CN109580597A - 一种基于dna纳米管的电化学发光生物传感器及其制法和应用 - Google Patents

一种基于dna纳米管的电化学发光生物传感器及其制法和应用 Download PDF

Info

Publication number
CN109580597A
CN109580597A CN201910080807.3A CN201910080807A CN109580597A CN 109580597 A CN109580597 A CN 109580597A CN 201910080807 A CN201910080807 A CN 201910080807A CN 109580597 A CN109580597 A CN 109580597A
Authority
CN
China
Prior art keywords
dna
nanotube
methylase
aflatoxins
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910080807.3A
Other languages
English (en)
Other versions
CN109580597B (zh
Inventor
接贵芬
葛君君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Hefei Minglong Electronic Technology Co ltd
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201910080807.3A priority Critical patent/CN109580597B/zh
Publication of CN109580597A publication Critical patent/CN109580597A/zh
Application granted granted Critical
Publication of CN109580597B publication Critical patent/CN109580597B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Abstract

本发明公开了一种基于DNA纳米管的电化学发光生物传感器;以及所述生物传感器的制备方法及其检测甲基化酶和黄曲霉素的分析应用。本发明的技术方案是利用DNA纳米管放大信号技术,设计了电化学发光生物传感器,通过“on‑off”检测模式,实现了对甲基化酶和黄曲霉素的灵敏分析。目标甲基化酶引发了发夹DNA的甲基化和剪切反应,将Ru(phen)3 2+标记的纳米管组装到电极上,实现了甲基化酶的电化学发光检测。进一步利用纳米管上的适体结合目标黄曲霉素,纳米管结构破坏释放出信号探针,对黄曲霉素进行ECL检测。该DNA纳米管为研制生物传感器检测多种目标开发了新的信号放大技术。

Description

一种基于DNA纳米管的电化学发光生物传感器及其制法和 应用
技术领域:
本发明涉及一种基于DNA纳米管的电化学发光生物传感器;以及所述生物传感器的制备方法及其检测甲基化酶和黄曲霉素的分析应用。
背景技术:
异常的甲基化酶和黄曲霉素会引发癌症[Chen,S.;Lv,Y.;Shen,Y.;Ji,J.et.al.ACS appl.Mater.interfaces.2018,10,6887-6894.],因此定量检测甲基化酶和黄曲霉素十分重要。DNA具有理想的分子识别性能和精确的碱基配对能力[Zahid,M.;Kim,B.et.al.Nanoscale Res.Lett.2013,8,119.]具有可控粒径的DNA纳米管已经成为一种很有前景的纳米材料和分子诊断工具,可以通过多种灵活的方法制备[Maier,A.M.;Bae,W.et.al.ACS Nano.2017,11,1301-1306.]。DNA自组装方法具有可控性和结构的预测性[Surwade,S.P.;Zhao,S.;Liu,H.J.Am.Chem.Soc.2011,133,11868-11871.自组装的DNA纳米管可以进行药物输送[Wilner,O.I.;Orbach,R.et.al.Nat.Commun.2011,2,540–549.]。小分子探针可以扦插到DNA纳米管的双链中,研制生物传感器[Yao,W.;Wang,L.et.al.Biosens.Bioelectron.2009,24,3269-3274.]。Ru(phen)3 2+可以扦插于双链DNA的沟槽中作为ECL探针[Zhao,Y.;He,X.W.;Yin,X.B.Chem.Commun.2011,47,6419-6421.]。MB作为电化学探针可以通过π-π堆积作用与双链DNA结合[Gill,R.;Patolsky,F.;Katz,E.;Willner,I.Angew.Chem.Int.Ed.2005,44,4630-4633.]。
电化学方法简单、快速、方便,电化学生物传感器在疾病诊断中引起了极大的兴趣[Hou,T.;Li,W.;Liu,X.J.;Li,F.Anal.Chem.2015,87,11368-11374.]。电化学发光背景低、灵敏度高、仪器简单、可控性好[Liu,Z.;Qi,W.;Xu,G.Chem.Soc.Rev.2015,44,3117-3142.]。利用Ru(phen)3 2+结合超支化滚环放大反应研制了电化学发光生物传感器检测基因突变[Zhang,Y.;Wang,L.X.et.al.Chem.Commun.2017,53,2910-2913.]
本工作中利用DNA纳米管放大信号技术,设计了电化学发光生物传感器,通过“on-off”检测模式,实现了对甲基化酶和黄曲霉素的灵敏分析。目标甲基化酶引发了发夹DNA的甲基化和剪切反应,将Ru(phen)3 2+标记的纳米管组装到电极上,实现了甲基化酶的电化学发光检测。进一步利用纳米管上的适体结合目标黄曲霉素,纳米管结构破坏释放出信号探针,对黄曲霉素进行ECL检测。该DNA纳米管为研制生物传感器检测多种目标开发了新的信号放大技术。
发明内容:
本发明的目的之一提供一种基于DNA纳米管组装Ru(phen)3 2+信号探针的电化学发光生物传感器;以及所述生物传感器的制备方法及其检测甲基化酶和黄曲霉素的分析应用。
具体包括以下步骤:
步骤1.DNA纳米管-Ru(phen)3 2+探针的制备:三种DNA单链S1,S2和S3溶于TE缓冲溶液中,从95℃到室温进行退火反应,组装DNA纳米管。取50μL纳米管溶液与Ru(phen)3 2+(100μL,2mM)在37℃下温育7小时。
步骤2.ECL生物传感器的制备:将金电极用α-Al2O3粉磨光,用纯水冲洗并用氮气吹干,在0.5M H2SO4溶液中,进行电化学扫描,得到完整的循环伏安峰,冲洗干净。取20μL金胶滴加在电极表面,自然晾干。将10μL发夹DNA(1.0μM)滴在电极表面室温过夜,然后用1mMMCH反应1小时。接着将不同浓度的甲基化酶、剪切酶以及DNA纳米管-Ru(phen)3 2+信号探针顺序滴在电极表面反应2小时。再将不同浓度的黄曲霉素滴到电极表面,37℃下反应3小时。然后用PBS溶液冲洗电极。
步骤3.ECL检测:利用MPI-E电化学发光仪器,在200mM,pH 7.4含有20mM TPA的缓冲溶液中进行ECL检测,电位扫描范围是0.6V~1.6V,光电倍增管(PMT)是600V。
步骤4.电泳分析:取30μL样品1(1μM发夹DNA,8U的甲基化酶,10U的剪切酶),20μL样品2(1μM发夹DNA,8U的甲基化酶),20μL样品3(1μM发夹DNA,10U的剪切酶)于37℃下温育3h。接着将样品放到聚丙烯酰胺凝胶中,加入1×TAE缓冲液,先设置电压为180V,3min。然后设置电压为135V,电泳时间1.5小时。EB染色后进行电泳分析。
本发明研制了多功能电化学发光生物传感器,用于甲基化酶和黄曲霉素的分析。本发明与现有技术相比,主要优点在于,DNA纳米管能够负载大量的Ru(phen)3 2+信号分子,极大地放大了信号,提高了检测的灵敏度。利用甲基化酶的特异性剪切和黄曲霉素与适体的特异性结合检测2种目标,具有很高的选择性。该传感器具有很宽的线性范围和很低的检测限,在生物检测和实际应用中具有很高的潜力。
附图说明:
图1基于DNA纳米管信号探针检测甲基化酶和黄曲霉素的ECL生物传感器原理。
图2 DNA纳米管的透射电子显微镜(TEM)图。
图3电泳表征:(A)DNA纳米管的形成过程,(B)发夹DNA的甲基化过程。
图4(A)Ru(phen)3 2+的ECL信号-电位关系曲线,插图:Ru(phen)3 2+的ECL信号-时间关系曲线。(B)不同修饰电极的ECL信号-时间关系曲线(a)裸金电极,(b)无甲基化酶,(c)有甲基化酶,(d)有黄曲霉素。
图5(A)不同浓度目标甲基化酶对应的ECL响应。(B)ECL信号变化和甲基化酶浓度的关系,插图:测定甲基化酶的矫正曲线。
图6(A)不同浓度目标黄曲霉素对应的ECL响应。(B)ECL信号变化和甲基化酶浓度的关系,插图:测定甲基化酶的矫正曲线。
具体实施方式:
实施例1.ECL生物传感器的制备及对目标的检测
DNA纳米管-Ru(phen)3 2+探针的制备:三种DNA单链S1,S2和S3溶于TE缓冲溶液中,从95℃到室温进行退火反应,组装DNA纳米管。取50μL纳米管溶液与Ru(phen)3 2+(100μL,2mM)在37℃下温育7小时。
ECL生物传感器的制备及目标检测:将金电极用α-Al2O3粉磨光,用纯水冲洗并用氮气吹干,在0.5M H2SO4溶液中,进行电化学扫描,得到完整的循环伏安峰,冲洗干净。取20μL金胶滴加在电极表面,自然晾干。将10μL发夹DNA(1.0μM)滴在电极表面室温过夜,然后用1mM MCH反应1小时。接着将不同浓度的甲基化酶、剪切酶以及DNA纳米管-Ru(phen)3 2+信号探针顺序滴在电极表面反应2小时。再将不同浓度的黄曲霉素滴到电极表面,37℃下反应3小时。然后用PBS溶液冲洗电极。在200mM,pH 7.4含有20mM TPA的缓冲溶液中进行ECL信号检测。
实施例2.ECL生物传感器的制备及对目标的检测
将“三种DNA单链S1,S2和S3溶于TE缓冲溶液中,从95℃到室温进行退火反应,组装DNA纳米管。取50μL纳米管溶液与Ru(phen)3 2+(100μL,2mM)在37℃下温育7小时。”改为“三种DNA单链S1,S2和S3溶于TE缓冲溶液中,从95℃到室温进行退火反应,组装DNA纳米管。取50μL纳米管溶液与Ru(phen)3 2+(100μL,2mM)在37℃下温育5小时。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感器。对甲基化酶和黄曲霉素检测的结果同实施例1。
实施例3.ECL生物传感器的制备及对目标的检测
将“接着将不同浓度的甲基化酶、剪切酶以及DNA纳米管-Ru(phen)3 2+信号探针顺序滴在电极表面反应2小时。”改为“接着将不同浓度的甲基化酶、剪切酶以及DNA纳米管-Ru(phen)3 2+信号探针顺序滴在电极表面反应3小时。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感器。对甲基化酶和黄曲霉素检测的结果同实施例1。
实施例4.ECL生物传感器的制备及对目标的检测
将“再将不同浓度的黄曲霉素滴到电极表面,37℃下反应3小时。”改为“再将不同浓度的黄曲霉素滴到电极表面,37℃下反应2小时。”。制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感器。对甲基化酶和黄曲霉素检测的结果同实施例1。

Claims (2)

1.一种基于DNA纳米管的电化学发光生物传感器,其特征是:利用DNA纳米管放大信号技术,设计了电化学发光生物传感器,通过“on-off”检测模式,实现了对甲基化酶和黄曲霉素的灵敏分析。目标甲基化酶引发了发夹DNA的甲基化和剪切反应,将Ru(phen)3 2+标记的纳米管组装到电极上,实现了甲基化酶的电化学发光检测。进一步利用纳米管上的适体结合目标黄曲霉素,纳米管结构破坏释放出信号探针,对黄曲霉素进行ECL检测。
2.一种制备权利要求1所述的基于DNA纳米管的电化学发光生物传感器的方法和应用,其特征方法由下列步骤组成:
步骤1.DNA纳米管-Ru(phen)3 2+探针的制备:三种DNA单链S1,S2和S3溶于TE缓冲溶液中,从95℃到室温进行退火反应,组装DNA纳米管。取50μL纳米管溶液与Ru(phen)3 2+(100μL,2mM)在37℃下温育7小时。
步骤2.ECL生物传感器的制备及目标检测:将金电极用α-Al2O3粉磨光,用纯水冲洗并用氮气吹干,在0.5M H2SO4溶液中,进行电化学扫描,得到完整的循环伏安峰,冲洗干净。取20μL金胶滴加在电极表面,自然晾干。将10μL发夹DNA(1.0μM)滴在电极表面室温过夜,然后用1mM MCH反应1小时。接着将不同浓度的甲基化酶、剪切酶以及DNA纳米管-Ru(phen)3 2+信号探针顺序滴在电极表面反应2小时。再将不同浓度的黄曲霉素滴到电极表面,37℃下反应3小时。然后用PBS溶液冲洗电极。在200mM,pH 7.4含有20mM TPA的缓冲溶液中进行ECL信号检测。
CN201910080807.3A 2019-01-28 2019-01-28 一种基于dna纳米管的电化学发光生物传感器及其制法和应用 Active CN109580597B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910080807.3A CN109580597B (zh) 2019-01-28 2019-01-28 一种基于dna纳米管的电化学发光生物传感器及其制法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910080807.3A CN109580597B (zh) 2019-01-28 2019-01-28 一种基于dna纳米管的电化学发光生物传感器及其制法和应用

Publications (2)

Publication Number Publication Date
CN109580597A true CN109580597A (zh) 2019-04-05
CN109580597B CN109580597B (zh) 2020-10-13

Family

ID=65917878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910080807.3A Active CN109580597B (zh) 2019-01-28 2019-01-28 一种基于dna纳米管的电化学发光生物传感器及其制法和应用

Country Status (1)

Country Link
CN (1) CN109580597B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044214A1 (en) * 2006-10-12 2008-04-17 Koninklijke Philips Electronics N.V. Fast biosensor with reagent layer
CN103901020A (zh) * 2014-03-31 2014-07-02 西北大学 以电化学发光生物传感器检测dna甲基转移酶的方法及应用
CN103954613A (zh) * 2014-05-11 2014-07-30 北京化工大学 一种生物相容性好的电化学发光***
WO2016036950A1 (en) * 2014-09-05 2016-03-10 The Trustees Of The University Of Pennsylvania Volatile organic compound-based diagnostic systems and methods
CN106442690A (zh) * 2016-09-30 2017-02-22 南京理工大学 基于卟啉与dna双螺旋的沟槽镶嵌作用的无标记dna的ecl检测方法
CN108676715A (zh) * 2018-05-04 2018-10-19 华中科技大学 一种半封闭的纳米催化反应器及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044214A1 (en) * 2006-10-12 2008-04-17 Koninklijke Philips Electronics N.V. Fast biosensor with reagent layer
CN103901020A (zh) * 2014-03-31 2014-07-02 西北大学 以电化学发光生物传感器检测dna甲基转移酶的方法及应用
CN103954613A (zh) * 2014-05-11 2014-07-30 北京化工大学 一种生物相容性好的电化学发光***
WO2016036950A1 (en) * 2014-09-05 2016-03-10 The Trustees Of The University Of Pennsylvania Volatile organic compound-based diagnostic systems and methods
CN106442690A (zh) * 2016-09-30 2017-02-22 南京理工大学 基于卟啉与dna双螺旋的沟槽镶嵌作用的无标记dna的ecl检测方法
CN108676715A (zh) * 2018-05-04 2018-10-19 华中科技大学 一种半封闭的纳米催化反应器及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TING LIU 等: "Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures", 《MICROCHIM ACTA》 *
邓炜 等: "基于聚乙烯亚胺还原的金纳米颗粒为基底构建的"signal on"型高灵敏ECL传感器铅离子检测", 《化学传感器》 *

Also Published As

Publication number Publication date
CN109580597B (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
US10605761B2 (en) Electrochemical biosensor based on aptamer/nano silver probe and EXO I enzyme
Yin et al. Aptamer recognition-trigged label-free homogeneous electrochemical strategy for an ultrasensitive cancer-derived exosome assay
Fu et al. Au nanoparticles on two-dimensional MoS 2 nanosheets as a photoanode for efficient photoelectrochemical miRNA detection
Han et al. A kanamycin sensor based on an electrosynthesized molecularly imprinted poly-o-phenylenediamine film on a single-walled carbon nanohorn modified glassy carbon electrode
Gai et al. Ultrasensitive self-powered cytosensor
Rai et al. Electrochemical nanoporous alumina membrane-based label-free DNA biosensor for the detection of Legionella sp
Wang et al. A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine
Liu et al. A label-free ratiometric electrochemical DNA sensor for monitoring intracellular redox homeostasis
Feng et al. Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction
Gan et al. Electrochemical DNA sensor for specific detection of picomolar Hg (II) based on exonuclease III-assisted recycling signal amplification
Yi et al. Aptamer-aided target capturing with biocatalytic metal deposition: An electrochemical platform for sensitive detection of cancer cells
Wang et al. A novel hydrogen peroxide biosensor based on the synergistic effect of gold‐platinum alloy nanoparticles/polyaniline nanotube/chitosan nanocomposite membrane
CN109613095A (zh) 基于i-motif构型变化的末端转移酶电化学生物传感器制备方法及应用
Hua et al. Quantum dots as immobilized substrate for electrochemical detection of ***e based on conformational switching of aptamer
Wang et al. Ultrasensitive electrochemical DNA biosensor based on a tetrahedral structure and proximity-dependent surface hybridization
Song et al. Development of electrochemical aptamer biosensor for tumor marker MUC1 determination
Raoof et al. Development of a DNA biosensor based on MCM41 modified screen-printed graphite electrode for the study of the short sequence of the p53 tumor suppressor gene in hybridization and its interaction with the flutamide drug using hemin as the electrochemical label
CN104152449A (zh) miRNA捕获探针及其修饰电极与捕获探针互补链及其修饰碳纳米管-金磁纳米粒复合物
CN107064258A (zh) 基于dna产生电信号及其自组装放大信号的电化学适配体传感器测定her2的方法
CN110441370B (zh) 一种无标记电化学适配体传感器的制备及应用
US8454820B2 (en) Electrochemical molecular recognition probes
CN108490046B (zh) 一种用于快速检测非稳定物质的电化学传感器及利用其快速定量检测atp的方法
CN109580597A (zh) 一种基于dna纳米管的电化学发光生物传感器及其制法和应用
Mobed et al. Synthesis and electroanalytical behaviour of AgNPs/graphite conductive nano-ink towards biosensing of bacteria genome in human biofluids
Chen et al. Closed bipolar electrochemical biosensor based on ohmic loss mechanism for noncontact measurements

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231009

Address after: 230000 B-1015, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui.

Patentee after: HEFEI MINGLONG ELECTRONIC TECHNOLOGY Co.,Ltd.

Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Dragon totem Technology (Hefei) Co.,Ltd.

Effective date of registration: 20231009

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: 266000 Songling Road, Laoshan District, Qingdao, Shandong Province, No. 99

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right