CN109560211A - 金纳米棒在倒置oled器件中的应用 - Google Patents

金纳米棒在倒置oled器件中的应用 Download PDF

Info

Publication number
CN109560211A
CN109560211A CN201811241682.XA CN201811241682A CN109560211A CN 109560211 A CN109560211 A CN 109560211A CN 201811241682 A CN201811241682 A CN 201811241682A CN 109560211 A CN109560211 A CN 109560211A
Authority
CN
China
Prior art keywords
gold nanorods
oled device
layer
hydridization
luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811241682.XA
Other languages
English (en)
Inventor
王欢
赵阳
张彪
陈曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN201811241682.XA priority Critical patent/CN109560211A/zh
Publication of CN109560211A publication Critical patent/CN109560211A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了金纳米棒在提高倒置OLED器件发光性能中的应用。本发明还公开了金纳米棒杂化的倒置OLED器件以及该器件的制备方法。本方法通过利用金纳米棒的表面等离激元共振效应,大大加快了电子的受激和辐射跃迁过程,通过调节金纳米棒的纵横比,使其表面等离激元共振吸收带与发光材料的吸收和发射光谱分别重叠,达到最大程度地增强OLED器件性能的目的,与原始器件相比,金纳米棒杂化的器件亮度和流明效率是原始器件亮度和流明效率的2.07倍和1.86倍,有效提高了倒置OLED器件的性能。

Description

金纳米棒在倒置OLED器件中的应用
技术领域
本发明涉及有机发光二极管技术领域,具体地说,涉及金纳米棒在倒置OLED器件中的应用。
背景技术
有机发光二极管(OLED)是目前有希望取代液晶屏显示器的一种主动发光器件,具有低工作电压、高亮度、柔性可弯曲、视角广等优势,其通常的结构是由正/负电极、空穴/电子传输层和有机发光层组成,器件工作原理是空穴和电子分别由正极和负极注入,分别经过空穴和电子传输层,在发光层中复合发光。金属纳米粒子在光激发下,具有表面等离激元共振效应,可以提高发光材料的亮度和效率,将金属纳米粒子应用于OLED器件中,可以提高其性能。
倒置结构的OLED器件通常具有稳定性好的优点,这是因为电子是从导电玻璃(ITO)一端注入,而在器件中不使用环境稳定性差的金属电极,将金纳米棒应用于倒置OLED器件并增强其性能,目前尚无报道。
发明内容
本发明提供了金纳米棒(AuNRs)在倒置OLED器件中的应用,通过利用金纳米棒的表面等离激元共振效应,有效提高倒置OLED器件的性能,通过调节金纳米棒的纵横比,使其表面等离激元共振吸收带与发光材料的吸收和发射光谱分别重叠,达到最大程度地增强OLED器件性能的目的。
本发明通过以下方案来实现:
一、金纳米棒在提高倒置OLED器件发光性能中的应用。
具体的,所述金纳米棒横向吸收带的位置在525nm,纵向吸收带的位置大于600nm。
具体的,所述金纳米棒的纵横比为80nm:40nm。
进一步的,所述提高发光性能是通过调节金纳米棒的纵横比,使其表面等离激元共振吸收带与发光材料的吸收和发射光谱分别重叠来实现的。
进一步的,所述发光材料为红光发射材料、深红光发射材料和近红外光发射材料中的任意一种。
二、一种金纳米棒杂化的倒置OLED器件,包括导电玻璃ITO层、金纳米棒层、电子传输层、发光层、空穴传输层和金属银电极。
具体的,所述电子传输层材料为氧化锌。
具体的,所述发光层的材料为MEH-PPV。
具体的,所述空穴传输层的材料为氧化钼。
三、一种根据上述的金纳米棒杂化的倒置OLED器件的制备方法,包括以下步骤:
(1)首先在导电玻璃ITO上通过静电吸附自组装的方法沉积一层金纳米棒;
(2)再通过旋涂的方法制备一薄层氧化锌作为电子传输层;
(3)随后再旋涂一层发光材料;
(4)最后通过蒸镀的方法制备氧化钼和金属银电极。
进一步的,所述金纳米棒和发光材料之间的间隔为6~12nm。
进一步的,所述发光层厚度为70~100nm。
本发明相对于现有技术,其优点在于:本方法通过利用金纳米棒的表面等离激元共振效应,大大加快了电子的受激和辐射跃迁过程,金纳米棒具有两个表面等离激元共振吸收带,其中纵向吸收带的位置可调,因此可以通过调节金纳米棒的纵横比,使其表面等离激元共振吸收带与发光材料的吸收和发射光谱分别重叠,达到最大程度地增强OLED器件性能的目的,与原始器件相比,金纳米棒杂化的器件亮度和流明效率是原始器件亮度和流明效率的2.07倍和1.86倍,有效提高了倒置OLED器件的性能。
附图说明:
图1为本发明金纳米棒杂化的OLED器件结构,1、金属银电极,2、氧化钼,3、发光层,4、电子传输层,5、金纳米棒,6、导电玻璃(ITO);
图2为红光材料MEH-PPV薄膜的吸收及发射光谱,纵横比为80nm:40nm的金纳米棒溶液和薄膜的吸收光谱;
图3为纵横比为80nm:40nm的金纳米棒在ITO基底上的电镜图,标尺长度为100nm;
图4为500nm光的激发下,金纳米棒杂化的MEH-PPV薄膜与纯MEH-PPV薄膜的发光强度与荧光寿命的对比,图4(a)为纯MEH-PPV薄膜、金纳米棒杂化的MEH-PPV薄膜的发射光谱;图4(b)为纯MEH-PPV薄膜、金纳米棒杂化的MEH-PPV薄膜的时间分辨荧光光谱;
图5为原始器件和金纳米棒杂化的器件性能比较,图5(a)为电压-电流密度-亮度曲线,图5(b)为电流密度-流明效率曲线。
图6为红光材料MEH-PPV薄膜的吸收及发射光谱,直径为20nm的AuNPs溶液和薄膜的吸收光谱;
图7为直径为20nm的AuNPs在ITO基底上的电镜图,标尺长度为100nm;
图8为500nm光的激发下,AuNPs杂化的MEH-PPV薄膜与纯MEH-PPV薄膜的发光强度与荧光寿命的对比,图8(a)为纯MEH-PPV薄膜、AuNPs杂化的MEH-PPV薄膜的发射光谱;图8(b)为纯MEH-PPV薄膜、AuNPs杂化的MEH-PPV薄膜的时间分辨荧光光谱;
图9为原始器件和AuNPs杂化的器件性能比较,图9(a)为电压-电流密度-亮度曲线,图9(b)为电流密度-流明效率曲线。
具体实施方式
下面结合具体实施方式,进一步阐明本发明,以下所述,仅是对本发明的较佳实施例而已,并非对本发明做其他形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为同等变化的等效实施例,凡是未脱离本发明方案内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与改型,均落在本发明的保护范围内。
实施例1
一种金纳米棒杂化的倒置OLED器件,包括导电玻璃ITO、金纳米棒、氧化锌、红光材料MEH-PPV、氧化钼层和金属银电极,其制备流程如下:
(1)首先,在导电玻璃(ITO)上通过静电吸附自组装的方法沉积一层金纳米棒;
(2)再通过旋涂的方法制备一薄层氧化锌作为电子传输层,金纳米棒和发光材料之间的间隔为6nm;
(3)随后再旋涂一层发光材料,厚度控制为70nm;
(4)最后通过蒸镀的方法制备氧化钼和金属银电极,得到产品。
实施例2
一种金纳米棒杂化的倒置OLED器件,包括导电玻璃ITO、金纳米棒、氧化锌、红光材料MEH-PPV、氧化钼层和金属银电极,其制备流程如下:
(1) 首先,在导电玻璃(ITO)上通过静电吸附自组装的方法沉积一层金纳米棒;
(2)再通过旋涂的方法制备一薄层氧化锌作为电子传输层,金纳米棒和发光材料之间的间隔为9nm;
(3)随后再旋涂一层发光材料,厚度控制为85nm;
(4)最后通过蒸镀的方法制备氧化钼和金属银电极,得到产品。
实施例3
一种金纳米棒杂化的倒置OLED器件,包括导电玻璃ITO、金纳米棒、氧化锌、红光材料MEH-PPV、氧化钼层和金属银电极,其制备流程如下:
(1)首先,在导电玻璃(ITO)上通过静电吸附自组装的方法沉积一层金纳米棒;
(2) 再通过旋涂的方法制备一薄层氧化锌作为电子传输层,金纳米棒和发光材料之间的间隔为12nm;
(3)随后再旋涂一层发光材料,厚度控制为100nm;
(4) 最后通过蒸镀的方法制备氧化钼和金属银电极,得到产品。
试验例1
金纳米棒通常具有纵向和横向两个表面等离激元共振吸收带,其中横向吸收带在525nm左右,而纵向吸收带的位置会随着金纳米棒的纵横比可调节,当金属纳米粒子的吸收带与发光材料的吸收或发射光谱重叠时,表面等离激元共振效应才能被充分利用,因此,金纳米棒的纵向吸收带是可以根据发光材料的吸收及发射特征来进行调控,使之有效增强OLED的性能,一般来说,金纳米棒的纵向吸收带的位置是大于600nm的,因此,金纳米棒对于红光、深红光和近红外光发射的材料,在应用方面具有明显的优势。
选取经典的红光材料MEH-PPV作为倒置OLED器件的发光层,其薄膜的吸收和发射光谱如图2所示,吸收的主要范围在430~560nm,发射的主要范围在580~660nm,纵横比为80nm:40nm的金纳米棒在溶液中的纵向吸收主峰位虽然在680nm左右,但其在薄膜中有蓝移至625nm左右,正好与MEH-PPV的发射光谱有较大重叠,能够有效增强倒置OLED器件的性能;而且金纳米棒的横向吸收峰(525nm)与MEH-PPV的吸收光谱也基本重叠,对增强OLED的性能也有积极贡献。
图3是金纳米棒在ITO基底上的电镜图,证实了通过静电吸附自组装的方法是可以使金纳米棒沉积在ITO表面,用于制备金纳米棒杂化的倒置OLED器件。
试验例2
500nm光的激发下,金纳米棒杂化的MEH-PPV薄膜与纯MEH-PPV薄膜的发光强度与荧光寿命的对比,试验结果如图4。
在500nm光的激发下,如图4(a)所示,金纳米棒杂化的MEH-PPV薄膜的光致发光强度是纯MEH-PPV薄膜的约2倍(图4a),这主要是由于金纳米棒的表面等离激元共振效应加快了电子的受激和辐射跃迁过程;由图4(b)的时间分辨荧光光谱可知,纯MEH-PPV薄膜的荧光寿命则为0.64ns,而金纳米棒杂化的MEH-PPV薄膜的荧光寿命仅为0.09ns,寿命的下降也证实了辐射跃迁过程的加快。
试验例3
金纳米棒杂化的器件与原始器件的亮度和流明效率的对比,试验结果如图5。
如图5(a)和图5(b)所示,金纳米棒杂化的器件亮度和流明效率分别可达4111cd/m2和0.41cd/A,是原始器件亮度(1988cd/m2)和流明效率(0.22cd/A)的2.07倍和1.86倍。
对比例1
直径为20nm的金纳米粒子(AuNPs)杂化的OLED器件的发光性能。
1、红光材料MEH-PPV薄膜的吸收及发射光谱,直径为20nm的AuNPs溶液和薄膜的吸收光谱
同样选取经典的红光材料MEH-PPV作为OLED器件的发光层,其薄膜的吸收和发射光谱如图6所示,吸收的主要范围在430~560nm,发射的主要范围在580~660nm。直径为20nm的AuNPs在溶液和薄膜中的吸收主峰位都在525nm左右,正好与MEH-PPV的吸收光谱也基本重叠,对增强OLED的性能也有积极贡献。
图7是AuNPs在ITO基底上的电镜图,证实了通过静电吸附自组装的方法是可以使AuNPs沉积在ITO表面,用于制备AuNPs杂化的OLED器件。
2、500nm光的激发下,AuNPs杂化的MEH-PPV薄膜与纯MEH-PPV薄膜的发光强度与荧光寿命的对比,试验结果如图8(a)和图8(b)。
在500nm光的激发下,AuNPs杂化的MEH-PPV薄膜的光致发光强度是纯MEH-PPV薄膜的约1.6倍,这主要是由于AuNPs的表面等离激元共振效应加快了电子的受激和辐射跃迁过程;由图8(b)的时间分辨荧光光谱可知,纯MEH-PPV薄膜的荧光寿命则为0.64ns,而AuNPs杂化的MEH-PPV薄膜的荧光寿命仅为0.31ns,寿命的下降也证实了辐射跃迁过程的加快。
3、AuNPs杂化的器件与原始器件的亮度和流明效率的对比,试验结果如图9(a)和图9(b)。
如图9(a)和图9(b)所示,AuNPs杂化的器件亮度和流明效率分别可达2946cd/m2和0.31cd/A,是原始器件亮度(1988cd/m2)和流明效率(0.22cd/A)的1.48倍和1.41倍。
由以上试验可知,利用金纳米棒和金纳米粒子的表面等离激元共振效应都可以提高OLED器件性能,然而,金纳米棒具有两个表面等离激元共振吸收带,其中纵向吸收带的位置可调,因此可以通过调节金纳米棒的纵横比,使其表面等离激元共振吸收带与发光材料的吸收和发射光谱分别重叠,达到最大程度地增强OLED器件性能的目的,与原始器件相比,金纳米粒子杂化的器件亮度和流明效率是原始器件亮度和流明效率的1.48倍和1.41倍,而金纳米棒杂化的器件亮度和流明效率可达原始器件亮度和流明效率的2.07倍和1.86倍,由此可见,与原始器件和金纳米粒子杂化的器件相比,金纳米棒杂化的器件可以更好地提高发光性能。

Claims (12)

1.金纳米棒在提高倒置OLED器件发光性能中的应用。
2.根据权利要求1所述的应用,其特征在于,所述金纳米棒横向吸收带的位置在525nm,纵向吸收带的位置大于600nm。
3.根据权利要求2所述的应用,其特征在于,所述金纳米棒的纵横比为80nm:40nm。
4.根据权利要求1所述的应用,其特征在于,所述提高发光性能是通过调节金纳米棒的纵横比,使其表面等离激元共振吸收带与发光材料的吸收和发射光谱分别重叠来实现的。
5.根据权利要求4所述的应用,其特征在于,所述发光材料为红光发射材料、深红光发射材料和近红外光发射材料中的任意一种。
6.一种金纳米棒杂化的倒置OLED器件,其特征在于,所述OLED器件包括导电玻璃ITO层、金纳米棒层、电子传输层、发光层、空穴传输层和金属银电极。
7.根据权利要求6所述的金纳米棒杂化的倒置OLED器件,其特征在于,所述电子传输层材料为氧化锌。
8.根据权利要求6所述的金纳米棒杂化的倒置OLED器件,其特征在于,所述发光层的材料为MEH-PPV。
9.根据权利要求6所述的金纳米棒杂化的倒置OLED器件,其特征在于,所述空穴传输层的材料为氧化钼。
10.一种根据权利要求6所述的金纳米棒杂化的倒置OLED器件的制备方法,其特征在于,包括以下步骤:
(1)首先在导电玻璃ITO上通过静电吸附自组装的方法沉积一层金纳米棒;
(2)再通过旋涂的方法制备一薄层氧化锌作为电子传输层;
(3)随后再旋涂一层发光材料;
(4)最后通过蒸镀的方法制备氧化钼和金属银电极。
11.根据权利要求10所述的金纳米棒杂化的倒置OLED器件的制备方法,其特征在于,所述金纳米棒和发光材料之间的间隔为6~12nm。
12.根据权利要求10所述的金纳米棒杂化的倒置OLED器件的制备方法,其特征在于,所述发光层厚度为70~100nm。
CN201811241682.XA 2018-10-24 2018-10-24 金纳米棒在倒置oled器件中的应用 Pending CN109560211A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811241682.XA CN109560211A (zh) 2018-10-24 2018-10-24 金纳米棒在倒置oled器件中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811241682.XA CN109560211A (zh) 2018-10-24 2018-10-24 金纳米棒在倒置oled器件中的应用

Publications (1)

Publication Number Publication Date
CN109560211A true CN109560211A (zh) 2019-04-02

Family

ID=65865327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811241682.XA Pending CN109560211A (zh) 2018-10-24 2018-10-24 金纳米棒在倒置oled器件中的应用

Country Status (1)

Country Link
CN (1) CN109560211A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350108A (zh) * 2019-07-25 2019-10-18 京东方科技集团股份有限公司 发光器件及其制备方法、显示面板、金-银核壳纳米锥的制备方法
CN110518138A (zh) * 2019-09-04 2019-11-29 淮阴工学院 一种像素结构有机发光二极管及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549357B1 (ko) * 2014-12-29 2015-09-01 한화토탈 주식회사 이방성 금속 나노입자를 이용하는 고효율 전계발광소자
CN108063171A (zh) * 2017-12-20 2018-05-22 东南大学 一种ZnO纳米棒阵列发光二极管及其制备方法
US20180175319A1 (en) * 2016-12-15 2018-06-21 Universal Display Corporation Spectral emission modification using localized surface plasmon of metallic nanoparticles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549357B1 (ko) * 2014-12-29 2015-09-01 한화토탈 주식회사 이방성 금속 나노입자를 이용하는 고효율 전계발광소자
US20180175319A1 (en) * 2016-12-15 2018-06-21 Universal Display Corporation Spectral emission modification using localized surface plasmon of metallic nanoparticles
CN108063171A (zh) * 2017-12-20 2018-05-22 东南大学 一种ZnO纳米棒阵列发光二极管及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKUYA TANAKA ET AL.: "Enhanced Red-Light Emission by Local Plasmon Coupling of Au Nanorods in an Organic Light-Emitting Diode", 《APPLIED PHYSICS EXPRESS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350108A (zh) * 2019-07-25 2019-10-18 京东方科技集团股份有限公司 发光器件及其制备方法、显示面板、金-银核壳纳米锥的制备方法
CN110518138A (zh) * 2019-09-04 2019-11-29 淮阴工学院 一种像素结构有机发光二极管及其制备方法
CN110518138B (zh) * 2019-09-04 2021-12-07 淮阴工学院 一种像素结构有机发光二极管及其制备方法

Similar Documents

Publication Publication Date Title
US10892433B2 (en) Quantum dot light emitting device including ligand-substituted quantum dot light emitting layer with polymer having amine groups and method for fabricating the same
CN103872261B (zh) 一种有机电致发光器件和显示装置
WO2019080246A1 (zh) Qled器件的制作方法及qled器件
CN106684112A (zh) 有机发光显示装置及其制造方法
WO2018153107A1 (zh) 显示面板、电致发光器件及其制备方法
JP2009527876A (ja) ナノ構造のエレクトロルミネセンスデバイス及びディスプレイ
CN105304829B (zh) 一种双面发光量子点发光二极管及其制备方法
JP2010055900A (ja) エレクトロルミネセンス素子
CN105161585B (zh) 一种纤维状量子点发光二极管及其制备方法
US20070210704A1 (en) Electroluminescent device using nanorods
Sanchez et al. All solution processed low turn-on voltage near infrared LEDs based on core–shell PbS–CdS quantum dots with inverted device structure
CN107230747A (zh) Oled显示面板的制作方法及oled显示面板
CN106229393A (zh) 一种发光二极管及其制备方法
CN206293474U (zh) 等离子体共振增强的蓝光有机发光二极管
CN109560211A (zh) 金纳米棒在倒置oled器件中的应用
Mo et al. Unusual electroluminescence from n-ZnO@ i-MgO core–shell nanowire color-tunable light-emitting diode at reverse bias
Zhang et al. Effects of the thickness of NiO hole transport layer on the performance of all-inorganic quantum dot light emitting diode
CN111384257A (zh) 量子点电致发光器件及显示器
CN109545991B (zh) 金纳米双锥在oled器件中的应用
Chen et al. Light enhancement of plasmonic nano-structure for PLEDs at RGB wavelengths
CN107565065A (zh) 倒置型量子点发光二极管及其制作方法
CN104241552A (zh) 一种具有金属增强荧光外转换层的oled发光器件制备方法
CN109427978A (zh) 一种qled器件及其制备方法
Lee et al. Brightness enhancement of a direct-current-driven electroluminescent device prepared with zinc-sulfide powder
Chen et al. High PLED enhancement by surface plasmon coupling of Au nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190402