CN109592664B - 一种具备光激发活性氧产生性能的碳纳米点及其制备方法 - Google Patents

一种具备光激发活性氧产生性能的碳纳米点及其制备方法 Download PDF

Info

Publication number
CN109592664B
CN109592664B CN201811499644.4A CN201811499644A CN109592664B CN 109592664 B CN109592664 B CN 109592664B CN 201811499644 A CN201811499644 A CN 201811499644A CN 109592664 B CN109592664 B CN 109592664B
Authority
CN
China
Prior art keywords
carbon
active oxygen
preparation
solution
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811499644.4A
Other languages
English (en)
Other versions
CN109592664A (zh
Inventor
林珍
林新华
罗舒
姚文松
陈伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Medical University
Original Assignee
Fujian Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Medical University filed Critical Fujian Medical University
Priority to CN201811499644.4A priority Critical patent/CN109592664B/zh
Publication of CN109592664A publication Critical patent/CN109592664A/zh
Application granted granted Critical
Publication of CN109592664B publication Critical patent/CN109592664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开一种具备光激发活性氧产生性能的碳纳米点及其制备方法,具备光激发产生活性氧特性的硅掺杂碳纳米点的制备方法,属于碳纳米材料(碳点)的制备技术领域,本发明利用多巴胺和3‑氨基丙基三乙氧基硅烷的混合溶液在60℃的温度下制备碳点水溶液,通过透析纯化得到硅掺杂的碳纳米点。本发明首先发现在中温条件下可合成均一、荧光强度高且具备光激发活性氧产生特性的碳纳米点,在生物成像、传感中有着重要的应用前景。所述合成方法简单、成本低、在普通实验室均可以完成制备。

Description

一种具备光激发活性氧产生性能的碳纳米点及其制备方法
技术领域
本发明属于碳纳米材料制备技术领域,具体涉及一种利用多巴胺和3-氨基丙基三乙氧基硅烷通过水浴加热制备光激发活性氧产生性能的碳纳米点的方法。
背景技术
癌症是危害人类健康的重大疾病之一。近几十年来,人们一直致力于对肿瘤的早期诊断和治疗。继传统的手术、放疗、化疗的基础上,发展了许多新兴的抗肿瘤疗法,如基因疗法、光动力疗法等。光动力疗法是近年发展起来的一种新型的癌症治疗方法。它将无毒性的光敏物质注入肿瘤组织后,用特定波长的光照激发光敏剂,光敏剂形成对细胞造成伤害的活性氧,从而在肿瘤组织内部产生破坏。这种方法避免治疗对正常组织的伤害,并且手术创伤小,能避免耐药性的发生。
光敏剂是光动力治疗的重要的基本要素,目前常用卟啉衍生物、金属酞菁配合物等作为光敏剂。光动力治疗的应用往往受到有机光敏剂在水中的分散差,光稳定性差,易发生光漂白,以及穿透深度有限等缺点的限制。随着纳米材料技术的发展,一些新型的纳米光敏剂,如CdSe半导体量子点、富勒烯及其复合物(J Am Chem Soc, 1993, 115, 7918-7919.)碳纳米管、石墨烯等碳材料(Biomaterials, 2017, 120, 185-194)应运而生。开发新型性能优异、暗毒性低、合成方法简单的纳米光敏剂仍然是目前研究的热点。
碳基纳米点,是新型的碳纳米材料,具有光学性能优异,生物毒性小的特点,在光成像以及催化领域得到一些重要应用。碳纳米点荧光发光机制还没有得到完全一致的认识。或认为由表面态,即碳纳米点表面存在能量势阱引起(Acs Nano, 2016, 10, 484-491);或由尺寸效应,即粒径大小决定发光性能;或由于sp2/sp3混合结构产生特定带隙引起荧光(Nano Research, 2015, 8, 355-381)。目前尚未见文献报道碳纳米材料有光激发活性氧产生的性能。
发明内容
本发明的目的是提供一种由多巴胺和3-氨基丙基三乙氧基硅烷制备的具有光激发活性氧产生性能的碳纳米点及其制备方法。
具体步骤是:称取多巴胺固体5mg溶于5mL蒸馏水,在该溶液中依次加入3-氨基丙基三乙氧基硅烷5mL,40mL蒸馏水和5mL氨水,将上述溶液置于100 mL圆底烧瓶中,混合均匀,放入长条形磁力搅拌子,将圆底烧瓶置于加热式磁力搅拌水浴锅中,60℃避光反应16小时;随后静置冷却至室温后,将所得到的淡黄色液体过0.22 µm微孔滤膜,滤液在常温避光条件下采用500-1000截留分子量的透析袋透析24小时,每8小时换一次超纯水透析液,将透析后得到的溶液在60℃下旋蒸浓缩后,冷冻干燥24小时,得到粉末状的碳纳米点。
本发明的方法克服了现有光敏剂制备方法复杂、成本高的缺点,通过多巴胺和3-氨基丙基三乙氧基硅烷两种简单原料,利用水浴加热合成具备光激发活性氧产生性能的碳纳米点。本发明所制备的碳纳米点在水中溶解度好,且同时具备荧光发射和光激发产生活性氧的性能,在生物成像、传感中有着重要的应用前景。
附图说明
图1是本发明的实施例1制得的碳纳米点的紫外可见吸收光谱Ⅰ以及荧光激发光谱Ⅱ、发射光谱Ⅲ。插图a为碳纳米点水溶液在自然光激发下的光学照片和插图b为碳纳米点水溶液在紫外光激发下的光学照片;
图2是本发明的实施例1制得的碳纳米点在不同波长激发下的荧光光谱(a-g分别为碳纳米点的激发波长为330,340,350,360,380,400,410nm时的荧光光谱);
图3是本发明的实施例1制得的碳纳米点的透射电镜图;
图4是本发明的实施例1制得的碳纳米点的X射线光电子能谱图(XPS);
图5是本发明的实施例2的光激发碳纳米点氧化3,3′,5,5′-四甲基联苯胺(3,3′,5,5′-Tetramethylbenzidine, TMB)的照片及其紫外可见吸收光谱图,CD代表碳纳米点;
图6是本发明的实施例3的电子自旋共振(Electron Spin Resonance, ESR)谱图:(a)碳纳米点水溶液的ESR谱图;(b)2,2,6,6-四甲基哌啶(2,2,6,6-tetra-methylpiperidine, TEMP)捕获光激发碳纳米点水溶液中单线态氧自由基的ESR谱图;(c)5,5-二甲基-1-吡咯林-N-氧化物(5,5-Dimethyl-1-pyrroline N-oxide, DMPO)捕获光激发碳纳米点水溶液中羟基自由基的ESR谱图,(d)DMPO捕获光激发碳纳米点水溶液中超氧阴离子的ESR谱图。
图7是本发明的实施例4利用铜离子抑制光激发碳纳米点活性氧产生的性质,建立的铜离子检测标准曲线。
具体实施方式
以下实施方式仅为本发明的优选实施例,不能以此限制本发明的范围。
实施例1
碳纳米点的制备
称取多巴胺固体5mg溶于5mL蒸馏水,在该溶液中依次加入3-氨基丙基三乙氧基硅烷5mL,40mL蒸馏水和5mL氨水(浓度14.8mol/L),将上述溶液置于100 mL圆底烧瓶中,混合均匀,放入长条形磁力搅拌子,将圆底烧瓶置于加热式磁力搅拌水浴锅中,60℃避光反应16小时;随后静置冷却至室温后,将所得到的淡黄色液体过0.22 µm微孔滤膜,滤液在常温避光条件下采用500-1000截留分子量的透析袋透析24小时,每8小时换一次超纯水透析液,将透析后得到的溶液在60℃下旋蒸浓缩后,冷冻干燥24小时,得到粉末状的碳纳米点。
将上述粉末状的碳纳米点用蒸馏水配成0.05mg/mL溶液,图1中的Ⅰ的碳纳米点水溶液紫外可见吸收光谱显示碳纳米点溶液在290 nm和360 nm处有一个特征吸收峰。采用360 nm波长作为碳纳米点溶液的激发波长, 440 nm波长处出现明显荧光发射峰。碳纳米点的激发光谱见图1中的Ⅱ和发射光谱见图1中的Ⅲ呈良好的镜像关系。由图1的光学照片看出,在365nm激发下发出明显的蓝色荧光。图2显示改变碳纳米点的激发波长从330 nm逐渐增加至410 nm时,碳纳米点荧光强度先升高后降低,在激发波长为360 nm时,碳纳米点的荧光发射最强,最大荧光发射波长位于440 nm。
TEM表征——图3中的(a)和(b)的标尺分别为50nm和5nm。图3中的(a)显示碳纳米点呈现较为均匀分散的状态,粒子基本为圆球形或类球形。图3中的(b)显示部分纳米材料呈现出较为明显的类似石墨的晶格条纹,晶格条纹间距0.212 nm与石墨烯结构的碳(100)面的晶格间距0.210 nm相近,晶格条纹间距0.326 nm与石墨烯结构的碳(002)面的晶格间距0.3335 nm接近。
X射线光电子能谱图(图4)显示碳纳米点有101.64 eV,284.78 eV,399.58 eV,531.20 eV的峰,分别对应 Si2p,C1s,N1s,O1s。制备的Si-DA主要是由Si、C、N、O元素组成,各元素含量分别为14.50%,44.52%,12.87%,28.11% 。
实施例2
图5中的a、b、c显示未经395 nm波长照射过的碳纳米点溶液、TMB溶液及碳纳米点/TMB混合溶液的655 nm处的吸光度检出值基本为零,说明未经关照,上述溶液没有发生氧化而变色。图5中的d、e表明经过395 nm波长照射1小时后, 碳纳米点溶液、TMB溶液在655nm处的吸光度检出值与未光照组基本一致,说明光照单纯碳纳米点溶液、TMB溶液光照后也没有氧化而变色。但是由图5中的f可看出,当用395 nm波长光源照射碳纳米点溶液-TMB混合溶液一段时间后,混合溶液的颜色变化明显,由无色变为蓝色,且吸收峰位于655 nm,是TMB的氧化产物(oxTMB)峰。上述结果表明光照碳纳米点溶液,产生氧化物质氧化TMB,生成蓝色的氧化态产物。
实施例3
直接扫描碳纳米点溶液的ESR图谱,图6中的(a)显示碳纳米点溶液的g=1.9879。
用毛细管取碳纳米点溶液与TEMP混合溶液,放入样品管中,经365nm 光辐射10min后,测定其ESR信号。图6中的(b)显示,单线态氧-TEMP结合产物TEMPO的ESR信号。结果表明碳纳米点在光照后能产生单线态氧。
用毛细管取碳纳米点溶液与DMPO混合溶液,放入样品管中,经365nm 光辐射10min后,测定其ESR信号。图6中的(c)和图6中的(d)显示,碳纳米点水溶液在经过光照后可以检测出信号DMPO捕获羟基自由基后生成的加合物DMPO-OH特征峰(强度比为1:2:2:1的四重峰),以及DMPO捕获超氧阴离子生成的加合物DMPO-OOH的特征峰,上述结果说明,所合成的碳纳米点在水溶液中,经过365 nm波长的激光照射后、也产生羟基自由基和超氧阴离子。
实施例4
如图7所示,铜离子能抑制光激发碳量子点产生活性氧的性能。不同浓度(0.1,0.5,1.0,5.0,10.0 μmol/L)的铜离子分别与100 μg/mL本发明实施例1制得的碳纳米点溶液和TMB混合溶液反应20 min后,经过395 nm光源照射30 min,上述溶液在655 nm处的吸光度变化值与铜离子浓度呈现线性关系。据此建立铜离子的分光光度检测方法。

Claims (3)

1.一种具备光激发活性氧产生性能的碳纳米点的制备方法,其特征在于:称取多巴胺固体5mg溶于5mL蒸馏水,在该溶液中依次加入3-氨基丙基三乙氧基硅烷5mL,40mL蒸馏水和5mL氨水,将上述溶液置于100mL圆底烧瓶中,混合均匀,放入长条形磁力搅拌子,将圆底烧瓶置于加热式磁力搅拌水浴锅中,60℃避光反应16小时,随后静置冷却至室温后,将所得到的淡黄色液体过0.22 µm微孔滤膜,滤液在常温避光条件下采用500-1000截留分子量的透析袋透析24小时,每8小时换一次超纯水透析液,将透析后得到的溶液在60℃下旋蒸浓缩后,冷冻干燥24小时,得到粉末状的碳纳米点。
2.权利要求1所述的方法制得的具备光激发活性氧产生性能的碳纳米点。
3.权利要求1所述的方法制得的具备光激发活性氧产生性能的碳纳米点应用于铜离子的分光光度检测。
CN201811499644.4A 2018-12-09 2018-12-09 一种具备光激发活性氧产生性能的碳纳米点及其制备方法 Active CN109592664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811499644.4A CN109592664B (zh) 2018-12-09 2018-12-09 一种具备光激发活性氧产生性能的碳纳米点及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811499644.4A CN109592664B (zh) 2018-12-09 2018-12-09 一种具备光激发活性氧产生性能的碳纳米点及其制备方法

Publications (2)

Publication Number Publication Date
CN109592664A CN109592664A (zh) 2019-04-09
CN109592664B true CN109592664B (zh) 2022-04-05

Family

ID=65961635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811499644.4A Active CN109592664B (zh) 2018-12-09 2018-12-09 一种具备光激发活性氧产生性能的碳纳米点及其制备方法

Country Status (1)

Country Link
CN (1) CN109592664B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408387B (zh) * 2019-07-25 2020-10-23 西北大学 一种绿色荧光碳点及其制备方法和应用
CN110907589B (zh) * 2019-11-21 2022-07-15 福建师范大学福清分校 一种基于GQDs光催化可视化检测Cu2+的方法
CN110964521B (zh) * 2019-12-07 2022-05-17 郑州大学 一种用于循环检测氧气的荧光猝灭碳点、试纸条及应用
CN114181699B (zh) * 2021-12-23 2022-10-04 武汉理工大学 一种高荧光量子产率的硅掺杂碳点及其制备方法和应用
CN114748364B (zh) * 2022-04-07 2023-06-23 华南师范大学 一种利用余辉光动力效应的牙齿漂白方法和牙齿漂白碳点试剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107287A (zh) * 2013-02-19 2013-05-15 中国科学院理化技术研究所 一种杂原子掺杂的碳量子点在太阳能电池中的应用
WO2013074748A1 (en) * 2011-11-16 2013-05-23 The University Of North Carolina At Chapel Hill Gelatinous hydroxyapatite-nanocomposites
CN103396793A (zh) * 2013-07-24 2013-11-20 中国科学院长春光学精密机械与物理研究所 多色发光碳纳米点及其制备方法与应用
CN104722322A (zh) * 2013-12-20 2015-06-24 中国科学院理化技术研究所 一种杂原子掺杂的水溶性碳量子点在有机光氧化反应上的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013074748A1 (en) * 2011-11-16 2013-05-23 The University Of North Carolina At Chapel Hill Gelatinous hydroxyapatite-nanocomposites
CN103107287A (zh) * 2013-02-19 2013-05-15 中国科学院理化技术研究所 一种杂原子掺杂的碳量子点在太阳能电池中的应用
CN103396793A (zh) * 2013-07-24 2013-11-20 中国科学院长春光学精密机械与物理研究所 多色发光碳纳米点及其制备方法与应用
CN104722322A (zh) * 2013-12-20 2015-06-24 中国科学院理化技术研究所 一种杂原子掺杂的水溶性碳量子点在有机光氧化反应上的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Application of the chemiluminescence system composed of silicon-doped carbon dots, iron(II) and K2S2O8 to the determination of norfloxacin;Mohammad Amjadi et al.;《Microchim Acta》;20170310;第184卷(第6期);第1587-1593页 *
Carbon Dots Prepared by Hydrothermal Treatment of Dopamine as an Effective Fluorescent Sensing Platform for the Label-Free Detection of Iron(III) Ions and Dopamine;Konggang Qu et al.;《Chemistry A European Journal》;20131231;第19卷;第7243-7249页 *

Also Published As

Publication number Publication date
CN109592664A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN109592664B (zh) 一种具备光激发活性氧产生性能的碳纳米点及其制备方法
Zhou et al. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy
Alaghmandfard et al. Recent advances in the modification of carbon-based quantum dots for biomedical applications
Gao et al. Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy
Ge et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation
Geng et al. Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy
Li et al. Cu 7.2 S 4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells
Duan et al. Recent progress in upconversion luminescence nanomaterials for biomedical applications
Bhati et al. Sunlight-induced photocatalytic degradation of pollutant dye by highly fluorescent red-emitting Mg-N-embedded carbon dots
Zheng et al. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy
Wu et al. Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells
Song et al. Bioimaging based on fluorescent carbon dots
Yang et al. Reversible “off–on” fluorescence of Zn2+-passivated carbon dots: mechanism and potential for the detection of EDTA and Zn2+
Luo et al. Carbon-based quantum dots for fluorescence imaging of cells and tissues
Yang et al. Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins
Zhao et al. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging
Tian et al. Red‐Emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near‐infrared excitation
Zhao et al. High-quality carbon nitride quantum dots on photoluminescence: effect of carbon sources
Jovanović et al. Graphene quantum dots as singlet oxygen producer or radical quencher-The matter of functionalization with urea/thiourea
Loukanov et al. Photosensitizer-conjugated ultrasmall carbon nanodots as multifunctional fluorescent probes for bioimaging
Xiao et al. Porous carbon quantum dots: one step green synthesis via L-cysteine and applications in metal ion detection
Xiao et al. Hydrous RuO 2 nanoparticles as an efficient NIR-light induced photothermal agent for ablation of cancer cells in vitro and in vivo
Behboudi et al. Carbon quantum dots in nanobiotechnology
Long et al. Low-temperature rapid synthesis of high-stable carbon dots and its application in biochemical sensing
Guan et al. Quantification of humic substances in natural water using nitrogen-doped carbon dots

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant