力矩。
所述的状态反馈观测器的具体构造过程如下:
式中:Li表示观测器的增益;表示状态矢量的估计状态;表示测量输出的估计状态。
B、以车辆直行状态作为初始时刻,在一定范围的扰动情况下,实时测量车辆的横向速度和横摆角速度,同时将未知的前轮转向角和横摆力矩输入理想车辆转向模型,从而构造了一个期望的横向速度和横摆角速度的数学模型,将期望的横向速度和横摆角速度与对应的实时横向速度和横摆角速度进行比较,从而得到实时的横向速度误差和横摆角速度误差。
C、对于构建的数学模型中存在一些时变参数,采用Takagi-Sugeno(T-S)模糊的方法进行处理。
D、将实时的横向速度误差和横摆角速度误差同时输入到状态观测器中,就会得到一个稳定的闭环***,通过使用解线性矩阵不等式的方法,既可以得到实时估计的车辆横向速度和横摆角速度值,也可以得到实时的前轮转向角和横摆力矩值,并采用实时的前轮转向角和横摆力矩对车辆进行控制。
所述的前轮转向角控制器及横摆力矩控制器的具体构造过程如下:
已知控制输入矢量u(t)=[δ ΔMz]T,其中控制器u同时包含前轮转向角控制和横摆力矩控制。根据实际的控制需要,则定义控制器u的表达式如下:
式中:Ki(i=1,...,4).是控制器增益矩阵。
因此,采用上述的控制方法可以对车辆进行实时控制。
下面结合附图对本发明的具体实施方式作进一步的说明。本实例通过MATLAB软件对本申请方案进行仿真对比试验,车辆动力学模型的仿真参数如表1所示,其中,车辆的质量M(t)∈[1476kg,1524kg]和转动惯量Iz(t)∈[2457kg.m2,2543kg.m2]。鉴于车辆参数中轮胎侧偏刚度易发生变化,因此假定表1中的轮胎侧偏刚度值增加20%。
表1车辆参数
物理量 名称 数值
l<sub>s</sub> 车轨宽度的一半 0.8m
l<sub>f</sub> 前轮到质心的距离 1.3m
l<sub>r</sub> 后轮到质心的距离 1.4m
C<sub>f</sub> 前轮侧偏刚度 46000N/rad
Cr 后轮侧偏刚度 45000N/rad
V<sub>x</sub> 纵向速度 30m/s
基于理想理想车辆状态模型和实际车辆状态模型,实时估计的横摆角速度值可以很好的跟踪理想的横摆角速度值,图3显示了车辆横摆角速度的时域响应曲线。对图3分析可见,在无控制的条件下,在0-2.2s的时间范围内,车辆横摆角速度才能收敛;然而在两种控制器组合控制的条件下,车辆横摆角速度能够在0-0.8s的时间范围内快速的收敛到稳定,极大地提高了车辆的稳定性。并且,与无控制的FWIA车辆相比,在控制作用的条件下,车辆横摆角速度的响应曲线的振荡现象明显得到抑制,稳定性得到提高,避免或降低了车辆行驶状态下驾驶员猛打方向盘造成的危险。而且可以看出,车辆附加控制的横摆角速度可以很好的跟踪理想的参考信号,具有良好的跟踪能力。
当车辆在道路上行驶的过程中,会受到路面上侧风,路面摩擦力等外界干扰因素的影响,从而使得车辆的稳定性弱,通过加入前轮转向角和横摆力矩控制,如图4和图5分别表示车辆前轮转向角和横摆力矩的时域响应曲线图,即前轮转向角和横摆力矩控制,对车辆进行实时控制,极大地提高了车辆的操纵稳定性。
当电动车辆处于工作状态或者转向状态时,通过状态反馈观测器来实时估计车辆的横向速度值和横摆角速度值;图6和图7表示当电动车辆处于工作状态或者转向状态时,通过状态反馈观测器分别来实时估计车辆的横向速度和横摆角速度的值,并得到相关的时域响应曲线图;
图8表示在附加的控制条件下,车辆横向速度的时域响应曲线,并与无控制的条件下进行对比。对图8可以看出,与无控制的FWIA电动车辆相比,受控车辆的横向速度稳定响应速度比较快,并且超调量小一些,能够保证车辆的横向稳定性。
本发明旨在提供一种四轮独立驱动电动车辆的主动转向控制方法,包括以下步骤:A、预设理想车辆转向模型、状态反馈观测器、前轮转向角控制器、横摆力矩控制器;B、以车辆直行状态作为初始时刻,在一定范围的扰动情况下,实时测量车辆的横向速度和横摆角速度,同时将未知的前轮转向角和横摆力矩输入理想车辆转向模型,从而构造了一个期望的横向速度和横摆角速度的数学模型,将期望的横向速度和横摆角速度与对应的实时横向速度和横摆角速度进行比较,从而得到实时的横向速度误差和横摆角速度误差;C、对于构建的数学模型中存在一些不确定参数,采用Takagi-Sugeno(T-S)模糊的方法进行处理。D、将实时的横向速度误差和横摆角速度误差同时输入到状态观测器中,就会得到一个稳定的闭环***,通过使用解线性矩阵不等式的方法,既可以得到实时估计的车辆横向速度和横摆角速度值,也可以得到实时的前轮转向角和横摆力矩值,并采用实时的前轮转向角和横摆力矩对车辆进行控制。该方法克服了电动车辆稳定性弱且经济适用的转向策略问题,使得车辆四个车轮更能协调的工作,以提高车辆安全行驶的灵活操纵性,具有控制效果好,稳定性高的特点。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种四轮独立驱动电动车辆的主动转向控制方法,其特征在于,包括如下步骤:
步骤S1:预先设置理想车辆转向模型、状态反馈观测器、前轮转向角控制器和横摆力矩控制器;
步骤S2:以车辆直行状态作为初始时刻,在一定范围的扰动情况下,实时测量车辆的横向速度和横摆角速度,同时将未知的前轮转向角和横摆力矩输入理想车辆转向模型,从而构造了一个期望的横向速度和横摆角速度的数学模型,将期望的横向速度和横摆角速度与对应的实时横向速度和横摆角速度进行比较,从而得到实时的横向速度误差和横摆角速度误差;
步骤S3:对于构建的数学模型中存在一些时变参数,采用Takagi-Sugeno(T-S)模糊的方法进行处理;
步骤S4:将实时的横向速度误差和横摆角速度误差同时输入到状态观测器中,就会得到一个稳定的闭环***,通过使用解线性矩阵不等式的方法,既可以得到实时估计的车辆横向速度和横摆角速度值,也可以得到实时的前轮转向角和横摆力矩值,并采用实时的前轮转向角和横摆力矩对车辆进行控制。
2.根据权利要求1所述的四轮独立驱动电动车辆的主动转向控制方法,其特征在于,所述步骤S1中理想车辆转向模型构造过程如下:
建立如下的车辆转向运动学模型:
式中,Vx和Vy分别是车辆在x轴和y轴上的速度分量;M是车辆质量;Ωz是车辆的横摆角速度;Iz是车辆绕z轴的转动惯量;w1(t)和w2(t)表示外界的干扰因素;Fyf和Fyr分别表示前轮横向力和后轮横向力;ΔMz表示车轮所受纵向力所产生附加控制的横摆力矩:
ΔMz=(Fxfr-Fxfl)ls, (2)
前轮的侧偏角af和后轮的侧偏角ar可以分别表示为:
式中,δ表示前轮转向角;假设轮胎偏离角对车辆安全行驶的影响较小,则轮胎横向力可以表示为:
Fyi=Ciαi,(i=f,r), (4)
定义***的状态矢量x(t)=[Vy Ωz]T,控制输入矢量u(t)=[δ ΔMz]T和外界干扰因素w(t)=[w1 w2]T,根据式(3)和(4)建立如下的车辆状态空间模型为:
式中:***矩阵控制输入矩阵
考虑车辆模型含有时变参数,例如轮胎侧偏刚度值易受道路变化的影响,其值是不断变化的且有界;因此,轮胎侧偏刚度值可以表示为:
结合式子(6),则Cf/M的值表示为:
式子λ1=λf同样的,也可以定义并且未知参数满足:λi(i=2,3,4)|λi|≤1,其中 同时考虑车辆转向***参数的变化因素对***作用的影响,定义如下式子:
A=A0+ΔA,B=B0+ΔB, (8)
根据式子(8),则式子(5)可以进一步写为:
式中:分别表示***矩阵A的标称矩阵和变化矩阵;分别表示***矩阵B的标称矩阵和变化矩阵;
根据ΔA和ΔB的定义,可以得到:
[ΔA ΔB]=HN[E1 E2], (10)
式中:N=diag{λ1234},
并且H,E1和E2都表示合适维数的矩阵,N满足NTN≤I;
因此,构建理想车辆转向模型为:
式中:y(t)被定义为测量输出;z(t)被定义为控制输出;C1=[0 1]和C2=diag{1,1},其中diag{·}表示为对角矩阵;
闭环***(11)渐进稳定,并且满足如下H性能指标:
式子中,γ表示衰减水平系数;
考虑到不同的装载条件,如有效载荷或乘客数量,车辆质量将会变化,电动车辆***将成为一个不确定因素的复杂***;另外,惯性力矩将很容易受到不同质量的影响;为了减少电动车辆的质量和惯性力矩的变化量会对车辆的性能造成影响;若采用Takagi-Sugeno(T-S)模糊方法来处理复杂非线性***的不确定项,假设变量1/Iz(t)在范围内[1/Izmax,1/Izmin]变化,变量1/M(t)在范围内[1/Mmax,1/Mmin]变化.因此,可定义变量:
通过采用部分非线性方法,参数可以表示为:
定义前提变量如下:
M11(t))+M21(t))=1,N12(t))+N22(t))=1. (15)
车辆转向模型的隶属度函数可以表示为:
因此,理想车辆转向模型可以进一步写为:
定义变量:
h1(ξ(t))=M11(t))×N12(t)),h2(ξ(t))=M11(t))×N22(t)),
h3(ξ(t))=M21(t))×N12(t)),h4(ξ(t))=M21(t))×N22(t)).
定义权重函数:
3.根据权利要求1所述的四轮独立驱动电动车辆的主动转向控制方法,其特征在于,所述步骤S1中状态反馈观测器的具体构造过程如下:
式中:Li表示观测器的增益;表示状态矢量的估计状态;表示测量输出的估计状态;定义误差根据式子(11)和(18)推导出控制误差方程:
4.根据权利要求1所述的四轮独立驱动电动车辆的主动转向控制方法,其特征在于,所述步骤S1中前轮转向角控制器及横摆力矩控制器的具体构造过程如下:
已知控制输入矢量u(t)=[δ ΔMz]T,其中控制器u同时包含前轮转向角控制和横摆力矩控制;根据实际的控制需要,则定义控制器u的表达式如下:
式中:Kj(j=1,...,4)是控制器增益矩阵;因此,采用上述的控制方法可以对车辆进行实时控制。
CN201811445696.3A 2018-11-29 2018-11-29 一种四轮独立驱动电动车辆的主动转向控制方法 Active CN109606466B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811445696.3A CN109606466B (zh) 2018-11-29 2018-11-29 一种四轮独立驱动电动车辆的主动转向控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811445696.3A CN109606466B (zh) 2018-11-29 2018-11-29 一种四轮独立驱动电动车辆的主动转向控制方法

Publications (2)

Publication Number Publication Date
CN109606466A true CN109606466A (zh) 2019-04-12
CN109606466B CN109606466B (zh) 2021-10-19

Family

ID=66006532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811445696.3A Active CN109606466B (zh) 2018-11-29 2018-11-29 一种四轮独立驱动电动车辆的主动转向控制方法

Country Status (1)

Country Link
CN (1) CN109606466B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158377A (zh) * 2020-01-15 2020-05-15 浙江吉利汽车研究院有限公司 一种用于车辆的横向控制方法、***及车辆
CN111580520A (zh) * 2020-05-15 2020-08-25 清华大学 基于二维码导航的四轮转向agv轨迹纠偏方法
CN111752150A (zh) * 2020-06-12 2020-10-09 北京理工大学 一种轮足机器人四轮协同控制方法
CN112882389A (zh) * 2021-01-13 2021-06-01 吉林大学 一种基于分段t-s模糊模型的车辆稳定性控制器设计方法
CN113110477A (zh) * 2021-04-26 2021-07-13 广东利元亨智能装备股份有限公司 移动控制方法、装置、***、控制器及轮式移动设备
CN114148411A (zh) * 2021-12-16 2022-03-08 北京理工大学 一种轮式无人平台的漂移控制方法
CN115268271A (zh) * 2022-08-03 2022-11-01 广东工业大学 一种基于增益调度采样控制的车辆路径跟踪方法
CN115848488A (zh) * 2023-02-09 2023-03-28 安徽大学 一种基于自适应跟踪控制的线控转向***及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104443022A (zh) * 2014-11-11 2015-03-25 深圳职业技术学院 一种四轮独立驱动电动汽车稳定性控制方法及***
CN104890674A (zh) * 2015-06-10 2015-09-09 山东理工大学 一种汽车质心侧偏角测量装置及其计算方法
CN106218715A (zh) * 2016-07-20 2016-12-14 广西科技大学 一种四轮独立转向车辆的控制方法
CN107358679A (zh) * 2017-06-14 2017-11-17 同济大学 一种基于新型模糊观测器的车辆质心侧偏角的估计方法
CN108860137A (zh) * 2017-05-16 2018-11-23 华为技术有限公司 失稳车辆的控制方法、装置及智能车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104443022A (zh) * 2014-11-11 2015-03-25 深圳职业技术学院 一种四轮独立驱动电动汽车稳定性控制方法及***
CN104890674A (zh) * 2015-06-10 2015-09-09 山东理工大学 一种汽车质心侧偏角测量装置及其计算方法
CN106218715A (zh) * 2016-07-20 2016-12-14 广西科技大学 一种四轮独立转向车辆的控制方法
CN108860137A (zh) * 2017-05-16 2018-11-23 华为技术有限公司 失稳车辆的控制方法、装置及智能车辆
CN107358679A (zh) * 2017-06-14 2017-11-17 同济大学 一种基于新型模糊观测器的车辆质心侧偏角的估计方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158377A (zh) * 2020-01-15 2020-05-15 浙江吉利汽车研究院有限公司 一种用于车辆的横向控制方法、***及车辆
CN111158377B (zh) * 2020-01-15 2021-04-27 浙江吉利汽车研究院有限公司 一种用于车辆的横向控制方法、***及车辆
CN111580520A (zh) * 2020-05-15 2020-08-25 清华大学 基于二维码导航的四轮转向agv轨迹纠偏方法
CN111752150A (zh) * 2020-06-12 2020-10-09 北京理工大学 一种轮足机器人四轮协同控制方法
CN112882389A (zh) * 2021-01-13 2021-06-01 吉林大学 一种基于分段t-s模糊模型的车辆稳定性控制器设计方法
CN113110477A (zh) * 2021-04-26 2021-07-13 广东利元亨智能装备股份有限公司 移动控制方法、装置、***、控制器及轮式移动设备
CN113110477B (zh) * 2021-04-26 2022-12-16 广东利元亨智能装备股份有限公司 移动控制方法、装置、***、控制器及轮式移动设备
CN114148411A (zh) * 2021-12-16 2022-03-08 北京理工大学 一种轮式无人平台的漂移控制方法
CN115268271A (zh) * 2022-08-03 2022-11-01 广东工业大学 一种基于增益调度采样控制的车辆路径跟踪方法
CN115268271B (zh) * 2022-08-03 2024-06-04 广东工业大学 一种基于增益调度采样控制的车辆路径跟踪方法
CN115848488A (zh) * 2023-02-09 2023-03-28 安徽大学 一种基于自适应跟踪控制的线控转向***及控制方法

Also Published As

Publication number Publication date
CN109606466B (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
CN109606466A (zh) 一种四轮独立驱动电动车辆的主动转向控制方法
CN106184363B (zh) 四轮独立转向车辆的控制方法
Shino et al. Independent wheel torque control of small-scale electric vehicle for handling and stability improvement
CN106184199B (zh) 分布式控制电动汽车稳定性的集成控制方法
CN106218715B (zh) 一种四轮独立转向车辆的控制方法
CN106828464A (zh) 一种基于路面附着系数估算的车身稳定控制方法及***
CN107016157B (zh) 分布式驱动电动汽车路面自适应纵向车速估计***及方法
CN104477237A (zh) 一种四轮独立转向电动车转向控制方法及***
CN107992681A (zh) 一种电动汽车主动前轮转向***的复合控制策略
CN112644455B (zh) 一种分布式驱动车辆行驶稳定性控制方法
CN111002976B (zh) 一种基于模糊自适应pid控制的智能车辆抗侧风控制方法
Mashadi et al. Integrated AFS/DYC sliding mode controller for a hybrid electric vehicle
CN109291932A (zh) 基于反馈的电动汽车横摆稳定性实时控制装置及方法
CN103895704A (zh) 基于后轮主动转向的变传动比控制方法
CN109398361A (zh) 一种用于四轮独立驱动车辆的操纵稳定性控制方法
Siampis et al. Model Predictive torque vectoring control for electric vehicles near the limits of handling
CN108146430A (zh) 一种主动悬架与主动转向集成***及其鲁棒控制方法
CN113183950A (zh) 一种电动汽车主动前轮转向的自适应控制方法
CN207523688U (zh) 一种主动悬架与主动转向集成***
Du et al. Robust control study for four-wheel active steering vehicle
Liu et al. Cooperative control of path tracking and driving stability for intelligent vehicles on potholed road
CN102717726B (zh) 一种电子差速控制方法及运用该方法的电驱动矿车
Li et al. Four-wheel independently driven in-wheel motors electric vehicle AFS and DYC integrated control
Liu et al. Research on path-tracking control of articulated vehicle with a trailer based on advanced model prediction control strategy
CN113044047B (zh) 一种基于类pid-stsm的afs/dyc集成控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant