CN109532518A - 一种含两个单向直流变换器的复合电源及其控制方法 - Google Patents

一种含两个单向直流变换器的复合电源及其控制方法 Download PDF

Info

Publication number
CN109532518A
CN109532518A CN201811607624.4A CN201811607624A CN109532518A CN 109532518 A CN109532518 A CN 109532518A CN 201811607624 A CN201811607624 A CN 201811607624A CN 109532518 A CN109532518 A CN 109532518A
Authority
CN
China
Prior art keywords
unidirectional
buck
battery pack
super capacitor
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811607624.4A
Other languages
English (en)
Other versions
CN109532518B (zh
Inventor
王斌
周佳辉
郑惠文
马光亮
张乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201811607624.4A priority Critical patent/CN109532518B/zh
Publication of CN109532518A publication Critical patent/CN109532518A/zh
Application granted granted Critical
Publication of CN109532518B publication Critical patent/CN109532518B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种含两个单向直流变换器的复合电源及其控制方法包括:电池组、开关、功率二极管集成盒、电机逆变器、单向Buck‑Boost变换器、超级电容和单向Buck变换器;其方式在于:复合电源根据电动汽车运行状态及超级电容电压确定两个单向直流变换器的四个数字控制接口的高低电平状态,从而控制两个单向直流变换器的工作模式。本发明所产生的有益效果是:本发明复合电源结构及其直流变换器工作模式与控制方法能够避免电池组频繁无序充放电,在制动能量充足时,超级电容可以对电池组进行恒流充电,有效保护电池安全,延长电池使用寿命,并且避免了双向直流变换器在电流正反向交替工作期间产生的时间延迟问题,提升了复合电源***的稳定性和可靠性。

Description

一种含两个单向直流变换器的复合电源及其控制方法
技术领域
本发明属于电动汽车的车载电源领域,特别涉及一种含两个单向直流变换器的复合电源及其控制方法。
背景技术
随着电动汽车的逐步推广,电池组受频繁充放电影响而导致寿命缩短的问题凸显。另外,世界各国的汽车生产商和研究机构都在进一步研究电动汽车部件性能和整车性能的全面提升和优化,而车载电源是提升电动汽车性能的最关键部件之一。由于电池技术短时间内不可能有突破性进展,采用超级电容与电池组成复合电源,避免电池组受频繁充放电的技术应运而生。
随着研究的深入,复合电源结构得到不断改进以满足高性能电动汽车的需求。其中半主动结构的超级电容/电池组复合电源采用电池组直接并联在电机逆变器的两端,超级电容先串联一个双向直流变换器再并联电池组;电池组并联电机逆变器,起稳压作用,且电池组作为主能量源直接供电,能量不经过直流变换器转换,电池组输出效率高;超级电容的电压可以高于或低于电池组电压,选择更加灵活。尽管采用合适的控制策略能使超级电容输出功率跟随电机逆变器需求功率,但电池组直接并联在电机逆变器两端,会受高频充放电电流的冲击,缩短电池组工作寿命;另外,如果采用双向直流变换器连接超级电容和电池组,双向直流变换器在电流正反向交替工作期间存在一定的时间延迟,会影响到整个复合电源***工作的稳定性和安全性。
为有效避免电池组受频繁充电电流的冲击,需要设计电池组单向输出电路,当回收电动汽车制动能量时,单向输出电路能阻止能量回流至电池组,由超级电容优先回收能量。但单向输出电路不能使电池组回收能量,需要考虑超级电容充满电以后向电池组有序充电情况,因此,需要补充设计超级电容向电池组充电的电路或部件。另外,传统的复合电源在工作模式变化时,控制器根据电压和电流信号改变PWM控制信号来实现直流变换器的工作模式变化,程序复杂,而且程序的延时会导致***在延时期间短暂不稳定甚至失控。
发明内容
本发明的目的在于提供一种含两个单向直流变换器的复合电源及其控制方法,以解决上述问题。
为实现上述目的,本发明采用以下技术方案:
一种含两个单向直流变换器的复合电源,包括电池组、开关、功率二极管集成盒、电机逆变器、单向Buck-Boost变换器、超级电容和单向Buck变换器;电池组的正极分别连接开关的输入端口A,开关的输出端口B连接功率二极管集成盒的阳极集成输入端,功率二极管集成盒的阴极输出端分别连接电机逆变器的正极端口和单向Buck-Boost变换器的正极输入接口a1,电机逆变器的负极端口分别连接单向Buck-Boost变换器的负极输入接口b1和电池组的负极;单向Buck-Boost变换器的正极输出接口c1和负极输出接口d1分别连接超级电容的正极和负极;超级电容的正极和负极还分别连接单向Buck变换器的正极输入接口a2和负极输入接口b2;单向Buck变换器的正极输出接口c2和负极输出接口d2分别连接电池组的正极和负极。
进一步的,电池组、开关、功率二极管集成盒所在输出电路为主电路,位于主电路的开关能够同时控制超级电容与电池组的输出。
进一步的,电池组通过功率二极管集成盒实现单向输出,功率二极管集成盒由多个二极管组成。
进一步的,单向Buck-Boost变换器为高低电平控制的数字式直流变换器,并且仅用于向超级电容单向升压或降压充电,不能对超级电容放电。
进一步的,单向Buck变换器为高低电平控制的数字式直流变换器,并且仅用于对超级电容单向降压放电,不能对超级电容充电。
进一步的,单向Buck-Boost变换器、超级电容和单向Buck变换器构成制动能量有序向电池组充电的辅助电路,并且,电池组能够通过单向Buck-Boost变换器向超级电容充电,而超级电容能够通过单向Buck变换器向电池组充电;同时,超级电容能够通过单向Buck变换器向电机逆变器提供能量。
进一步的,一种含两个单向直流变换器的复合电源的控制方法,基于上述任意一项所述的一种含两个单向直流变换器的复合电源,包括以下步骤:
步骤1,根据电动汽车运行状态与超级电容电压分别控制单向Buck-Boost变换器的数字接口D1和D2以及单向Buck变换器的数字接口D3和D4的高低电平输入;
步骤2,判断单向Buck-Boost变换器和单向Buck变换器的数字接口的值,确定单向Buck-Boost变换器和单向Buck变换器的工作状态;
进一步的,步骤2中,当D1=0,D2=0时,单向Buck-Boost变换器不工作;当D1=0,D2=1时,单向Buck-Boost变换器针对输入端进行降压恒流工作;当D1=1,D2=0时,单向Buck-Boost变换器针对输入端进行升压恒流工作。
进一步的,步骤2中,当D3=0,D4=0时,单向Buck变换器不工作;当D3=0,D4=1时,单向Buck变换器针对输出端进行恒压工作;当D3=1,D4=0时,单向Buck变换器针对输出端进行恒流工作。
进一步的,单向Buck-Boost变换器的数字接口D1和单向Buck变换器的数字接口D3和D4的高低电平切换采用滞环控制。
与现有技术相比,本发明有以下技术效果:
相比于半主动结构的超级电容/电池组复合电源,本发明的一种含两个单向直流变换器的电动汽车复合电源在电池输出主电路上增加一个开关,可以同时控制电池组和超级电容的输出;功率二极管集成盒使能量在主电路中单向输出,避免电池组直接受无序制动电流的冲击,有效保障电池组的安全,延长电池组的使用寿命;通过更加高效的数字式单向Buck-Boost变换器向超级电容充电或回收制动能量,有效解决了双向直流变换器在电流正反向交替工作切换时的延迟问题,有助于提升***的稳定性;通过在超级电容和电池组之间串联数字式单向Buck变换器,既可以保证超级电容电量充满以后向电池组进行恒流充电,又可以实现超级电容向电机逆变器提供辅助能量,保证超级电容能够有效回收制动能量和提供大功率辅助输出,提高超级电容的利用效率。
附图说明
图1是本发明实施例的复合电源的电路拓扑图;
图2是本发明实施例的功率二极管集成盒内部结构;
图3是本发明实施例的半主动结构的超级电容/电池组复合电源。
图4是本发明实施例的两个单向直流变换器的工作模式选择流程图;
图5a至5c是本发明实施例的两个单向直流变换器的工作模式滞环控制原理图;
具体实施方式
下面结合附图对本发明作进一步说明,实施例用于说明本发明而不限制本发明的范围,部分参数可根据元件的具体参数及具体使用情况作相应匹配调整。例如:功率二极管集成盒中的二极管数量与复合电源制动回收能量的最大功率有关;两个数字式单向直流变换器的工作模式滞环控制的滞环区间上下限值可根据实际应用情况进行调整。
本实施例描述了一种含两个单向直流变换器的电动汽车复合电源及直流变换器工作模式控制方法,具体电路拓扑如图1所示,***由电池组1、开关7、功率二极管集成盒2、电机逆变器3、单向Buck-Boost变换器4、超级电容5和单向Buck变换器6组成;电池组1的正极连接开关7的输入端口A,开关7的输出端口B连接功率二极管集成盒2的阳极输入端,功率二极管集成盒2的阴极输出端分别连接电机逆变器3的正极端口和单向Buck-Boost变换器4的正极输入接口a1,电机逆变器3的负极端口分别连接单向Buck-Boost变换器4的负极输入接口b1和电池组1的负极;单向Buck-Boost变换器4的正极输出接口c1和负极输出接口d1分别连接超级电容5的正极和负极;超级电容5的正极和负极还分别连接单向Buck变换器6的正极输入接口a2和负极输入接口b2;单向Buck变换器6的正极输出接口c2和负极输出接口d2分别连接电池组1的正极和负极。
本实施例的功率二极管集成盒内部结构如图2所示,功率二极管集成盒2由多个功率二极管并联组成,二极管的阳极相接共同构成功率二极管集成盒2的阳极集成端;二极管的阴极相接共同构成功率二极管集成盒2的阴极集成端,分别连接电机逆变器3的正极端口和单向Buck-Boost变换器4的正极输入接口a1
半主动结构的超级电容/电池组复合电源如图3所示,相比于半主动结构的超级电容/电池组复合电源,本发明的一种含两个单向直流变换器的电动汽车复合电源在电池组1输出主电路上增加一个开关7,可以同时控制电池组1和超级电容5的输出;功率二极管集成盒2使能量在主电路中单向输出,避免电池组1直接受无序制动电流的冲击,有效保障电池组1的安全,延长电池组1的使用寿命;单向Buck-Boost变换器4、超级电容5、单向Buck变换器6构成了制动能量有序向电池组1充电的辅助电路,并且,电池组1可以通过单向Buck-Boost变换器4向超级电容5充电,而超级电容5可以通过单向Buck变换器6向电池组1充电。同时,超级电容5还可以通过单向Buck变换器6向电机逆变器提供能量。
设定电池组1的标准电压为超级电容5最大工作电压的50%,从而保证超级电容5最大放电能量为75%。
两个单向直流变换器的工作模式控制:
两个单向直流变换器具体的工作模式选择流程图如图4所示,复合电源启动后,首先判断超级电容5电压是否低于电池组1电压,如果低于电池组1电压,进一步控制单向Buck-Boost变换器4和单向Buck变换器6的工作模式,直到超级电容5电压大于或等于电池组1电压。当超级电容5电压大于电池组1电压时,再判断需求功率是否为正,如果需求功率不为正,电动汽车的运行模式为制动,结合超级电容电压进一步控制单向Buck-Boost变换器4和单向Buck变换器6的工作模式。如果需求功率为正,电动汽车的运行模式为驱动,需进一步判断需求功率是否大于5kW,再结合超级电容5电压进一步控制单向Buck-Boost变换器4和单向Buck变换器6的工作模式;
工作模式对应的数字控制接口电平信号
复合电源开始工作后,首先检测超级电容5电压是否低于电池组1的电压,当低于电池组1的电压时,单向Buck-Boost变换器4的数字接口的电平信号为D1=0,D2=1,对单向Buck-Boost变换器4输入端进行降压恒流工作;单向Buck变换器6的数字接口的电平信号为D3=0,D4=0,单向Buck变换器6不工作。此时,电池组1单独供能并为超级电容5充电。
电动汽车需求功率为负时,即电动汽车的运行模式为制动时,超级电容5优先通过单向Buck-Boost变换器4对输入端升压恒流工作来回收能量,对应D1=1,D2=0;此时,还需要结合超级电容电压进一步选择单向Buck变换器6的工作模式,当超级电容5电压升高至额定电压的99%时,单向Buck变换器的数字接口D3的电平信号由0转换为1,单向Buck变换器6对输出端恒流工作。超级电容5电压降低至额定电压的95%时,单向Buck变换器6的数字接口D3的电平信号由1转换为0,单向Buck变换器6不工作;在需求功率为负时,数字接口D3的信号转换采用滞环控制,如图5(a)所示,避免单向Buck变换器6工作模式频繁切换。为了保证超级电容的安全性,规定单向Buck-Boost变换器4的升压恒流工作功率小于Buck变换器6的恒流工作功率。
电动汽车需求功率为正时,即电动汽车的运行模式为驱动时,结合需求功率大小和超级电容5电压进一步控制单向Buck-Boost变换器4和单向Buck变换器6的工作模式。如果需求功率大于5kW,单向Buck-Boost变换器4不工作,此时D1=0,D2=0。需要判断超级电容5电压是否大于75%,当超级电容5电压大于75%时,单向Buck变换器6对输出端恒压工作,此时D3=0,D4=1;当超级电容5电压小于75%时,单向Buck变换器6对输出端恒流工作,此时D3=1,D4=0。如果需求功率小于5kW且超级电容5电压低于额定电压的85%,单向Buck-Boost变换器4对输入端升压恒流工作,单向Buck变换器6不工作,此时D1=1,D2=0,D3=0,D4=0,此时电池组1单独供能,多余的能量为超级电容5充电。当超级电容电压5高于额定电压95%时,单向Buck-Boost变换器4不工作,单向Buck变换器6对输出端恒压工作,此时D1=0,D2=0,D3=0,D4=1,此时电池组1和超级电容5共同输出,由电池组1提供恒定功率,超级电容5提供峰值功率。在需求功率小于5kW时,数字接口D1和D4的信号转换采用滞环控制,如图5(b)和5(c)所示,避免单向Buck-Boost变换器4和单向Buck变换器6工作模式的频繁切换。
以上实施例只为体现本发明的技术构思与特点,并非用于限定本发明的保护范围,例如三个滞环控制的滞环区间的上下限值可根据实际情况进行调节,凡在本发明的精神和原则内做等同替换或修饰,均涵盖在本发明保护范围内。

Claims (10)

1.一种含两个单向直流变换器的复合电源,其特征在于,包括电池组(1)、开关(7)、功率二极管集成盒(2)、电机逆变器(3)、单向Buck-Boost变换器(4)、超级电容(5)和单向Buck变换器(6);电池组(1)的正极分别连接开关(7)的输入端口A,开关的输出端口B连接功率二极管集成盒(2)的阳极集成输入端,功率二极管集成盒(2)的阴极输出端分别连接电机逆变器(3)的正极端口和单向Buck-Boost变换器(4)的正极输入接口a1,电机逆变器(3)的负极端口分别连接单向Buck-Boost变换器的负极输入接口b1和电池组(1)的负极;单向Buck-Boost变换器的正极输出接口c1和负极输出接口d1分别连接超级电容(5)的正极和负极;超级电容(5)的正极和负极还分别连接单向Buck变换器(6)的正极输入接口a2和负极输入接口b2;单向Buck变换器(6)的正极输出接口c2和负极输出接口d2分别连接电池组(1)的正极和负极。
2.根据权利要求1所述的一种含两个单向直流变换器的复合电源,其特征在于,电池组(1)、开关(7)、功率二极管集成盒(2)所在输出电路为主电路,位于主电路的开关(7)能够同时控制超级电容与电池组的输出。
3.根据权利要求1所述的一种含两个单向直流变换器的复合电源,其特征在于,电池组(1)通过功率二极管集成盒(2)实现单向输出,功率二极管集成盒(2)由多个二极管组成。
4.根据权利要求1所述的一种含两个单向直流变换器的复合电源,其特征在于,单向Buck-Boost变换器(4)为高低电平控制的数字式直流变换器,并且仅用于向超级电容单向升压或降压充电,不能对超级电容放电。
5.根据权利要求1所述的一种含两个单向直流变换器的复合电源,其特征在于,单向Buck变换器(6)为高低电平控制的数字式直流变换器,并且仅用于对超级电容单向降压放电,不能对超级电容充电。
6.根据权利要求1所述的一种含两个单向直流变换器的复合电源,其特征在于,单向Buck-Boost变换器(4)、超级电容(5)和单向Buck变换器(6)构成制动能量有序向电池组充电的辅助电路,并且,电池组能够通过单向Buck-Boost变换器向超级电容充电,而超级电容能够通过单向Buck变换器向电池组充电;同时,超级电容能够通过单向Buck变换器向电机逆变器提供能量。
7.一种含两个单向直流变换器的复合电源的控制方法,其特征在于,基于权利要求1至6任意一项所述的一种含两个单向直流变换器的复合电源,包括以下步骤:
步骤1,根据电动汽车运行状态与超级电容电压分别控制单向Buck-Boost变换器的数字接口D1和D2以及单向Buck变换器的数字接口D3和D4的高低电平输入;
步骤2,判断单向Buck-Boost变换器和单向Buck变换器的数字接口的值,确定单向Buck-Boost变换器和单向Buck变换器的工作状态。
8.根据权利要求7所述的一种含两个单向直流变换器的复合电源的控制方法,其特征在于,步骤2中,当D1=0,D2=0时,单向Buck-Boost变换器不工作;当D1=0,D2=1时,单向Buck-Boost变换器针对输入端进行降压恒流工作;当D1=1,D2=0时,单向Buck-Boost变换器针对输入端进行升压恒流工作。
9.根据权利要求7所述的一种含两个单向直流变换器的复合电源的控制方法,其特征在于,步骤2中,当D3=0,D4=0时,单向Buck变换器不工作;当D3=0,D4=1时,单向Buck变换器针对输出端进行恒压工作;当D3=1,D4=0时,单向Buck变换器针对输出端进行恒流工作。
10.根据权利要求7所述的一种含两个单向直流变换器的复合电源的控制方法,其特征在于,单向Buck-Boost变换器的数字接口D1和单向Buck变换器的数字接口D3和D4的高低电平切换采用滞环控制。
CN201811607624.4A 2018-12-27 2018-12-27 一种含两个单向直流变换器的复合电源及其控制方法 Active CN109532518B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811607624.4A CN109532518B (zh) 2018-12-27 2018-12-27 一种含两个单向直流变换器的复合电源及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811607624.4A CN109532518B (zh) 2018-12-27 2018-12-27 一种含两个单向直流变换器的复合电源及其控制方法

Publications (2)

Publication Number Publication Date
CN109532518A true CN109532518A (zh) 2019-03-29
CN109532518B CN109532518B (zh) 2020-11-10

Family

ID=65856643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811607624.4A Active CN109532518B (zh) 2018-12-27 2018-12-27 一种含两个单向直流变换器的复合电源及其控制方法

Country Status (1)

Country Link
CN (1) CN109532518B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421968A (zh) * 2020-11-09 2021-02-26 武汉理工大学 一种多用途变换器及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032942A (ja) * 2002-06-27 2004-01-29 Fuji Electric Holdings Co Ltd 常時商用給電方式無停電電源装置の未充電二次電池の充電方法
WO2009072245A1 (ja) * 2007-12-06 2009-06-11 Panasonic Corporation 車両用電源装置
JP5503957B2 (ja) * 2009-12-15 2014-05-28 Udトラックス株式会社 車両用電源装置
CN208062874U (zh) * 2018-04-27 2018-11-06 温州大学 一种主动复合电源功率分配装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032942A (ja) * 2002-06-27 2004-01-29 Fuji Electric Holdings Co Ltd 常時商用給電方式無停電電源装置の未充電二次電池の充電方法
WO2009072245A1 (ja) * 2007-12-06 2009-06-11 Panasonic Corporation 車両用電源装置
JP5503957B2 (ja) * 2009-12-15 2014-05-28 Udトラックス株式会社 車両用電源装置
CN208062874U (zh) * 2018-04-27 2018-11-06 温州大学 一种主动复合电源功率分配装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421968A (zh) * 2020-11-09 2021-02-26 武汉理工大学 一种多用途变换器及其控制方法
CN112421968B (zh) * 2020-11-09 2024-03-08 武汉理工大学 一种多用途变换器及其控制方法

Also Published As

Publication number Publication date
CN109532518B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN104002692B (zh) 一种电动汽车dc-dc变换器的复合电源***及控制方法
CN103633842B (zh) 一种单开关反向输出二次型宽增益变换器
CN104108320B (zh) 一种n-pmos开关解耦的电动汽车复合电源及能量控制方法
CN110828918B (zh) 一种汽车动力电池的控制***及控制方法
CN201438644U (zh) 一种车载充电器
CN102969932A (zh) 一种多功能电流型双向ac/dc变流器及其控制方法
CN103171452A (zh) 电动车双电源管理***及方法
CN106427616B (zh) 一种基于电荷泵的复合电源及其在不同工况时的切换方法
CN106877449B (zh) 一种用于电动汽车不可控发电的电池保护电路
CN104309483B (zh) 电动车用电源***
CN105644377A (zh) 一种双能源电动车
CN104648166A (zh) 一种车载复合电源再生制动能量回收***及方法
CN205489670U (zh) 汽车应急启动电源
TWI556559B (zh) A Bidirectional DC - DC Converter with Adaptive Phase Shift Angle Control Mechanism
CN105811766A (zh) 一种燃料电池汽车升降压型dc-dc变换器
CN109532518A (zh) 一种含两个单向直流变换器的复合电源及其控制方法
CN109017326B (zh) 电动车制动能量回收***
CN108173430B (zh) 基于磁阻电机绕组重构的车载交直流充电与驱动电路拓扑
CN210027056U (zh) 一种电机驱动***和一种新能源汽车
CN113879154A (zh) 一种匹配多种电压平台的电动汽车充电电驱***
CN101531142A (zh) 电动自行车再生充电装置
CN103532385B (zh) 升压电路及具有其的混合动力汽车
CN209748187U (zh) 一种新能源电动车高压残余电荷的放电电路
CN210027057U (zh) 一种电机驱动***和一种新能源汽车
CN201087928Y (zh) 一种具有升压电池芯的升压电池组

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant