CN109485423B - SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法 - Google Patents

SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法 Download PDF

Info

Publication number
CN109485423B
CN109485423B CN201811444063.0A CN201811444063A CN109485423B CN 109485423 B CN109485423 B CN 109485423B CN 201811444063 A CN201811444063 A CN 201811444063A CN 109485423 B CN109485423 B CN 109485423B
Authority
CN
China
Prior art keywords
sic
powder
coating
hfc
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811444063.0A
Other languages
English (en)
Other versions
CN109485423A (zh
Inventor
冯涛
李贺军
付前刚
童明德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201811444063.0A priority Critical patent/CN109485423B/zh
Publication of CN109485423A publication Critical patent/CN109485423A/zh
Application granted granted Critical
Publication of CN109485423B publication Critical patent/CN109485423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种SiC纳米线增韧化学气相共沉积HfC‑SiC复相涂层的制备方法,首先利用化学气相沉积技术在C/C复合材料表面制备SiC纳米线,而后利用化学气相共沉积技术沉积HfC‑SiC复相涂层,进而在C/C复合材料表面得到SiC纳米线增韧HfC‑SiC复相涂层。本发明方法制备的SiC纳米线增韧HfC‑SiC复相涂层通过控制涂层中的组织成分及各相的均匀程度,缓解了涂层与炭炭复合材料热膨胀系数的不匹配,并通过纳米线桥联拔出机制抑制裂纹产生和扩展,有效地抑制了在烧蚀过程中HfC基陶瓷涂层开裂的情况。所制备的涂层厚度均匀,组织可控,工艺制备周期短、工艺过程简单,成本低。

Description

SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法
技术领域
本发明属于纳米线增韧复相涂层的制备方法,涉及一种SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法。
背景技术
炭/炭(C/C)复合材料因其低密度和优异的高温力学性能等特点,在航空航天材料方面具有广泛的应用前景。然而,在含氧气氛的烧蚀环境下,C/C复合材料会发生严重的氧化和机械剥蚀,严重限制了其在航空器和航天器关键部位的应用。为了解决该问题且经过国内外学者的大量研究发现,涂层技术是一种在极端烧蚀环境下有效防护C/C复合材料的技术。
难熔陶瓷(HfC,ZrC,TaC,ZrB2,HfB2...)具有更高的熔点,适用于作为C/C超高温抗烧蚀涂层的材料,其中HfC因其具有高熔点,高硬度,优异的化学稳定性和抗热冲击能力,已经作为C/C抗烧蚀涂层的理想材料,除此之外,HfC的氧化产物HfO2具有高熔点,高的化学稳定性。已有学者针对HfC陶瓷涂层做过了抗烧蚀方面的研究,王雅雷等人通过控制HfC涂层制备的工艺参数,制备了针片状,菜花状等结构的HfC涂层,与致密的HfC涂层相比,该结构能够提供一定余量给HfC以膨胀,有效缓解涂层在烧蚀过程中的热应力,从而表现出良好的抗烧蚀性能,但涂层的力学性能有所降低[Ya-Lei Wang,et al.Ablation behavior ofHfC protective coatings for carbon/carbon composites in an oxyacetylenecombustion flame.Corrosion Sience,2012,pages 545-555]。
然而HfC在400℃左右就开始氧化,氧化产物HfO2在1800℃以下因无法熔融烧结生成疏松的珊瑚状的HfO2,且附着力极差,极易从表面脱落,造成HfC涂层呈现粉化氧化。在烧蚀的升温过程中,涂层的粉化氧化与高速粒子冲刷的共同作用下,涂层非常容易因剥蚀而失效。王永杰等人利用原位反应和化学气相沉积技术,设计制备了SiC/HfC/SiC复合涂层,一定程度的缓解涂层应力,且在表面形成Hf-Si-O玻璃态物质,其具有良好的高温稳定性,提高了涂层的抗氧化能力,有效地抑制了HfC粉化氧化的发生[Wang Y,Li H,Fu Q,et.al.SiC/HfC/SiC ablation resistant coating for carbon/carboncomposites.Surf.&Coat.Technol.2012;206:3883-3887]。Verdon C等利用化学气相沉积技术在碳纤维和C/C表面成功制备了HfC/SiC交替多层结构,并揭示该涂层在高温氧气环境中的抗氧化机理。结果表明,多层交替增加了HfC,SiC氧化产物化合反应的机会,一定程度降低了Hf,Si元素扩散的自由程,有利于形成Hf-Si-O玻璃相[Verdon C,Szwedek O,Jacques S,et al.Hafnium and silicon carbide multilayer coatings for theprotection of carbon composites.Surface&Coating Technology,2013,volume230pages 124-129]。但交替沉积存在反复加热的过程,容易出现应力集中现象。与此同时,交替沉积涂层并不能很好的解决涂层在使用过程中开裂的问题,使得C/C基体氧化,力学性能下降严重。另外,交替沉积涂层在抗氧化抗烧蚀的过程中,因Hf,Si,O元素扩散自由程较长,往往只能在HfC/SiC界面处产生Hf-Si-O玻璃相,限制了涂层的抗氧化能力。同时,HfC、SiC陶瓷本身固有的脆性太大,导致涂层在热应力影响下极易开裂。为了克服陶瓷涂层的固有脆性,研究人员利用增韧机理开发了一系列纳米线增强陶瓷涂层。尤其是SiC纳米线不仅具有优良的力学特性,如高强度、高模量、高硬度、低的热膨胀系数等,而且具有优良的化学性质,如高熔点、耐高温、耐腐蚀等,使其成为一种非常理想的韧化体。褚衍辉等人制备了SiC纳米线增韧HfC涂层[Yan-Hui Chu,et al.Microstructure and mechanicalproperties of ultrafine bamboo-shaped SiC rod-reinforced HfC ceramiccoating.Surface&Coatings Technology,2013,pages 577-581]。强新发等人制备了SiC纳米线增韧SiC涂层[Mechanical and oxidation protective properties of SiCnanowires-toughened SiC coating prepared in-situ by a CVD process on C/Ccomposites.Surface&Coatings Technology,2016,pages 91-98]。研究结果表明,在涂层中引入SiC纳米线,可有效地抑制涂层中裂纹的扩展。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法,能够抑制HfC在烧蚀环境下粉化氧化的发生,降低烧蚀过程中生成Hf-Si-O玻璃相的扩散势垒,并有效地解决陶瓷涂层易开裂问题,进一步提高涂层的抗氧化烧蚀能力。
技术方案
一种SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法,其特征在于步骤如下:
步骤1:在C/C复合材料表面打磨后清洗,并烘干;
步骤2:将SiO2,Si,C粉体按约6:1:2的比例进行混合,放入行星式球磨机中研磨搅匀得到粉体,然后取出并置于80℃烘箱做5h烘干;
步骤3:将粉体置于石墨坩埚,采用一束炭纤维将C/C复合材料悬挂于石墨坩埚中,再用石墨纸将坩埚包好置于热处理炉中,升温至1400~1600℃并保温2h,待其降温得到表面有SiC纳米线的C/C复合材料;
步骤4:采用一束炭纤维绳将带有SiC纳米线的C/C复合材料悬挂于等温化学气相沉积炉中,将HfCl4粉放置于炉腔上方的送粉装置中;硅粉放置于C/C复合材料下方5-10cm处的储料器中;
步骤5:以5~12℃/min的升温速率将等温化学气相沉积CVD炉内温度升温至1300~1500℃;然后以0.5~1.0g/min的送粉速率向炉膛中输送HfCl4粉体,以0.1~0.5g/min的进料速率输送SiCl3CH3,以600~1000ml/min的流量向炉膛内通入氢气,以100~200ml/min的流量向炉膛内通入甲烷,以100~500ml/min的流量向炉膛内通入氩气,真空度保持在5~15kPa,并在该温度下保温5~10h,随后关闭电源自然降温,整个降温过程通入氩气保护。
所述步骤2的SiO2,Si和C粉体分别经过300筛网的筛选。
有益效果
本发明提出的一种SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法,采用两步法,利用化学气相沉积技术在C/C复合材料表面制备SiC纳米线,而后利用化学气相共沉积技术在带有SiC纳米线的C/C复合材料表面制备SiC纳米线增韧的HfC-SiC复相涂层。
本发明HfC-SiC复相涂层中,HfC熔点是已知熔点最高的化合物,具有高硬度、高化学稳定性、优异的抗热冲击和抗烧蚀性能,是C/C复合材料理想的涂层材料。然而,HfC涂层与C/C复合材料之间较大的热膨胀不匹配,倘若将其直接应用在C/C复合材料表面,很容易导致涂层的开裂甚至剥落。SiC纳米线增韧HfC-SiC复相涂层可从根本上解决热膨胀系数不匹配问题。本发明采用化学气相共沉积法制备SiC纳米线增韧的HfC-SiC复相涂层,且通过本发明在C/C复合材料表面制备的SiC纳米线增韧的HfC-SiC复相涂层表面无裂纹,涂层与基体结合良好。
本发明可以制备出厚度均匀,组织可控,HfC、SiC均匀弥散分布的SiC纳米线增韧HfC-SiC复相涂层,工艺简单,反应周期短,成本低,具有广阔的发展前景。
附图说明
图1:化学气相共沉积SiC纳米线增韧HfC-SiC复相涂层的结构及工艺设计示意图
图2:化学气相共沉积SiC纳米线增韧HfC-SiC复相涂层的表面SEM照片及XRD图谱
图3:化学气相共沉积2小时后的SiC纳米线增韧HfC-SiC复相涂层表面背散射SEM照片
(a)背散射图片;(b)a图中白框区域放大图
图4:SiC纳米线增韧HfC-SiC复相涂层的截面背散射SEM照片
图5:微米压痕后的SiC纳米线增韧HfC-SiC复相涂层截面SEM照片
(a)SEM照片;(b)a图中白圈区域放大图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法步骤:
(1)在涂层制备前,C/C复合材料试样表面打磨抛光后清洗,并于烘箱中烘干待用,将SiO2,Si,C三种粒径为300目的粉末按6:1:2的比例混合均匀并烘干待用;
(2)采用一束炭纤维绳将步骤1中的C/C复合材料悬挂于底部带有配好的粉料的石墨坩埚中,并将坩埚至于氩气保护气氛电炉的恒温区,按5℃/min的速率通电加热至1600℃,恒温2h,然后随炉冷却降温。
(3)用一束碳纤维将步骤2得到的表面带有SiC纳米线的C/C试样悬挂于等温化学气相沉积(CVD)炉中,将HfCl4粉放置于悬挂的C/C复合材料上方CVD炉的送粉装置中;硅粉放置于悬挂的C/C复合材料下方的CVD炉储料器中;
(4)通电升温,以5~12℃/min的升温速率将CVD炉内温度升温至1200~1500℃;然后以0.2g/min的速率向炉膛送入HfCl4,以600~1000ml/min的流量向炉膛内通入氢气,以100~200ml/min的流量向炉膛内通入甲烷或,以100~500ml/min的流量向炉膛内通入氩气,真空度保持在5~15kPa,并在该温度下保温5~10h,随后关闭电源自然降温,整个降温过程通入氩气保护。
(5)检测、分析、表征
对制备的SiC纳米线增韧HfC-SiC复相涂层样品的形貌、化学成分进行分析、表征:
用扫描电镜进行形貌分析;
用X射线衍射技术对化学成分分析。
结论:本发明可以制备出厚度均匀,组织可控的SiC纳米线增韧HfC-SiC复相涂层,有效地抑制HfC在烧蚀环境下粉化氧化和陶瓷涂层易开裂的问题。
具体实施例:
实施例1:
选用密度为1.70g/cm3的C/C试样,使用320目SiC水砂纸打磨平整并置于80℃烘干4h备用;将粒度为负300目的SiO2,Si,C按照约为6:1:2的比例放入行星式球磨机搅拌3h,并烘干备用。选用HfCl4,SiCl3CH3,CH4作为前驱体,H2作为还原性气体,Ar作为保护气。
将准备好的C/C基体使用碳纤维悬挂于内部装有备好的SiO2,Si,C混合粉的石墨坩埚中,升温至1500℃,保温2h,得到表面带有SiC纳米线的C/C基体,再将悬挂于化学气相沉积炉(等温立式真空炉)的等温区。在Ar气流量600ml/min的保护下,以7℃/min升温,保持炉体压力约为30kpa,升温至1300℃后,调节送粉旋钮,将HfCl4粉的进料速率调节至0.6g/min。同时打开SiCl3CH3进气口,使其蒸发进气,并控制进料速度为0.5g/min,H2,Ar,CH4的流量分别保持为800ml/min,200ml/min,120ml/min。沉积时间为5h,待沉积结束,依次关闭电炉加热开关,HfCl4送料装置,SiCl3CH3进气口,H2,CH4进气口,将Ar的流量调节至400ml/min,保证炉腔在真空下降温。待降温至300℃以下,关闭Ar进气口,关闭机械泵,关闭冷却水,待降至室温后打开炉体取样,即可得SiC纳米线增韧HfC-SiC复相涂层。
实施例2:
选用密度为1.70g/cm3的C/C试样,使用320目SiC水砂纸打磨平整并置于80℃烘干4h备用;将粒度为负300目的SiO2,Si,C按照约为6:1:2的比例放入行星式球磨机搅拌3h,并烘干备用。选用HfCl4,SiCl3CH3,CH4作为前驱体,H2作为还原性气体,Ar作为保护气。
将准备好的C/C基体使用碳纤维悬挂于内部装有备好的SiO2,Si,C混合粉的石墨坩埚中,升温至1600℃,保温2h,得到表面带有SiC纳米线的C/C基体,再将悬挂于化学气相沉积炉(等温立式真空炉)的等温区。在Ar气流量600ml/min的保护下,以7℃/min升温,保持炉体压力约为30kpa,升温至1400℃后,调节送粉旋钮,将HfCl4粉的进料速率调节至0.5g/min。同时打开SiCl3CH3进气口,使其蒸发进气,并控制进料速度为0.3g/min,H2,Ar,CH4的流量分别保持为800ml/min,200ml/min,120ml/min。沉积时间为5h,待沉积结束,依次关闭电炉加热开关,HfCl4送料装置,SiCl3CH3进气口,H2,CH4进气口,将Ar的流量调节至400ml/min,保证炉腔在真空下降温。待降温至300℃以下,关闭Ar进气口,关闭机械泵,关闭冷却水,待降至室温后打开炉体取样,即可得SiC纳米线增韧HfC-SiC复相涂层。
实施例3:
选用密度为1.70g/cm3的C/C试样,使用320目SiC水砂纸打磨平整并置于80℃烘干4h备用;将粒度为负300目的SiO2,Si,C按照约为6:1:2的比例放入行星式球磨机搅拌3h,并烘干备用。选用HfCl4,SiCl3CH3,CH4作为前驱体,H2作为还原性气体,Ar作为保护气。
将准备好的C/C基体使用碳纤维悬挂于内部装有备好的SiO2,Si,C混合粉的石墨坩埚中,升温至1400℃,保温2h,得到表面带有SiC纳米线的C/C基体,再将悬挂于化学气相沉积炉(等温立式真空炉)的等温区。在Ar气流量600ml/min的保护下,以7℃/min升温,保持炉体压力约为30kpa,升温至1500℃后,调节送粉旋钮,将HfCl4粉的进料速率调节至0.8g/min。同时打开SiCl3CH3进气口,使其蒸发进气,并控制进料速度为0.4g/min,H2,Ar,CH4的流量分别保持为800ml/min,200ml/min,120ml/min。沉积时间为5h,待沉积结束,依次关闭电炉加热开关,HfCl4送料装置,SiCl3CH3进气口,H2,CH4进气口,将Ar的流量调节至400ml/min,保证炉腔在真空下降温。待降温至300℃以下,关闭Ar进气口,关闭机械泵,关闭冷却水,待降至室温后打开炉体取样,即可得SiC纳米线增韧HfC-SiC复相涂层。
所有实施例中,HfCl4粉、硅粉的纯度大于99.90%,甲烷气体纯度大于99.90%。氢气和氩气纯度大于99.999%。
本发明方法制备的SiC纳米线增韧HfC-SiC复相涂层通过控制涂层中的组织成分及各相的均匀程度,缓解了涂层与炭炭复合材料热膨胀系数的不匹配,并通过纳米线桥联拔出机制抑制裂纹产生和扩展,有效地抑制了在烧蚀过程中HfC基陶瓷涂层开裂的情况。所制备的涂层厚度均匀,组织可控,工艺制备周期短、工艺过程简单,成本低。
图中可知:由图2可知SiC纳米线增韧的HfC-SiC复相涂层较为致密,覆盖均匀且表面无明显裂纹,涂层由HfC和SiC相组成。从图3中可知涂层的生长过程,沉积2h发现共沉积涂层是先包裹SiC纳米线生长,由线到棒再到致密的涂层结构。另外图中亮白色相为HfC,灰色相为SiC,两种相相互交替包裹纳米线,分布均匀。从图4中可知,该涂层与炭炭基体浸渗性良好,在C/C基体中仍然可以发现大量HfC-SiC复相涂层,两种相分布均匀,涂层与基体之间结合良好,没有明显间隙。从图5中能看到SiC纳米线在HfC-SiC复相涂层中的桥联拔出,通过这种增韧机制,涂层的开裂以及裂纹的扩展得到有效的抑制。

Claims (2)

1.一种SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法,其特征在于步骤如下:
步骤1:在C/C复合材料表面打磨后清洗,并烘干;
步骤2:将SiO2,Si,C粉体按6:1:2的比例进行混合,放入行星式球磨机中研磨搅匀得到粉体,然后取出并置于80℃烘箱于5h烘干;
步骤3:将粉体置于石墨坩埚,采用一束炭纤维将C/C复合材料悬挂于石墨坩埚中,再用石墨纸将坩埚包好置于热处理炉中,升温至1400~1600℃并保温2h,待其降温得到表面有SiC纳米线的C/C复合材料;
步骤4:采用一束炭纤维绳将带有SiC纳米线的C/C复合材料悬挂于等温化学气相沉积炉中,将HfCl4粉放置于炉腔上方的送粉装置中;硅粉放置于C/C复合材料下方5-10cm处的储料器中;
步骤5:以5~12℃/min的升温速率将等温化学气相沉积CVD炉内温度升温至1300~1500℃;然后以0.5~1.0g/min的送粉速率向炉膛中输送HfCl4粉体,以0.1~0.5g/min的进料速率输送SiCl3CH3,以600~1000ml/min的流量向炉膛内通入氢气,以100~200ml/min的流量向炉膛内通入甲烷,以100~500ml/min的流量向炉膛内通入氩气,真空度保持在5~15kPa,并在该温度下保温5~10h,随后关闭电源自然降温,整个降温过程通入氩气保护。
2.根据权利要求1所述SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法,其特征在于:所述步骤2的SiO2,Si和C粉体分别经过300筛网的筛选。
CN201811444063.0A 2018-11-29 2018-11-29 SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法 Active CN109485423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811444063.0A CN109485423B (zh) 2018-11-29 2018-11-29 SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811444063.0A CN109485423B (zh) 2018-11-29 2018-11-29 SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法

Publications (2)

Publication Number Publication Date
CN109485423A CN109485423A (zh) 2019-03-19
CN109485423B true CN109485423B (zh) 2021-07-16

Family

ID=65698659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811444063.0A Active CN109485423B (zh) 2018-11-29 2018-11-29 SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法

Country Status (1)

Country Link
CN (1) CN109485423B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483055B (zh) * 2019-08-08 2021-09-28 中国核动力研究设计院 一种含共沉积复相界面的SiCf/SiC复合材料制备方法
CN111485220A (zh) * 2020-05-28 2020-08-04 西北工业大学 一种SiC纳米线增韧化学气相沉积ZrC涂层及制备方法
CN113336576A (zh) * 2021-03-28 2021-09-03 西北工业大学 一种SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法
CN114853507B (zh) * 2022-07-06 2022-10-14 湖南泰坦未来科技有限公司 一种复合碳材料及其制备方法和应用
CN115108852B (zh) * 2022-07-26 2022-12-06 湖南泰坦未来科技有限公司 一种石墨复合材料及其制备方法和应用
CN117164363B (zh) * 2023-11-02 2024-01-26 湖南泰坦未来科技有限公司 一种高温复合材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108395279A (zh) * 2018-02-08 2018-08-14 西北工业大学 化学气相共沉积法制备HfC-SiC复相梯度涂层的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108395279A (zh) * 2018-02-08 2018-08-14 西北工业大学 化学气相共沉积法制备HfC-SiC复相梯度涂层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microstructure and mechanical properties of ultrafine bamboo-shaped SiC rod-reinforced HfC ceramic coating;Yanhui Chu等;《SURFACE & COATINGS TECHNOLOGY》;20130827;第235卷;第577-581页 *

Also Published As

Publication number Publication date
CN109485423A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
CN109485423B (zh) SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法
Li et al. Comparison of the oxidation behaviors of SiC coatings on C/C composites prepared by pack cementation and chemical vapor deposition
CN108395279B (zh) 化学气相共沉积法制备HfC-SiC复相梯度涂层的方法
Zhuang et al. SiCnw/PyC core-shell networks to improve the bonding strength and oxyacetylene ablation resistance of ZrB2–ZrC coating for C/C–ZrB2–ZrC–SiC composites
CN106699233B (zh) 含化学气相共沉积硼化锆/铪-硼化钽的复合涂层及其制备方法
Hu et al. In-situ fabrication of ZrB2–SiC/SiC gradient coating on C/C composites
CN102815971B (zh) 一种Hf(Ta)C超高温复相涂层及其制备方法
CN107814591A (zh) 一种碳材料表面硼化物改性硅基抗氧化涂层的制备方法
Luo et al. Effects of fabrication processes on the properties of SiC/SiC composites
CN113024281B (zh) 一种碳化硅/石墨烯仿生层叠涂层及制备方法
CN111253171B (zh) 一种纤维增强碳化铪陶瓷基复合材料的致密化制备方法
CN111485220A (zh) 一种SiC纳米线增韧化学气相沉积ZrC涂层及制备方法
CN115108852B (zh) 一种石墨复合材料及其制备方法和应用
Huang et al. Preparation of a double layer SiC coating and its oxidation resistance at 1773 K
CN110590404B (zh) 一种碳基材料表面HfB2-SiC抗氧化涂层的制备方法
CN101215187A (zh) 碳化硅纳米线的制备方法
CN109704798A (zh) 真空浸渍结合反应熔体浸渗RMI制备C/SiC-Diamond复合材料的方法
Hao et al. The novel effect mechanism of Al2O3 nano-powder in the pack cementation process to prepare SiC coating on C/C composites
CN115180981B (zh) 一种纳米线跨尺度增韧复相陶瓷抗氧化涂层及其制备方法与应用
Tang et al. A novel approach for preparing a SiC coating on a C/C-SiC composite by slurry painting and chemical vapor reaction
Zhang et al. Ablation behavior of CVD-TaC coatings with different crystal structures for C/C composites under oxyacetylene flame
Luo et al. Structure and properties of nano SiC coatings in-situ fabricated by laser irradiation
Xu et al. High-quality SiC-HfC coating with interpenetrating structure based on a two-step low temperature molten salt method
CN105986247B (zh) 一种金刚石表面镀膜的流化床装置和方法以及使用该方法制备的产品
Gu et al. Deposition of zirconia sols on woven fibre preforms using a dip-coating technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant