CN109494834B - 城轨超级电容储能***充放电阀值模糊推理动态设定方法 - Google Patents

城轨超级电容储能***充放电阀值模糊推理动态设定方法 Download PDF

Info

Publication number
CN109494834B
CN109494834B CN201811409948.7A CN201811409948A CN109494834B CN 109494834 B CN109494834 B CN 109494834B CN 201811409948 A CN201811409948 A CN 201811409948A CN 109494834 B CN109494834 B CN 109494834B
Authority
CN
China
Prior art keywords
soc
udis
uchar
energy storage
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811409948.7A
Other languages
English (en)
Other versions
CN109494834A (zh
Inventor
王欣
孙中灿
秦斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Technology
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN201811409948.7A priority Critical patent/CN109494834B/zh
Publication of CN109494834A publication Critical patent/CN109494834A/zh
Application granted granted Critical
Publication of CN109494834B publication Critical patent/CN109494834B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明针对城轨超级电容储能***的动态调节和协调控制的问题,提出一种城轨超级电容储能***充放电阀值模糊推理动态设定方法,本发明提出的基于模糊推理,三个输入‑四个输出Mamdani型模糊推理器,将选取牵引车辆在供电区段内与储能装置b距离L和超级电容荷电状态(SOC)作为模糊推理的输入,将电压动态阈值作为输出。将L和SOC值模糊化,选取适合的模糊论域和隶属函数,根据经验或者实验数据编写模糊规则,进行模拟或者仿真,输出量进行模糊清晰化,以此输出一个清晰值。利用模糊推理,不仅能使牵引网电压具有稳压作用,还具有良好的节能效果。模糊推理***的鲁棒性强,参数变化对控制效果的影响被大大减弱。

Description

城轨超级电容储能***充放电阀值模糊推理动态设定方法
技术领域
本发明涉及的是一种超级电容充放电领域的控制方法,具体的说 就是一种城轨超级电容储能***充放电阀值模糊推理动态设定方法。
背景技术
随着城市化建设的不断推进和人口的急剧增长,城市交通拥堵, 机动车尾气污染严重,在全球大力倡导开发清洁能源,各国也在寻求 和规划打造新的都市交通布局。城市轨道交通清洁环保,主要以电能 作为驱动,目前轨道交通主要有地铁,轻轨,磁悬浮列车。而在轨道 交通中启动加速会消耗大量的能量,而制动减速会产生大量能量,如 何利用储能元件回收这些制动能量成为轨道交通节能的重要研究内 容。目前主要存储能量有电池、超级电容和飞轮等,而超级电容具有 功率密度高,充放电相应速度快受到广泛的关注和应用。
传统城轨储能***双闭环控制结构是基于直流牵引网压波动变 化直接反映到列车运行状态,通过设定固定的充放电电压阈值和实时 检测牵引网压变化决定超级电容储能***工作模式,具有控制监督、 响应速度快等优点。传统储能***控制策略由牵引网电压环,模式切 换模式,和冲放电电流环等控制环节,控制***采用电压外环和电流 内环双闭环串级结构的控制策略,是目前主要也是基础的控制策略。 本发明在传统策略基础上提出基于模糊推理的动态调节的协调控制 储能***能量管理策略,利用模糊推理,运用语言表达,建立模糊规 则,使牵引车辆能根据供电区段内与储能装置距离L(与区间终点b 距离,牵引车辆到a、b储能***的距离和为D)、超级电容荷电状态 (SOC)的实时运行状态自行改变电压阈值,使超级电容在保护电容本 身的前提下,能更合理的利用超级电容释放和吸收能量,节约能源。
发明内容
技术问题:在牵引车辆运行工具中,超级电容是其储能元件。但 在超级电容储能***中,超级电容充放电电压的阈值一般固定设定, 使其不能根据运行状态自行调整,这种充放电电压阈值的设定具有局 限性,不能很好保护超级电容和充分发挥超级电容的能力。
技术方案;为了解决上述问题,可以将模糊推理应用到充放电压 阈值得计算中,使其更好根据城轨运行状态调整电压阈值的设定,更 好地发挥超级电容的作用。对于城轨超级电容储能***而言,其充电 阈值、放电阈值与列车初始设置电压阈值、控制参数、运行距离和超 级电SOC有关。对于超级电容***的电压阈值设定,可以利用模糊推 理,采用mamdani型模糊推理***,三个输入四个输出模式,设某一 供电区间内两个储能***(假设a储能***、b储能***)之间距离 为D,在此区间进行—加速、惰行、制动,根据超级电容SOC,根据 经验和数据,归纳模糊规则,进行电压阈值的动态控制,使其更好实 时根据运行状态,调整电压阈值。
本发明是根据传统动态调节和协调控制的储能***能量管理策 略,基于直流牵引网压波动变化直接反应列车运行状态,通过设定充 放电电压阈值,和实时检测牵引网电压变化决定超级电容储能***工 作模式。
本发明提出的城轨超级电容储能***充放电阀值模糊推理动态设定 方法,由上述可知,牵引车辆在供电区段内与储能装置b的距离L, a、b两个储能超级电容SOCa、SOCb作为模糊推理输入,电压阈值Uchar-a (a储能***充电阈值)、Uchar-b(b储能***充电阈值)、Udis-a(a储 能***放电阈值)、Udis-b(b储能***放电阈值)作为输出。
本发明提出的基于模糊推理控制算法,主要包括隶属函数选择、 隶属函数表达式、模糊论域确定、确定模糊子集和建立模糊推理规则。
1.模糊推理的隶属函数选择,模糊论域和模糊子集确定:
SOCa a储能***选定三个模糊子集:S(小)、M(适中)、 B(大)SOCb b储能***选定三个模糊子集:S(小)、M(适中)、 B(大)
L选定三个模糊子集:S(小)、M(适中)、B(大)
a储能***超级电容充电电压阈值Uchar-a,选定四个模糊子集:
SS(非常小)、S(小)、M(适中)、B(大)
b储能***超级电容充电电压阈值Uchar-b,选定四个模糊子集:
SS(非常小)、S(小)、M(适中)、B(大)
a储能***超级电容放电电压阈值Udis-a,选定四个模糊子集:
SS(非常小)、S(小)、M(适中)、B(大)
b储能***超级电容放电电压阈值Udis-b,选定四个模糊子集:
SS(非常小)、S(小)、M(适中)、B(大)
SOCa模糊论域[0 1]
SOCb模糊论域[0 1]
L模糊论域[0 1]
Uchar-a、Uchar-b、Udis-a、Udis-b模糊论域[0 1]
其中为使各输入和输出实际论域和模糊集合论域一致,需要 将实际论域转化为模糊集合论域,在此引入量化因子,Ksoc为超 级电容荷电状态量化因子、KL为运行区间距离量化因子、Kchar超 级电容充电阀值量化因子、Kdis超级电容放电阀值量化因子。 L、SOCa、SOCb、Uchar-a、Uchar-b、Udis-a、Udis-b隶属函数采用三 角函数公式或高斯型函数公式:
三角形:
Figure BDA0001878252450000041
要求a≤b≤c a、b、c分别为隶属度左、中、右坐标,x为输 入值。边缘隶属函数采用半梯形隶属函数,既a或c为最边缘坐标则 a(c)到b段的隶属函数值为1.
高斯型:
Figure BDA0001878252450000042
其中,c隶属函数中心的位置,σ为隶属函数曲线的宽度
2.模糊推理运算方式:
与方式算法—取小
或方式算法—取大
蕴涵算法—取小
综合—各条规则结果的模糊子集取“并”
清晰化—面积中心算法
3.模糊推理规则:
If(SOCa is S)and(L is S)and(SOCb is S)then(Udis-b is S)(Uchar-b is SS)(Udis-a is M)(Uchar-a is S)(1)
If(SOCa is S)and(L is S)and(SOCb is M)then(Udis-b is S)(Uchar-b is M)(Udis-a is M)(Uchar-a is S)
If(SOCa is S)and(L is S)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is B)(Uchar-a is SS)
If(SOCa is S)and(L is M)and(SOCb is S)then(Udis-b is S)(Uchar-b is SS)(Udis-a is S)(Uchar-a is SS)
If(SOCa is S)and(L is M)and(SOCb is M)then(Udis-b is S)(Uchar-b is M)(Udis-a is M)(Uchar-a is SS)
If(SOCa is S)and(L is M)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is B)(Uchar-a is SS)
If(SOCa is S)and(L is B)and(SOCb is S)then(Udis-b is M)(Uchar-b is S)(Udis-a is S)(Uchar-a is SS)
If(SOCa is S)and(L is B)and(SOCb is M)then(Udis-b is SS)(Uchar-b is M)(Udis-a is M)(Uchar-a is SS)
If(SOCa is S)and(L is B)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is B)(Uchar-a is SS)
If(SOCa is M)and(L is S)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is S)(Uchar-a is M)
If(SOCa is M)and(L is S)and(SOCb is M)then(Udis-b is SS)(Uchar-b is SS)(Udis-a is S)(Uchar-a is S)
If(SOCa is M)and(L is S)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is M)(Uchar-a is B)
If(SOCa is M)and(L is M)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is S)(Uchar-a is S)
If(SOCa is M)and(L is M)and(SOCb is M)then(Udis-b is S)(Uchar-b is S)(Udis-a is S)(Uchar-a is S)
If(SOCa is M)and(L is M)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is S)(Uchar-a is SS)
If(SOCa is M)and(L is B)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is S)(Uchar-a is S)
If(SOCa is M)and(L is B)and(SOCb is M)then(Udis-b is S)(Uchar-b is S)(Udis-a is SS)(Uchar-a is SS)
If(SOCa is M)and(L is B)and(SOCb is B)then(Udis-b is S)(Uchar-b is B)(Udis-a is SS)(Uchar-a is SS)
If(SOCa is B)and(L is S)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is S)and(SOCb is M)then(Udis-b is S)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is S)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is SS)(Uchar-a is M)
If(SOCa is B)and(L is M)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is M)and(SOCb is M)then(Udis-b is S)(Uchar-b is SS)(Udis-a is S)(Uchar-a is B)
If(SOCa is B)and(L is M)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is B)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is B)and(SOCb is M)then(Udis-b is S)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is B)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is SS)(Uchar-a is M)
城轨超级电容储能***充放电阀值模糊推理动态设定步骤如下(按 设定时间间隔T执行):
Step1:实时采集各相关运行数据L、SOCa、SOCb并通过量化因子转 换成模糊推理***输入。
Step2:运行模糊推理***得到相应的设定值Uchar-a、Uchar-b、Udis-a、 Udis-b
Step3:根据动态设定值进行协调控制
有益效果:本发明的模糊推理方法不仅结合了传统的电压电流的双闭 环控制***,同时对阈值的设定能根据之前模糊规则进行实时更改, 具有鲁棒性强特点,尤其适合于非线性、时变及纯滞后***的控 制。
附图说明
图1模糊推理***结构图
当牵引车辆运行在某一供电区间内的两个储能***(假设a储 能***、b储能***),在此区间进行—加速、惰行、制动,根据两 个超级电容SOC和实时运行到下一个储能装置的距离L做为输入, 根据模糊规则,通过模糊推理***,得到电压值,实时根据运行状态,调整电压阈值。
图2基于动态调节和协调控制的储能***能量管理策略控制原 理框图。
传统储能***控制策略由牵引网电压环,模式切换模块和充 放电电流环等控制环组成,控制***采用电压外环和电流内环双 闭环串级结构的控制策略。
(1)牵引网电压外环,牵引网电压环检测牵引网实时电压 Udc作为反馈,Udc与充放电电压阈值Uchar,Udis比较差值经PI 控制器调节输出储能***充放电电流指令值I* L
(2)储能***充放电电流内环,牵引网电压环输出的充放电 电流指令值I* L与反馈充放电电流IL比较差值经过PI控制器调节 输出控制双向DC/DC变换器开关管驱动脉冲信号。
图3储能***工作模式切换原理图
通过模糊推理得到模糊论域电压阀值,在通过量化因子可得到实 际电压阀值。在城轨牵引,惰性,制动时,此时储能***为了维持牵 引网电压平衡,会向电网释放能量,吸收能量。为了防止储能***电 压过高造成器件损坏,以及城轨***正常停运断电情况下储能***仍 能放电引起误动作,故储能***设置禁止模式状态。
列车牵引加速工况,牵引网电压Udc跌落至阀值Udis下限时,储 能***启动并工作至Boost升压斩波电路放电模式;列车制动减速工 况时,牵引网电压Udc被抬升至阀值Uchar上限时,储能***启动并 工作于Buck降压斩波电路充电模式;列车惰行工况,牵引网电压Udc波动很小,在Uchar和Udis范围内,储能***待机模式。
具体实施方式:
本发明提出的城轨超级电容储能***充放电阀值模糊推理动态 设定方法结合控制***结构图其具体实施方案详述如下。
1.牵引网电压外环将检测的牵引网实际电压和给定充放电电压 阈值比较差值经外环PI调节得到储能***参数充放电电流I* L;I* L与储能***实际反馈的充放电电流IL比较差值经电流内环PI调节, 通过PWM控制得到驱动BDC变换器开关器件的占空比。
2.在牵引区间进行,加速,惰行,制动。每一个过程,城轨的给 定的充放电阈值与运行的距离和此时超级电容容量所处的状态相关, 根据模糊推理算法得出相应的充放电阈值,从而协调两个储能***系 统控制。
1).模糊推理的隶属函数选择,模糊论域和模糊子集确定:
SOCa模糊隶属函数选取高斯型函数
选定三个模糊子集:S(小)、M(适中)、B(大)
SOCb模糊隶属函数选取高斯型函数
选定三个模糊子集:S(小)、M(适中)、B(大)
L模糊隶属函数选取高斯型函数
选定三个模糊子集:S(小)、M(适中)、B(大)
Uchar-a、Uchar-b、Udis-a、Udis-b模糊隶属函数选取高斯型函数
选定四个模糊子集:SS(非常小)、S(小)、M(适中)、B(大)
SOC-a模糊论域[0 1]
SOC-b模糊论域[0 1]
L模糊论域[0 1]
Uchar-a、Uchar-b、Udis-a、Udis-b模糊论域[0 1]
量化因子Ksoc=1、KL=1/100、Kchar=1/1300、
Kdis=1/1600
高斯型隶属函数表达式:
高斯型:
Figure BDA0001878252450000101
其中,c决定函数中心的位置,σ决定函数曲线的宽度
对于高斯型隶属函数中,SOCa中C选取:0.25、0.75、0.95 宽度σ分别为:0.4769、0.6559、0.7
SOCb中C选取:0.25、0.75、0.95宽度σ分别为:0.4769、 0.6559、0.7
L中C选取50、90、98宽度σ分别为:0.5、0.4836、 0.43
Udis-b中C选取0.1、0.32、0.6、0.8宽度σ分别为: 0.35、0.2547、0.4962、0.4987
Udis-a中C选取0.1、0.32、0.6、0.8宽度σ分别为: 0.35、0.2547、0.4962、0.4987
Uchar-b中C选取0.1 0.4 0.6 0.85宽度σ分别为:0.37、0.26、0.52、0.55
Uchar-a中C选取0.1 0.4 0.6 0.85宽度σ分别为:0.37、 0.26、0.52、0.55
其中X是位于[0 1]区间相应的输入值
2).模糊推理运算方式:
与方式算法—取小
或方式算法—取大
蕴涵算法—取小
综合—各条规则结果的模糊子集取“并”
清晰化—面积中心算法
3).模糊推理规则:
If(SOCa is S)and(L is S)and(SOCb is S)then(Udis-b is S)(Uchar-b is SS)(Udis-a is M)(Uchar-a is S)(2)
If(SOCa is S)and(L is S)and(SOCb is M)then(Udis-b is S)(Uchar-b is M)(Udis-a is M)(Uchar-a is S)
If(SOCa is S)and(L is S)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is B)(Uchar-a is SS)
If(SOCa is S)and(L is M)and(SOCb is S)then(Udis-b is S)(Uchar-b is SS)(Udis-a is S)(Uchar-a is SS)
If(SOCa is S)and(L is M)and(SOCb is M)then(Udis-b is S)(Uchar-b is M)(Udis-a is M)(Uchar-a is SS)
If(SOCa is S)and(L is M)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is B)(Uchar-a is SS)
If(SOCa is S)and(L is B)and(SOCb is S)then(Udis-b is M)(Uchar-b is S)(Udis-a is S)(Uchar-a is SS)
If(SOCa is S)and(L is B)and(SOCb is M)then(Udis-b is SS)(Uchar-b is M)(Udis-a is M)(Uchar-a is SS)
If(SOCa is S)and(L is B)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is B)(Uchar-a is SS)
If(SOCa is M)and(L is S)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is S)(Uchar-a is M)
If(SOCa is M)and(L is S)and(SOCb is M)then(Udis-b is SS)(Uchar-b is SS)(Udis-a is S)(Uchar-a is S)
If(SOCa is M)and(L is S)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is M)(Uchar-a is B)
If(SOCa is M)and(L is M)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is S)(Uchar-a is S)
If(SOCa is M)and(L is M)and(SOCb is M)then(Udis-b is S)(Uchar-b is S)(Udis-a is S)(Uchar-a is S)
If(SOCa is M)and(L is M)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is S)(Uchar-a is SS)
If(SOCa is M)and(L is B)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is S)(Uchar-a is S)
If(SOCa is M)and(L is B)and(SOCb is M)then(Udis-b is S)(Uchar-b is S)(Udis-a is SS)(Uchar-a is SS)
If(SOCa is M)and(L is B)and(SOCb is B)then(Udis-b is S)(Uchar-b is B)(Udis-a is SS)(Uchar-a is SS)
If(SOCa is B)and(L is S)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is S)and(SOCb is M)then(Udis-b is S)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is S)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is SS)(Uchar-a is M)
If(SOCa is B)and(L is M)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is M)and(SOCb is M)then(Udis-b is S)(Uchar-b is SS)(Udis-a is S)(Uchar-a is B)
If(SOCa is B)and(L is M)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is B)and(SOCb is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is B)and(SOCb is M)then(Udis-b is S)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOCa is B)and(L is B)and(SOCb is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is SS)(Uchar-a is M)
实施步骤:
根据超级电容SOCa、SOCb和牵引车辆在供电区段内与储能装置b 距离L,通过模糊推理规则表1、2输出在模糊集合论域的电压阈值。
Step1:实时采集各相关运行数据L、SOCa、SOCb并通过量化因子转 换成模糊推理***输入。
Step2:运行模糊推理***得到相应的设定值Uchar-a、Uchar-b、Udis-a、 Udis-b
Step3:根据动态设定值进行协调控制
城轨超级电容储能***采用电压电流双闭环控制***,电流采用 PI控制器并且还有SOC限流模块,在超级电容储能***正常工作于 充放电模式下,通过检测***的SOC值控制电容器组的充放电电流, 防止储能***出现过冲。
上述具体实现只是本发明的较佳实现而已,当然,本发明还可有 其他多种实施例,在不背离本发明精神及其本质的情况下,熟悉本领 域的技术人员当可根据本发明作为各种相应的改变和变形,但这些相 应的改变和变形都应属于本发明的权利要求的保护范围。

Claims (2)

1.一种城轨超级电容储能***充放电阀值模糊推理动态设定方法,其特征在于利用模糊推理,建立模糊规则,使牵引车辆能根据供电区段内与储能装置b距离L、超级电容荷电状态SOC的实时运行状态自行改变电压阀值,其中设牵引车辆到a、b储能***的距离和为D;模糊推理器由四部分组成:将精确输入模糊化、规则库、模糊推理、将输出的模糊量精确化;选取牵引车辆在供电区段内与储能装置b距离L、超级电容荷电状态SOC作为输入,a储能***充电电压阈值Uchar-a、b储能***充电阈值Uchar-b、a储能***放电阈值Udis-a、b储能***放电阈值Udis-b作为输出;
城轨超级电容储能***充放电阀值模糊推理动态设定步骤按设定时间间隔T执行如下:
Step1:实时采集各相关运行数据L、a储能***超级电容荷电状态SOC-a、b储能***超级电容荷电状态SOC-b并通过量化因子转换成模糊推理***输入
Step2:运行模糊推理***得到相应的设定值Uchar-a、Uchar-b、Udis-a、Udis-b
Step3:根据动态设定值进行协调控制。
2.根据权利1要求的一种城轨超级电容储能***充放电阀值模糊推理动态设定方法,其特征在于隶属函数选择、隶属函数表达式、模糊论域确定、确定模糊子集和建立模糊推理规则,其设定方式如下:
1).模糊推理的隶属函数选择,模糊论域和模糊子集确定:
SOC-a a储能***选定三个模糊子集:S、M、B
SOC-b b储能***选定三个模糊子集:S、M、B
L选定三个模糊子集:S、M、B
a储能***超级电容充电电压阈值Uchar-a,选定四个模糊子集:
SS、S、M、B
b储能***超级电容充电电压阈值Uchar-b,选定四个模糊子集:
SS、S、M、B
a储能***超级电容放电电压阈值Udis-a,选定四个模糊子集:
SS、S、M、B
b储能***超级电容放电电压阈值Udis-b,选定四个模糊子集:
SS、S、M、B
其中SS表示非常小,S表示小,M表示适中,B表示大;
SOC-a模糊论域[01]
SOC-b模糊论域[01]
L模糊论域[01]
Uchar-a、Uchar-b、Udis-a、Udis-b模糊论域[01]
其中为使各输入和输出实际论域和模糊集合论域一致,需要将实际论域转化为模糊集合论域,在此引入量化因子,Ksoc为超级电容荷电状态量化因子、Kl为运行区间距离量化因子、Kchar为超级电容充电阀值量化因子、Kdis为超级电容放电阀值量化因子;
L、SOC-a、SOC-b、Uchar-a、Uchar-b、Udis-a、Udis-b隶属函数采用三角函数公式或高斯型函数公式:
三角形:
Figure QLYQS_1
要求a≤b≤ca、b、c分别为隶属度左、中、右坐标,x为输入值;边缘隶属函数采用半梯形隶属函数,即a或c为最边缘坐标则设为-∞或+∞
高斯型:
Figure QLYQS_2
其中,c隶属函数中心的位置,σ为隶属函数曲线的宽度
2).模糊推理运算方式:
与方式算法—取小
或方式算法—取大
蕴涵算法—取小
综合—各条规则结果的模糊子集取“并”
清晰化—面积中心算法
3).模糊推理规则:
If(SOC-a is S)and(L is S)and(SOC-b is S)then(Udis-b is S)(Uchar-b is SS)(Udis-a is M)(Uchar-a is S)
If(SOC-a is S)and(L is S)and(SOC-b is M)then(Udis-b is S)(Uchar-b is M)(Udis-a is M)(Uchar-a is S)
If(SOC-a is S)and(L is S)and(SOC-b is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is B)(Uchar-a is SS)
If(SOC-a is S)and(L is M)and(SOC-b is S)then(Udis-b is S)(Uchar-b is SS)(Udis-a is S)(Uchar-a is SS)
If(SOC-a is S)and(L is M)and(SOC-b is M)then(Udis-b is S)(Uchar-b is M)(Udis-a is M)(Uchar-a is SS)
If(SOC-a is S)and(L is M)and(SOC-b is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is B)(Uchar-a is SS)
If(SOC-a is S)and(L is B)and(SOC-b is S)then(Udis-b is M)(Uchar-b is S)(Udis-a is S)(Uchar-a is SS)
If(SOC-a is S)and(L is B)and(SOC-b is M)then(Udis-b is SS)(Uchar-b is M)(Udis-a is M)(Uchar-a is SS)
If(SOC-a is S)and(L is B)and(SOC-b is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is B)(Uchar-a is SS)
If(SOC-a is M)and(L is S)and(SOC-b is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is S)(Uchar-a is M)
If(SOC-a is M)and(L is S)and(SOC-b is M)then(Udis-b is SS)(Uchar-b is SS)(Udis-a is S)(Uchar-a is S)
If(SOC-a is M)and(L is S)and(SOC-b is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is M)(Uchar-a is B)
If(SOC-a is M)and(L is M)and(SOC-b is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is S)(Uchar-a is S)
If(SOC-a is M)and(L is M)and(SOC-b is M)then(Udis-b is S)(Uchar-b is S)(Udis-a is S)(Uchar-a is S)
If(SOC-a is M)and(L is M)and(SOC-b is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is S)(Uchar-a is SS)
If(SOC-a is M)and(L is B)and(SOC-b is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is S)(Uchar-a is S)
If(SOC-a is M)and(L is B)and(SOC-b is M)then(Udis-b is S)(Uchar-b is S)(Udis-a is SS)(Uchar-a is SS)
If(SOC-a is M)and(L is B)and(SOC-b is B)then(Udis-b is S)(Uchar-b is B)(Udis-a is SS)(Uchar-a is SS)
If(SOC-a is B)and(L is S)and(SOC-b is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOC-a is B)and(L is S)and(SOC-b is M)then(Udis-b is S)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOC-a is B)and(L is S)and(SOC-b is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is SS)(Uchar-a is M)
If(SOC-a is B)and(L is M)and(SOC-b is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOC-a is B)and(L is M)and(SOC-b is M)then(Udis-b is S)(Uchar-b is SS)(Udis-a is S)(Uchar-a is B)
If(SOC-a is B)and(L is M)and(SOC-b is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is SS)(Uchar-a is B)
If(SOC-a is B)and(L is B)and(SOC-b is S)then(Udis-b is B)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOC-a is B)and(L is B)and(SOC-b is M)then(Udis-b is S)(Uchar-b is SS)(Udis-a is SS)(Uchar-a is B)
If(SOC-a is B)and(L is B)and(SOC-b is B)then(Udis-b is SS)(Uchar-b is B)(Udis-a is SS)(Uchar-a is M)
牵引车辆在供电区间段内与储能装置距离L和超级电容荷电状态SOC作为模糊推理输入,通过模糊推理,得到电压阈值,两个储能***能量流动跟列车实时运行距离和各储能***SOC状态变化有关,并且还根据城轨超级电容储能***中采取的电压电流双闭环控制***,使电压电流在一定的限度内进行动态调整和协调配合,各储能***利用程度趋向于均衡、合理,避免超级电容过度充放电,保护储能设备;
城轨超级电容储能***采用电压电流双闭环控制***,电流采用PI控制器并且还有SOC限流模块,在超级电容储能***正常工作于充放电模式下,通过检测***的SOC状态控制电容器组的充放电电流,防止储能***出现过冲。
CN201811409948.7A 2018-11-23 2018-11-23 城轨超级电容储能***充放电阀值模糊推理动态设定方法 Active CN109494834B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811409948.7A CN109494834B (zh) 2018-11-23 2018-11-23 城轨超级电容储能***充放电阀值模糊推理动态设定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811409948.7A CN109494834B (zh) 2018-11-23 2018-11-23 城轨超级电容储能***充放电阀值模糊推理动态设定方法

Publications (2)

Publication Number Publication Date
CN109494834A CN109494834A (zh) 2019-03-19
CN109494834B true CN109494834B (zh) 2023-06-02

Family

ID=65696586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811409948.7A Active CN109494834B (zh) 2018-11-23 2018-11-23 城轨超级电容储能***充放电阀值模糊推理动态设定方法

Country Status (1)

Country Link
CN (1) CN109494834B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211554B (zh) * 2020-01-17 2023-07-07 湖南工业大学 城轨混合储能***的功率动态分配控制方法
CN111806298B (zh) * 2020-07-07 2022-07-26 中国北方车辆研究所 特种车辆复合电源高压锂电池充放电阈值管理方法
CN112731803B (zh) * 2021-04-01 2021-08-27 北京交通大学 储能***充放电的控制方法、装置、设备及可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226790A (zh) * 2015-10-14 2016-01-06 北京交通大学 城轨超级电容储能***能量控制方法
CN107499190A (zh) * 2017-09-25 2017-12-22 吉林大学 高速动车组动力牵引和再生制动的能量储放电***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078877B2 (en) * 2003-08-18 2006-07-18 General Electric Company Vehicle energy storage system control methods and method for determining battery cycle life projection for heavy duty hybrid vehicle applications
US9753511B2 (en) * 2013-11-26 2017-09-05 Nec Corporation Fuzzy logic based integrated power coordination system for hybrid energy storage system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226790A (zh) * 2015-10-14 2016-01-06 北京交通大学 城轨超级电容储能***能量控制方法
CN107499190A (zh) * 2017-09-25 2017-12-22 吉林大学 高速动车组动力牵引和再生制动的能量储放电***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卢珊 ; 刘志强 ; 葛进 ; 叶青 ; .基于模糊控制的纯电动汽车再生制动策略仿真.长沙理工大学学报(自然科学版).2017,第14卷(第03期),第90-96页. *

Also Published As

Publication number Publication date
CN109494834A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
CN111211554B (zh) 城轨混合储能***的功率动态分配控制方法
CN109980669B (zh) 基于动态设定和协调优化的城轨超级电容储能***控制方法
CN109494834B (zh) 城轨超级电容储能***充放电阀值模糊推理动态设定方法
CN110576750A (zh) 一种氢燃料电池汽车制动能量回收***
CN101376344B (zh) 地铁供电***的多目标综合控制节能方法
CN106427607B (zh) 一种电动车混合式储能***能量分配方法
CN108189674A (zh) 一种混合动力有轨电车制动能量回收方法及***
Wang et al. Research on energy optimization control strategy of the hybrid electric vehicle based on Pontryagin's minimum principle
CN107591870B (zh) 电梯用储能***
Peng et al. Development of robust suboptimal real-time power sharing strategy for modern fuel cell based hybrid tramways considering operational uncertainties and performance degradation
CN107645171B (zh) 超级电容和蓄电池组混合储能电梯的能量控制方法及装置
CN110510095B (zh) 一种混合动力船舶的能量控制***及其控制方法
CN110718940A (zh) 基于负荷预测的多能源船舶智能功率分配方法及装置
CN112952862B (zh) 平抑风电功率波动的混合储能分频协调控制器及实现方法
Wang et al. Power dynamic allocation strategy for urban rail hybrid energy storage system based on iterative learning control
US20230271532A1 (en) Fcev energy management method and system
CN113054751A (zh) 基于信息交互的城轨交通车地储能***协调优化方法
Liu et al. Adaptive threshold adjustment strategy based on fuzzy logic control for ground energy storage system in urban rail transit
CN113141017B (zh) 基于ddpg算法和soc恢复的储能***参与电网一次调频的控制方法
CN113644671A (zh) 基于深度强化学习的城轨混合储能***功率动态分配控制方法
CN203747469U (zh) 自适应滤波器功率分流控制的混合动力车复合电源
Lianfu et al. Research on the integrated braking energy recovery strategy based on super-capacitor energy storage
CN111446901A (zh) 一种基于混合能源的电机驱动控制***及其控制方法
CN102633170B (zh) 电梯节能装置及其控制方法
Yang et al. Improved control strategy of energy storage system considering train operation states

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant