CN109494276B - 一种高速高效可见光增敏硅基雪崩光电二极管阵列 - Google Patents

一种高速高效可见光增敏硅基雪崩光电二极管阵列 Download PDF

Info

Publication number
CN109494276B
CN109494276B CN201811555116.6A CN201811555116A CN109494276B CN 109494276 B CN109494276 B CN 109494276B CN 201811555116 A CN201811555116 A CN 201811555116A CN 109494276 B CN109494276 B CN 109494276B
Authority
CN
China
Prior art keywords
layer
substrate
visible light
silicon
avalanche photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811555116.6A
Other languages
English (en)
Other versions
CN109494276A (zh
Inventor
高丹
张军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201811555116.6A priority Critical patent/CN109494276B/zh
Publication of CN109494276A publication Critical patent/CN109494276A/zh
Application granted granted Critical
Publication of CN109494276B publication Critical patent/CN109494276B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种高速高效可见光增敏硅基雪崩光电二极管阵列,所述雪崩光电二极管为SACM型APD,包括衬底以及设于衬底底部的阳极,所述衬底上表面设有凹槽,所述凹槽中自下而上依次包括:阴极、非耗尽层、倍增层和场控层,且阴极、非耗尽层、倍增层和场控层与所述衬底之间绝缘;所述场控层上覆有吸收层,且所述吸收层与所述衬底相接。本发明通过将吸收层设置在器件的表层,同时将器件的阳极和阴极设置于器件的底部,大大提高了器件的量子效率以及对可见光的灵敏度;并且将器件进行阵列化分割,提高了器件的响应速度和增益。

Description

一种高速高效可见光增敏硅基雪崩光电二极管阵列
技术领域
本发明涉及光电领域,尤其是涉及一种倒装型高速高效可见光增敏硅基雪崩光电二极管阵列。
背景技术
可见光通信(VLC)技术绿色低碳、可实现近乎零耗能通信,还可有效避免无线电通信电磁信号泄露等弱点,快速构建抗干扰、抗截获的安全信息空间。在现今大力倡导绿色低碳经济的大背景下,VLC技术在国际上逐渐受到关注。VLC作为解决最后一公里无线接入的一个重要手段,被认为是5G关键技术之一。
VLC***主要由信号调制编码、光源发射、传输和接收***等部分组成,其中重要的接收环节,其性能在很大程度上决定了整个***的优劣。VLC***常用的可见光探测器主要有硅基PIN型光电二极管和雪崩光电二极(APD),二者相比,APD的响应度可以提高几十倍甚至数百倍;APD探测器的灵敏度也很高,可以使可见光通信距离更远;而且APD探测器的体积小、易于集成,在恒温保持和应用配电方面更为简单;因此APD在弱光探测领域具有广阔的应用前景。目前,使用较广的可见光APD探测器主要是硅基APD探测器。硅基APD探测器的灵敏度光谱范围为380nm~1100nm,适用于可见光波段和近红外波段,响应度高、倍增噪声较低。
对于硅基APD,由于材料自身的特性,硅对可见光的吸收系数范围为0.5×103cm-1~105cm-1,所以可见光在APD中的入射深度仅为0.1μm~10μm左右,传统的硅基APD对可见光全波段的量子效率不理想。为了提高探测器在短波方向的量子效率,通常将非耗尽区设计的很薄,同时减少长波方向上的光在耗尽层的吸收率。但在实际工艺中非耗尽层最低只能达到0.01μm,量子效率提升有限。另外,硅基APD的光敏面积对器件的响应速度和灵敏度是一个矛盾的因素,增加光敏面积会提高器件的灵敏度,同时会减小会降低器件的响应速度。
发明内容
针对硅基APD对可见光全波段量子效率低和响应速度慢的缺点,本发明提出一种高速高效可见光增敏硅基雪崩光电二极管阵列。
为实现本发明的目的,采用以下技术方案予以实现:
一种高速高效可见光增敏硅基雪崩光电二极管阵列,所述雪崩光电二极管为SACM型APD,包括衬底以及设于衬底底部的阳极,所述衬底上表面设有凹槽,所述凹槽中自下而上依次包括:阴极、非耗尽层、倍增层和场控层,且阴极、非耗尽层、倍增层和场控层侧面分别与所述衬底之间绝缘;所述场控层上覆有吸收层,且所述吸收层与所述衬底相接;所述衬底为p+型硅片;所述非耗尽层为n+型外延层;所述倍增层为π型的硅外延层;所述场控层为p型的硅外延层;所述吸收层为π型硅外延层。
传统硅基APD的结构依次由n型非耗尽层,p型倍增层,p型场控层,p型吸收层和p型衬底层构成。然而在可见光波段,硅材料的吸收率高,可见光的光子在硅材料中的传播距离短,光子入射到APD光敏面后,在耗尽层与倍增层基本被完全吸收,很难到达吸收层,所以传统可见光APD的量子效率非常低。
本发明提出了一种高速高效可见光增敏硅基雪崩光电二极管(APD)阵列的结构,将吸收层设计在器件的表层,从而使入射的可见光全波段在表层被充分的吸收,同时器件的阳极和阴极均位于器件的底部,增加了器件的光敏面,从而提高器件的量子效率及对可见光的灵敏度。其工作过程是,在反向偏压的作用下,光照射在硅基APD表面,入射光透过增透膜直接照射吸收层,硅材料对可见光的吸收系数大,可见光在硅材料中传播距离很短,在吸收层直接被吸收,而其它长波段的光将透过吸收层向下传播,当入射光的光子能量大于硅的禁带宽度时,在吸收层中入射的可见光光子能量被吸收产生电子-空穴对,电子沿着电场方向向n型扩散,空穴向p型扩散,当反向偏压足够大时将引起载流子的雪崩倍增,形成大的反向电流,进而实现光电转换。
优选地,所述衬底的掺杂浓度为1015~1030cm-3;所述非耗尽层为高掺杂浓度和高缺陷的多晶硅,其掺杂浓度为1015~1030cm-3;所述倍增层的掺杂浓度为1012~1015cm-3;所述场控层的掺杂浓度为1016~1018cm-3;所述吸收层的掺杂浓度为1012~1015cm-3
进一步地,所述吸收层上还覆有增透膜。优选增透膜厚度为0.1~20μm。
优选阴极和阳极采用Au、Ag、Cu、Al、Cr、Ni、Ti中的一种或几种的合金层。
进一步地,所述阴极、非耗尽层、倍增层和场控层与所述衬底之间绝缘具体为:所述阴极、非耗尽层、倍增层和场控层与所述衬底之间填充有绝缘填充物;所述绝缘填充物包括设于凹槽底部的第一绝缘层;所述绝缘填充物还包括设于凹槽侧面,将阴极、非耗尽层、倍增层和场控层的侧面与衬底隔离的第二绝缘层。
优选地,所述第一绝缘层为聚二甲基硅氧烷、聚酰亚胺或者SiO2等有机或者无机绝缘材料,所述第二绝缘层为空气、聚二甲基硅氧烷、聚酰亚胺或者SiO2等绝缘物质。优选所述第一绝缘层为SiO2层。
进一步地,所述凹槽的深度为0.1~20μm,凹槽的面积取决于所设计的阵列的大小。
进一步地,所述凹槽包括隔离沟道,所述第二绝缘层设于隔离沟道内,所述凹槽的深度为0.1~20μm,所述隔离沟道的深度为1~20μm,宽度为0.1~1000μm。所述凹槽的深度与隔离沟道的深度不同,隔离沟道的长度也是取决于所设计的APD阵列的总长度。
进一步地,所述非耗尽层的面积小于所述倍增层的面积。优选地,所述非耗尽层的面积略小于倍增层的面积,从而形成保护环减小漏电流。进一步优选地,所述非耗尽层的面积为倍增层的面积50%~99%。
为进一步提高上述高速高效可见光增敏硅基雪崩光电二极管的增益和响应速度,阵列设置多个上述的高速高效可见光增敏硅基雪崩光电二极管。
本技术方案将上述的倒装型可见光增敏硅基雪崩光电二极管进行阵列化处理,使得阵列单元的光敏面减小,进而器件的结电容减小,APD的响应速度得到提高,总的光敏面积不变,所以器件的灵敏度不受影响,同时在光入射时,会同时触发多个单元APD,从而使APD具有高的增益,因此称为一种高速高效可见光增敏硅基雪崩光电二极管(APD)阵列。
具体地,上述的高速高效可见光增敏硅基雪崩光电二极管阵列包括衬底以及设于衬底底部的阳极,所述衬底上表面设有多个阵列的凹槽,所述凹槽中自下而上依次包括:阴极、非耗尽层、倍增层和场控层,且阴极、非耗尽层、倍增层和场控层与所述衬底之间绝缘;各所述凹槽的场控层上覆有吸收层,且所述吸收层与所述衬底相接,同时各所述凹槽所对应的吸收层之间是断开的。
与现有技术比较,本发明提供了一种高速高效倒装型可见光增敏硅基雪崩光电二极管结构,通过将吸收层设置在器件的表层,同时将器件的阳极和阴极设置于器件的底部,从而一方面使得入射的可见光在表层被充分吸收,另一方面增大了光敏面积,因此大大提高了器件的量子效率以及对可见光的灵敏度。
另外,本发明还提出了通过将上述倒装型可见光增敏硅基雪崩光电二极管阵列设置,提高器件的响应速度和增益,可得到高速高效的倒装型可见光增敏硅基雪崩光电二极管。
附图说明
图1为本发明所述的高增益倒装型可见光增敏硅基雪崩光电二极管的立体图;
图2为本发明所述的高增益倒装型可见光增敏硅基雪崩光电二极管的纵向剖面图;
附图标记:
1.增透膜;2.吸收层;3.场控层;4.倍增层;5.非耗尽层;6.阴极;7.SiO2氧化层;8.绝缘填充物;9.衬底;10.阳极。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明实施方式作进一步详细地说明。
实施例
本实施例提供了一种可以提高可见光全波段的量子效率和具有高速高效的硅基APD。
一种倒装型的高速高效可见光增敏硅基雪崩光电二极管,包括衬底9以及设于衬底底部的阳极10,所述衬底9上表面设有凹槽,所述凹槽中自下而上依次包括:SiO2氧化层7、阴极6、非耗尽层5、倍增层4和场控层3,且阴极6、非耗尽层5、倍增层4和场控层3与所述衬底9之间绝缘;所述场控层3上覆有吸收层2,且所述吸收层2与所述衬底9相接,所述吸收层2上还覆有增透膜1。
作为另一种优选的实施方案,SiO2氧化层7还可以是其他绝缘物质,既能将阴极6和衬底隔开,又能方便后续非耗尽层的生长,如还可以是聚二甲基硅氧烷、聚酰亚胺。
其中,所述衬底9为高掺杂(杂质为B等三价态元素)的p+型硅片,掺杂浓度为1015~1030cm-3;所述非耗尽层5为n+型高掺杂浓度(杂质为P、As等五价态元素)和高缺陷的外延多晶硅层,掺杂浓度为1015~1030cm-3;所述倍增层4为π型的硅外延层,掺杂浓度为1012~1015cm-3;所述场控层3为p型的硅外延层,掺杂浓度为1016~1018cm-3;所述吸收层2为π型硅外延层,掺杂浓度为1012~1015cm-3
作为一种较优的实施方式,所述凹槽中设有绝缘填充物8,将凹槽中的阴极6、非耗尽层5、倍增层4以及场控层3的侧面与衬底9隔离。优选所述绝缘填充物8为空气、聚二甲基硅氧烷、聚酰亚胺或SiO2等绝缘物质。
本实施例还提出了一种高速高效可见光增敏硅基雪崩光电二极管(APD)阵列的结构,可以提高硅基APD对可见光的灵敏度和量子效率,并且具有高的增益和响应速度。具体的,如图1~2所示,所述的高速高效倒装型可见光增敏硅基雪崩光电二极管阵列,包括衬底9以及设于衬底底部的阳极10,所述衬底上表面设有多个阵列的凹槽,所述凹槽中自下而上依次包括:SiO2氧化层7、阴极6、非耗尽层5、倍增层4和场控层3;且阴极6底部通过SiO2氧化层7与衬底9隔离,阴极6、非耗尽层5、倍增层4和场控层3的侧面通过绝缘填充物8与衬底9隔离;各所述凹槽的场控层3上覆有吸收层2,且所述吸收层2与所述衬底9相接,同时各所述凹槽所对应的吸收层是断开的。
本实施例所提供的是一种SACM型雪崩光电二极管。在本实施例中,硅基APD的吸收层位于器件的表层,形成倒装结构,从而实现可见光增敏和量子效率的提高。同时阵列化的APD在光入射时,会同时触发多个单元APD,从而使APD具有高的增益,阵列化使得单元的光敏面减小,进而器件的结电容减小,APD的响应速度得到提高,阵列化后的总体光敏面积并未减小,所以不影响器件的灵敏度,因此称为一种高速高效可见光增敏硅基雪崩光电二极管(APD)阵列。其工作过程是,在反向偏压的作用下,光照射在硅基APD表面,入射光透过增透膜直接照射吸收层,硅材料对可见光的吸收系数大,可见光在硅材料中传播距离很短,在吸收层直接被吸收,而其它长波段的光将透过吸收层向下传播,当入射光的光子能量大于硅的禁带宽度时,在吸收层中入射的可见光光子能量被吸收产生电子-空穴对,电子沿着电场方向向n型扩散,空穴向p型扩散,当反向偏压足够大时将引起载流子的雪崩倍增,形成大的反向电流,进而实现光电转换。
上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (9)

1.一种高速高效可见光增敏硅基雪崩光电二极管阵列,其特征在于,所述雪崩光电二极管为SACM型APD,包括衬底以及设于衬底底部的阳极,所述衬底上表面设有凹槽,所述凹槽中自下而上依次包括:阴极、非耗尽层、倍增层和场控层,且阴极、非耗尽层、倍增层和场控层分别与所述衬底之间绝缘;所述场控层上覆有吸收层,且所述吸收层与所述衬底相接;所述衬底为p+型硅片;所述非耗尽层为n+型硅外延层;所述倍增层为π型的硅外延层;所述场控层为p型的硅外延层;所述吸收层为π型硅外延层;阴极和阳极为Au、Ag、Cu、Al、Cr、Ni、Ti中的一种或几种的合金。
2.根据权利要求1所述的高速高效可见光增敏硅基雪崩光电二极管阵列,其特征在于,所述衬底的掺杂浓度为1015~1030cm-3;所述非耗尽层的掺杂浓度为1015~1030cm-3;所述倍增层的掺杂浓度为1012~1015cm-3;所述场控层的掺杂浓度为1016~1018cm-3;所述吸收层的掺杂浓度为1012~1015cm-3
3.根据权利要求1所述的高速高效可见光增敏硅基雪崩光电二极管阵列,其特征在于,所述吸收层上还覆有增透膜。
4.根据权利要求1所述的高速高效可见光增敏硅基雪崩光电二极管阵列,其特征在于,所述阴极、非耗尽层、倍增层和场控层分别与所述衬底之间绝缘具体为:
所述阴极、非耗尽层、倍增层和场控层与所述衬底之间填充有绝缘填充物;
所述绝缘填充物包括设于凹槽底部的第一绝缘层;所述绝缘填充物还包括设于凹槽侧
面,将阴极、非耗尽层、倍增层和场控层的侧面与衬底隔离的第二绝缘层。
5.根据权利要求4所述的高速高效可见光增敏硅基雪崩光电二极管阵列,其特征在于,所述第一绝缘层为聚二甲基硅氧烷、聚酰亚胺或者SiO2绝缘物质,所述第二绝缘层为空气、聚二甲基硅氧烷、聚酰亚胺或者SiO2绝缘物质。
6.根据权利要求1所述的高速高效可见光增敏硅基雪崩光电二极管阵列,其特征在于,所述非耗尽层的面积小于所述倍增层的面积。
7.根据权利要求6所述的高速高效可见光增敏硅基雪崩光电二极管阵列,其特征在于,所述非耗尽层的面积为所述倍增层的面积50%~99%。
8.根据权利要求1~7任一项所述的高速高效可见光增敏硅基雪崩光电二极管阵列,其特征在于,所述衬底上表面设有多个阵列的凹槽;各所述凹槽覆有相对应的吸收层,且所述吸收层分别与所述场控层和衬底相接,同时各所述凹槽所对应的吸收层之间是相互断开的。
9.根据权利要求4~5任一项所述的高速高效可见光增敏硅基雪崩光电二极管阵列,其特征在于,所述凹槽的深度为0.1~20μm,所述凹槽包括隔离沟道,所述第二绝缘层设于隔离沟道内,所述隔离沟道的深度为1~20μm,宽度为0.1~1000μm。
CN201811555116.6A 2018-12-18 2018-12-18 一种高速高效可见光增敏硅基雪崩光电二极管阵列 Active CN109494276B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811555116.6A CN109494276B (zh) 2018-12-18 2018-12-18 一种高速高效可见光增敏硅基雪崩光电二极管阵列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811555116.6A CN109494276B (zh) 2018-12-18 2018-12-18 一种高速高效可见光增敏硅基雪崩光电二极管阵列

Publications (2)

Publication Number Publication Date
CN109494276A CN109494276A (zh) 2019-03-19
CN109494276B true CN109494276B (zh) 2024-06-14

Family

ID=65710801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811555116.6A Active CN109494276B (zh) 2018-12-18 2018-12-18 一种高速高效可见光增敏硅基雪崩光电二极管阵列

Country Status (1)

Country Link
CN (1) CN109494276B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638024B (zh) * 2018-12-18 2024-06-18 暨南大学 一种可见光短波段硅基雪崩光电二极管阵列及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209418523U (zh) * 2018-12-18 2019-09-20 暨南大学 一种倒装型可见光增敏硅基雪崩光电二极管阵列

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296676A (ja) * 1988-05-24 1989-11-30 Nec Corp 半導体受光装置
JPH10233525A (ja) * 1997-02-19 1998-09-02 Hamamatsu Photonics Kk アバランシェフォトダイオード
US8164151B2 (en) * 2007-05-07 2012-04-24 Osi Optoelectronics, Inc. Thin active layer fishbone photodiode and method of manufacturing the same
JP2005116681A (ja) * 2003-10-06 2005-04-28 Toshiba Corp 光半導体受光素子およびその製造方法
CN101183691A (zh) * 2007-11-30 2008-05-21 中山大学 半导体光电探测器芯片结构
JP2010278406A (ja) * 2009-06-01 2010-12-09 Opnext Japan Inc アバランシェホトダイオード及びこれを用いた光受信モジュール
CN103390674B (zh) * 2013-07-17 2015-09-30 深圳先进技术研究院 Czts柔性太阳电池及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209418523U (zh) * 2018-12-18 2019-09-20 暨南大学 一种倒装型可见光增敏硅基雪崩光电二极管阵列

Also Published As

Publication number Publication date
CN109494276A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
CN105720130B (zh) 基于量子阱带间跃迁的光电探测器
US8742251B2 (en) Multi-segment photovoltaic power converter with a center portion
KR100723137B1 (ko) 포토다이오드 소자 및 이를 이용한 광센서용 포토다이오드어레이
Kang et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
KR20120034965A (ko) 태양 전지
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
CN110246903B (zh) 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法
WO2014101601A1 (zh) 光电探测器及其制造方法和辐射探测器
CN108878576B (zh) 一种氧化镓基紫外探测器
CN111900217A (zh) 一种中/长波红外双波段超晶格红外探测器及其制备方法
CN105097964B (zh) 一种有源区高斯掺杂型pπn紫外探测器
CN108091720A (zh) 单行载流子光电探测器及其制备方法
CN108538865B (zh) 一种硅基三光电探测器
JP4949520B2 (ja) 波長選択的吸収層の堆積を含む多重接合光電子デバイス、製造方法、及び、集積回路、
CN109742093B (zh) 一种增强蓝光型硅基雪崩光电二极管阵列及其制备方法
CN117747692B (zh) 一种高量子效率的短中波超晶格双色探测器
CN109494276B (zh) 一种高速高效可见光增敏硅基雪崩光电二极管阵列
Piotrowski et al. Stacked multijunction photodetectors of long-wavelength radiation
CN207572377U (zh) 一种多漂移环结构的紫外雪崩漂移探测器
CN103247637B (zh) 红外探测器及其制作方法
CN111863981A (zh) 一种氧化镓日盲光电探测器及其制备方法
CN113178497B (zh) 一种基于量子点的紫外探测器及制作方法
CN110544731A (zh) 一种紫外探测器及其制备方法
CN110350045B (zh) PbS量子点Si-APD红外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant