CN109558880A - 一种基于视觉整体和局部特征融合的轮廓检测方法 - Google Patents

一种基于视觉整体和局部特征融合的轮廓检测方法 Download PDF

Info

Publication number
CN109558880A
CN109558880A CN201811202617.6A CN201811202617A CN109558880A CN 109558880 A CN109558880 A CN 109558880A CN 201811202617 A CN201811202617 A CN 201811202617A CN 109558880 A CN109558880 A CN 109558880A
Authority
CN
China
Prior art keywords
profile
neural networks
subgraph
layer
convolutional neural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811202617.6A
Other languages
English (en)
Other versions
CN109558880B (zh
Inventor
范影乐
谭明明
武薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201811202617.6A priority Critical patent/CN109558880B/zh
Publication of CN109558880A publication Critical patent/CN109558880A/zh
Application granted granted Critical
Publication of CN109558880B publication Critical patent/CN109558880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及一种基于视觉整体和局部特征融合的轮廓检测方法。首先针对轮廓待检测图像,分别提取表征其整体特性的低分辨子图I1和表征其局部特征的边界响应子图I2。然后构建包含池化模块的卷积神经网络G,实现整体轮廓信息的快速提取。接着构建包含空洞卷积模块的卷积神经网络L,实现局部轮廓信息提取。其中L由四个单元、一个融合层和一个损失层构成;最后将I1和I2分别输入到网络G和网络L中,获得整体轮廓信息和局部轮廓信息。以L(i,j)的尺寸为基准,对G(i,j)进行双线性插值。根据L(i,j)各像素的对比度关系,对整体轮廓信息G(i,j)进行融合,从而获取精细轮廓。

Description

一种基于视觉整体和局部特征融合的轮廓检测方法
技术领域
本发明属于机器视觉领域,具体涉及一种基于视觉整体和局部特征融合的轮廓检测方法。
背景技术
图像中目标的显著性边缘构成了图像的轮廓信息,它是图像理解和分析的关键特征。传统的轮廓检测方法主要基于光强变化、对比度、方向选择以及固定大小的方向滤波模块,通常利用局部关联性实现轮廓像素的识别。而神经生理实验表明,生物视觉信息流在传递和处理过程中,一方面具有视网膜、外膝体和视皮层的分层特性,能够快速表达视觉的整体特征;另一方面并非只是简单的层层信息串行传递,多个通路所刻画的视觉信息传递到视皮层进行互补整合运算,用来精细表达视觉的细节特征。虽然近年来卷积神经网络成为了研究热点,通过卷积、池化和语义分类从全局理解轮廓的特征,利用网络深度来提高检测的准确性。但必须指出的是,现有的卷积神经网络更多地将视觉模型视为黑盒,检测任务只关注于输入与输出之间的匹配准确性,回避了视觉整体和局部特征融合的特性。
发明内容
本发明针对轮廓待检测图像,通过提取表征其整体特性的低分辨子图I1和表征其局部特征的边界响应子图I2,分别送入包含池化模块的卷积神经网络G和包含空洞卷积模块的卷积神经网络L。网络G的输出满足快速获取整体轮廓的需求;网络L的输出对应于局部轮廓信息;最后实现整体和局部轮廓信息的融合,获取精细轮廓。本发明提出了一种基于视觉整体和局部特征融合的轮廓检测方法,包括如下步骤:
步骤(1)针对轮廓待检测图像,提取表征其整体特性的低分辨子图I1。首先利用双线性插值法,对轮廓待检测图像进行尺寸扩展,使扩展后图像I的长和宽相等,长和宽均等于M,其中M为2的整数幂次值。然后利用高斯金字塔方法,对I进行分解层数为n的尺度分解,得到分解后的低分辨率子图I1,用来表征轮廓待检测图像的整体特性。I1尺寸记为N1×N1(N1的默认值为64)。因此可根据图像I的长和宽,获得分解层数n的具体数值。例如当M为1024的情形,此时分解层数n等于4。
步骤(2)针对轮廓待检测图像,提取表征其局部特征的边界响应子图I2。设置具有方向选择特性的经典感受野(默认设置8个方向:0°,45°,90°,135°,180°,225°,270°,315°),分别利用二维高斯导函数模型提取扩展后图像I在中心水平、中心垂直、正对角线、负对角线上的方向响应;然后针对I的某个像素,获得所有方向上的最大响应,并结合方向响应的响应强度系数确定最终的边界响应,从而得到具有局部特征的边界响应子图I2
步骤(3)构建包含池化模块的卷积神经网络G,实现整体轮廓信息快速提取。其中G由四个单元和一个损失层构成,前两个单元由双层普通卷积层和池化层组成,第三个单元由双层普通卷积层组成,第四个单元由上采样层和单层普通卷积层组成。构建具有上述结构特性的卷积神经网络G,其中初始卷积核权重随机设置。将步骤(1)获得的低分辨子图I1训练样本输入卷积神经网络G,经sigmod函数激活后与训练样本轮廓标签做损失运算,沿损失减小方向反向传播更新卷积核权重,迭代多次,至损失值小于阈值£,获得训练后的卷积神经网络G。
步骤(4)构建包含空洞卷积模块的卷积神经网络L,实现局部轮廓信息精细提取。其中L由四个单元、一个融合层和一个损失层构成,每个单元由单层普通卷积层和单层空洞卷积层组成,其中普通卷积核与空洞卷积核的个数相同,四个单元空洞卷积的dilated分别等于2,2,4,4。构建具有上述结构特性的卷积神经网络L,其中初始卷积核权重随机设置。将步骤(2)获得的边界响应子图I2训练样本输入卷积神经网络L,经sigmod函数激活后与训练样本轮廓标签做损失运算,沿损失减小方向反向传播更新卷积核权重,迭代多次,至损失值小于阈值,获得训练后的卷积神经网络L。
步骤(5)实现整体和局部轮廓信息的融合,获取精细轮廓。首先将待检测图像经过步骤(1)和步骤(2)处理后,获得其所对应的低分辨子图I1和边界响应子图I2。将I1和I2分别输入到网络G和网络L中,获得整体轮廓信息G(i,j)和局部轮廓信息L(i,j)。以L(i,j)的尺寸为基准,对G(i,j)进行双线性插值。根据L(i,j)各像素的对比度关系,对整体轮廓信息G(i,j)进行融合,从而获取精细轮廓。
本发明具有的有益效果为:
1、本发明对视觉信息进行高斯金字塔分解,获取表征整体特性的低分辨子图;设置具有方向选择特性的经典感受野,对视觉信息进行二维高斯导函数处理,获取表征局部特征的边界响应子图。
2、本发明所构建的卷积神经网络,根据视觉信息特征的差异,具有多通路特点。针对表征整体特性的低分辨率子图,设计包含池化模块的卷积神经网络进行处理,将有助于轮廓信息的快速去冗余;针对表征局部特征的边界响应子图,设计包含空洞卷积模块的卷积神经网络进行处理,将有助于轮廓信息的细节提取。
3、针对表征整体特性的低分辨子图和表征局部特征的边界响应子图,分别通过卷积神经网络处理,利用整体和局部特征融合实现轮廓检测,将有助于提高轮廓检测的精度和效率。
附图说明
图1为经典感受野的方向选择示意图。
图2为卷积神经网络G示意图。
图3为卷积神经网络G的子图1。
图4为卷积神经网络G的子图2。
图5为卷积神经网络G的子图3。
图6为卷积神经网络L示意图。
图7为卷积神经网络L的子图1。
图8为卷积神经网络L的子图2。
具体实施方式
以下结合附图对本发明作进一步说明。
本发明一种基于视觉整体和局部特征融合的轮廓检测方法包括以下步骤:
步骤(1)针对轮廓待检测图像,提取表征其整体特性的低分辨子图I1。首先利用双线性插值法,对轮廓待检测图像进行尺寸扩展,使扩展后图像I的长和宽相等,长和宽均等于M,其中M为2的整数幂次值。然后利用高斯金字塔方法,对I进行分解层数为n的尺度分解,得到分解后各层子图分别为J0,J1,J2,...,Jn。其中J0为未分解前的图像I;Jn即为提取的低分辨子图I1,用来表征轮廓待检测图像的整体特性。I1尺寸记为N1×N1(N1的默认值为64)。因此可根据图像I的长和宽,获得分解层数n的具体数值。例如当M为1024的情形,此时分解层数n等于4。
步骤(2)针对轮廓待检测图像,提取表征其细节特征的边界响应子图I2。设置具有方向选择特性的经典感受野(默认设置8个方向:0°,45°,90°,135°,180°,225°,270°,315°),结合二维高斯导函数模型,其数学表达式如式(1)和(2)所示,提取待检测图像在经典感受野内的中心水平、中心垂直、正、负对角线4类边缘,如附图1所示。
其中,θ∈{0°,45°,90°,135°,180°,225°,270°,315°},对应于8个可选择的经典感受野方向。γ表示滤波器的椭圆率,默认γ=0.5,σ决定经典感受野大小。
对于某一特定方向θi,i=1,2,3,...,8,输入图像I(x,y)的经典感受野响应如式(3)所示。
ei(x,y)=|I(x,y)*RF(x,y,θi)| (3)
其中*为卷积运算。
针对I的某个像素,获得所有方向上的最大响应,并结合方向响应的响应强度系数确定最终的边界响应,从而得到具有细节特征的边界响应子图I2,其中强度响应系数定义为如式(4)所示。
边界响应子图如式(5)所示。
I2(x,y)=u(x,y)×max{ei(x,y)|i=1,2,...,8} (5)
步骤(3)构建包含池化模块的卷积神经网络G,实现轮廓待检测图像的整体轮廓信息快速提取。其中G如附图2~5所示,由四个单元和一个损失层构成,前两个单元都由两层3×3,步长为1的普通卷积层与一个2×2,步长为2的最大池化组成;第三个单元由两层3×3,步长为1的普通卷积层,无池化层;前三个单元每个每层卷积核个数相同,卷积核个数分别为96、192、384;第四个单元由一个4倍上采样和一个1×1,步长为1的普通卷积核组成。构建具有上述结构特性的卷积神经网络G,其中初始卷积核权重随机设置。将步骤(1)获得的低分辨率子图I1训练样本输入卷积神经网络G做卷积处理,如式(6)所示。经sigmod函数激活后与训练样本轮廓标签做损失运算,沿损失减小方向反向传播更新卷积核权重,如式(7)所示,反复迭代后获得训练后的卷积神经网络G。
其中,CNN表示卷积神经网络G,W1,b1分别表示卷积神经网络G的权重和偏置,表示卷积神经网络G的输出,S1表示经sigmod函数激活后的单通道特征图,num1表示图像I1像素点个数,Y1表示与图像I1像素点对应位置的已知标签值,loss1表示卷积神经网络G运算的损失,η表示学习率。
步骤(4)构建包含空洞卷积模块的卷积神经网络L,实现轮廓待检测图像的局部轮廓信息精细提取。其中L如附图6~8所示,由4个单元、一个融合层和一个损失层构成,每个单元由一个3×3,步长为1的普通卷积层与一个3×3,步长为1的空洞卷积层组成,每个单元中普通卷积核与空洞卷积核的个数相同,四个单元中卷积核的个数依次为32、64、128、256,且空洞卷积的dilated分别等于2,2,4,4。在损失运算前先经过1个1×1卷积融合特征。构建具有上述结构特性的卷积神经网络,其中初始卷积核权重随机设置。将步骤(2)获得的边界响应子图I2训练样本输入卷积神经网络L做卷积处理,如式(8)所示,经sigmod函数激活后与训练样本轮廓标签做损失运算,沿损失减小方向反向传播更新卷积核权重,如式(9)所示,反复迭代后获得训练后的卷积神经网络L。
其中,CDNN表示卷积神经网络L,W2,b2分别表示卷积神经网络L的权重和偏置,表示卷积神经网络L的输出,S2表示经sigmod函数激活的单通道特征图,num2表示图像I2像素点个数,Y2表示与图像I2像素点对应位置的已知标签值,loss2表示卷积神经网络L运算的损失,λ表示学习率。
步骤(5)实现整体和局部轮廓信息的融合,获取精细轮廓。将待检测图像经过步骤(1)和步骤(2)处理后,获得其所对应的低分辨子图I1和边界响应子图I2。将I1和I2分别输入到网络G和网络L中,获得整体轮廓信息G(i,j)和局部轮廓信息L(i,j)。以L(i,j)的尺寸为基准,对G(i,j)进行双线性插值。根据L(i,j)各像素的对比度关系,对整体轮廓信息G(i,j)进行融合,从而获取精细轮廓。处理过程如下:
①求出L(i,j)中每个像素点的对比度,此处用temp(i,j)表示。
②以图像坐标(u,v)处像素为例,当该点为轮廓点时,即temp(u,v)>ξ。
③当该点为非轮廓点时,即temp(u,v)≤ξ。
其中ξ表示轮廓像素点的对比度阈值,默认值为最大对比度的75%。

Claims (2)

1.一种基于视觉整体和局部特征融合的轮廓检测方法,其特征在于,该方法具体包括以下步骤:
步骤(1)针对轮廓待检测图像,提取表征其整体特性的低分辨子图I1;首先利用双线性插值法,对轮廓待检测图像进行尺寸扩展,使扩展后图像I的长和宽相等,长和宽均等于M,其中M为2的整数幂次值;然后利用高斯金字塔方法,对I进行分解层数为n的尺度分解,得到分解后的低分辨率子图I1,用来表征轮廓待检测图像的整体特性;I1尺寸记为N1×N1,N1的默认值为64;因此可根据图像I的长和宽,获得分解层数n的具体数值;
步骤(2)针对轮廓待检测图像,提取表征其局部特征的边界响应子图I2;设置具有方向选择特性的经典感受野,分别利用二维高斯导函数模型提取扩展后图像I在中心水平、中心垂直、正对角线、负对角线上的方向响应;然后针对I的任意像素,获得所有方向上的最大响应,并结合方向响应的响应强度系数确定最终的边界响应,从而得到具有局部特征的边界响应子图I2
步骤(3)构建包含池化模块的卷积神经网络G,实现整体轮廓信息快速提取;其中G由四个单元和一个损失层构成,前两个单元都分别由双层普通卷积层和池化层组成,第三个单元由双层普通卷积层组成,第四个单元由上采样层和单层普通卷积层组成;构建具有上述结构特性的卷积神经网络G,其中初始卷积核权重随机设置;将步骤(1)获得的低分辨子图I1训练样本输入卷积神经网络G,经sigmod函数激活后与训练样本轮廓标签做损失运算,沿损失减小方向反向传播更新卷积核权重,迭代多次,至损失值小于阈值£,获得训练后的卷积神经网络G;
步骤(4)构建包含空洞卷积模块的卷积神经网络L,实现局部轮廓信息精细提取;其中L由四个单元、一个融合层和一个损失层构成,每个单元由单层普通卷积层和单层空洞卷积层组成,其中普通卷积核与空洞卷积核的个数相同,四个单元空洞卷积的dilated分别等于2,2,4,4;构建具有上述结构特性的卷积神经网络L,其中初始卷积核权重随机设置;将步骤(2)获得的边界响应子图I2训练样本输入卷积神经网络L,经sigmod函数激活后与训练样本轮廓标签做损失运算,沿损失减小方向反向传播更新卷积核权重,迭代多次,至损失值小于阈值获得训练后的卷积神经网络L;
步骤(5)实现整体和局部轮廓信息的融合,获取精细轮廓;首先将待检测图像经过步骤(1)和步骤(2)处理后,获得其所对应的低分辨子图I1和边界响应子图I2;将I1和I2分别输入到网络G和网络L中,获得整体轮廓信息G(i,j)和局部轮廓信息L(i,j);以L(i,j)的尺寸为基准,对G(i,j)进行双线性插值;根据L(i,j)各像素的对比度关系,对整体轮廓信息G(i,j)进行融合,从而获取精细轮廓;
具体处理过程如下:
①求出L(i,j)中每个像素点的对比度,此处用temp(i,j)表示;
②以图像坐标(u,v)处像素为例,当该点为轮廓点时,即temp(u,v)>ξ;
③当该点为非轮廓点时,即temp(u,v)≤ξ;
其中ξ表示轮廓像素点的对比度阈值,默认值为最大对比度的75%。
2.根据权利要求1所述一种基于视觉整体和局部特征融合的轮廓检测方法,其特征在于:步骤2中设置具有方向的默认设置8个方向:0°,45°,90°,135°,180°,225°,270°,315°。
CN201811202617.6A 2018-10-16 2018-10-16 一种基于视觉整体和局部特征融合的轮廓检测方法 Active CN109558880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811202617.6A CN109558880B (zh) 2018-10-16 2018-10-16 一种基于视觉整体和局部特征融合的轮廓检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811202617.6A CN109558880B (zh) 2018-10-16 2018-10-16 一种基于视觉整体和局部特征融合的轮廓检测方法

Publications (2)

Publication Number Publication Date
CN109558880A true CN109558880A (zh) 2019-04-02
CN109558880B CN109558880B (zh) 2021-06-04

Family

ID=65864904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811202617.6A Active CN109558880B (zh) 2018-10-16 2018-10-16 一种基于视觉整体和局部特征融合的轮廓检测方法

Country Status (1)

Country Link
CN (1) CN109558880B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110134720A (zh) * 2019-05-17 2019-08-16 苏州大学 融合局部特征与深度学习的事件联合抽取方法
CN112597996A (zh) * 2020-12-28 2021-04-02 山西云时代研发创新中心有限公司 基于任务驱动的自然场景中交通标志显著性检测方法
CN113284112A (zh) * 2021-05-27 2021-08-20 中国科学院国家空间科学中心 一种基于深度神经网络的熔滴图像轮廓提取方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193518A1 (en) * 2005-01-28 2006-08-31 Jianxiong Dong Handwritten word recognition based on geometric decomposition
CN105335716A (zh) * 2015-10-29 2016-02-17 北京工业大学 一种基于改进udn提取联合特征的行人检测方法
US20160239726A1 (en) * 2015-02-12 2016-08-18 Morpx Inc. Vision sensor, system, and method for image processing, and vision based interactive device
CN106778650A (zh) * 2016-12-26 2017-05-31 深圳极视角科技有限公司 基于多类型信息融合的场景自适应行人检测方法和***
CN108509866A (zh) * 2018-03-12 2018-09-07 华南理工大学 一种人脸轮廓提取方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193518A1 (en) * 2005-01-28 2006-08-31 Jianxiong Dong Handwritten word recognition based on geometric decomposition
US20160239726A1 (en) * 2015-02-12 2016-08-18 Morpx Inc. Vision sensor, system, and method for image processing, and vision based interactive device
CN105335716A (zh) * 2015-10-29 2016-02-17 北京工业大学 一种基于改进udn提取联合特征的行人检测方法
CN106778650A (zh) * 2016-12-26 2017-05-31 深圳极视角科技有限公司 基于多类型信息融合的场景自适应行人检测方法和***
CN108509866A (zh) * 2018-03-12 2018-09-07 华南理工大学 一种人脸轮廓提取方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张桂梅 等: ""一种新的基于局部轮廓特征的目标检测方法"", 《自动化学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110134720A (zh) * 2019-05-17 2019-08-16 苏州大学 融合局部特征与深度学习的事件联合抽取方法
CN112597996A (zh) * 2020-12-28 2021-04-02 山西云时代研发创新中心有限公司 基于任务驱动的自然场景中交通标志显著性检测方法
CN112597996B (zh) * 2020-12-28 2024-03-29 山西云时代研发创新中心有限公司 基于任务驱动的自然场景中交通标志显著性检测方法
CN113284112A (zh) * 2021-05-27 2021-08-20 中国科学院国家空间科学中心 一种基于深度神经网络的熔滴图像轮廓提取方法及***
CN113284112B (zh) * 2021-05-27 2023-11-10 中国科学院国家空间科学中心 一种基于深度神经网络的熔滴图像轮廓提取方法及***

Also Published As

Publication number Publication date
CN109558880B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
CN107633513B (zh) 基于深度学习的3d图像质量的度量方法
Rehman et al. Automatic visual features for writer identification: a deep learning approach
CN106023220B (zh) 一种基于深度学习的车辆外观部件图像分割方法
CN105426919B (zh) 基于显著性指导非监督特征学习的图像分类方法
CN109492529A (zh) 一种多尺度特征提取及全局特征融合的人脸表情识别方法
CN107103281A (zh) 基于聚集损失深度度量学习的人脸识别方法
CN108427921A (zh) 一种基于卷积神经网络的人脸识别方法
CN107862261A (zh) 基于多尺度卷积神经网络的图像人群计数方法
CN103745200B (zh) 一种基于词袋模型的人脸图像识别方法
CN107463920A (zh) 一种消除局部遮挡物影响的人脸识别方法
CN108520213B (zh) 一种基于多尺度深度的人脸美丽预测方法
CN110827260B (zh) 一种基于lbp特征与卷积神经网络的布匹缺陷分类方法
CN106529504B (zh) 一种复合时空特征的双模态视频情感识别方法
CN109558880A (zh) 一种基于视觉整体和局部特征融合的轮廓检测方法
CN110321967A (zh) 基于卷积神经网络的图像分类改进算法
CN106909946A (zh) 一种多模态融合的商品分类***
CN103208007B (zh) 一种基于支持向量机和遗传算法的人脸识别方法
CN102332086A (zh) 一种基于双阈值局部二进制模式的人脸识别方法
CN105373777A (zh) 一种用于人脸识别的方法及装置
CN106682606A (zh) 一种人脸确认方法及安全认证装置
CN105913081A (zh) 基于改进的PCAnet的SAR图像分类方法
CN109614866A (zh) 基于级联深度卷积神经网络的人脸检测方法
CN111401145A (zh) 一种基于深度学习与ds证据理论的可见光虹膜识别方法
CN108960342A (zh) 基于改进SoftMax损失函数的图像相似度计算方法
CN103927522B (zh) 一种基于流形自适应核的人脸识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant